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Homogenization of Dirichlet Problems
with Convex Bounded Constraints

on the Gradient

T. Champion and L. De Pascale

Abstract. We give a simpler proof of a conjecture of A. Bensoussan, J. L. Lions and
G. Papanicolaou on the homogenization of Dirichlet problems with convex bounded
constraints on the gradient. Our proof is based on a regularization technique for the
constrained functionals as well as on a fine approximation technique.
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1. Introduction

In this paper we study the asymptotic behaviour as the positive parameter ε
goes to 0 of the sequences of solutions of the problems

(Pε) min
{

Fε(v) +
∫

Ω

β(x)v(x) dx : v ∈ C0(Ω)
}

where C0(Ω) denotes the set of continuous functions on Ω which vanish on the
boundary ∂Ω and the functionals Fε are given on C0(Ω) by

Fε(v) =
{ ∫

Ω
f
(

x
ε , Dv(x)

)
dx if v ∈ W 1,∞(Ω) ∩ C0(Ω)

+∞ elsewhere

and where Ω is an open bounded subset of RN with |∂Ω| = 0, β ∈ L1(Ω) and
f is a function satisfying the following conditions:
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(1) (x, ξ) 7→ f(x, ξ) ∈ [0, +∞] is measurable in (x, ξ), (0, 1)N -periodic in
x, lower-semicontinuous and convex in ξ.

(2) f(·, 0) belongs to L1
(
(0, 1)N

)
.

(3) There exists R > 0 such that 0 ∈ dom f(x, ·) ⊂ B(0, R) for a.e. x ∈ Ω.
In the following, we denote by C(x) = dom f(x, ·) the pointwise constraint

set. By Hypotheses (1) and (3), C(x) is closed, convex and included in B(0, R)
for almost every x in Ω. Notice that Fε(v) < +∞ implies Dv(x) ∈ C(x

ε )
a.e., thus (Pε) is a family of problems with convex bounded constraints on
the gradient. This kind of problem arises in various physical models as for
the dielectric breakdown, polycrystal plasticity, or torsional creep problems.
We refer to [4, 20 - 22] for a presentation of the applications. Moreover,
as explained in [4], this question is also related to the homogenization of
variational inequalities.

In 1978, it was conjectured in [4: p. 207 - 214] that if for each ε >
0 the function uε is a minimizer of the corresponding problem (Pε), then
the convergent subsequences of the family (uε)ε converge (in C0(Ω) endowed
with the topology of uniform convergence) to minimizers of the homogenized
problem

(Phom) min
{

Fhom(v) +
∫

Ω

β(x)v(x) dx : v ∈ C0(Ω)
}

where the homogenized functional Fhom is given on C0(Ω) by

Fhom(v) =
{ ∫

Ω
fhom(Dv(x)) dx if finite and v ∈ W 1,∞(Ω) ∩ C0(Ω)

+∞ elsewhere

while the convex integrand fhom is defined on RN by the formula

fhom(ξ) =

inf

{∫

(0,1)N

f
(
y, ξ + Dv(y)

)
dy : v ∈ W 1,∞

#

(
(0, 1)N

) ∩ C((0, 1)N
)
}

.

In the above formula, W 1,p
#

(
(0, 1)N

)
denotes the set of functions of W 1,p

loc (RN )
which are (0, 1)N -periodic. Our setting is slightly more general than the set-
ting of [4] since the constraint sets C(x) do not need to be balls or even to be
balanced.

Here we give a short and self-contained proof of the previous homogeniza-
tion formula in the general case which fits in the scheme of the proof of [1: p.
106 - 112/Theorem 1.49] (see also [2]). Our proof of the Γ-convergence of the
functionals (Fε)ε to Fhom (see Section 2 for details) thus splits in two indepen-
dent parts: the estimate for the Γ-lim inf is obtained through the regulariza-
tion of the functionals Fε while the Γ-lim sup estimate is obtained through a
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suitable piecewise affine approximation of functions subject to constraints on
the gradient. The regularization for the functionals Fε consists in approximat-
ing the integrands of these integral functionals Fε via inf-convolution with the
function | · |N+1. For every ε > 0, this gives a non-decreasing family (Fε,λ)λ

of functionals to which the classical homogenization theory in the Sobolev
space W 1,N+1 apply. The Γ-lim inf estimate then follows easily from the non-
decreasing property. On the other hand, the Γ-lim sup estimate is obtained
through a more technical and involved approximation argument: the main
step here is to approximate a given Lipschitz continuous function whose gra-
dient is subject to bounded convex constraints by a family of continuous and
piecewise affine functions whose gradients satisfy the same constraints. This
can be done under one of the two following additional assumptions on f and
C:

either a) 0 belongs to the interior of Chom = dom(fhom)

or b)
{∃ w ∈ W 1,∞(

(0, 1)N
) ∩ C0

(
(0, 1)N

)
:

fhom(0) =
∫
(0,1)N f(y, Dw(y)) dy.

(1.1)

As we shall see, this hypothesis is used to obtain an upper bound for Γ-
lim sup Fε(u0), where u0 is the function which is identically 0 on Ω (see Lemma
4.6). Part b) of hypothesis (1.1) seems rather technical and in fact reduces to
the following statement: the infimum in the definition of fhom(0) is attained
in W 1,∞(

(0, 1)N
) ∩ C0

(
(0, 1)N

)
. This hypothesis is obviously satisfied for

example when, for all x,

f(x, 0) = min
{
f(x, ξ) : ξ ∈ C(x)

}
(1.2)

in which case w = 0 fits for part b) of hypothesis (1.1). This property is for
example satisfied in the physical models discussed in [21] where f(x, ξ) = |ξ|2.
Moreover, property (1.2) is always satisfied when f(x, 0) = 0 and this last
condition can be interpreted in continuum mechanics as a consequence of the
fact that the parts of a body which do not undergo any deformation do not
give contribution to the stored energy.

As this topic is already widely present in the literature (without being
exhaustive, we refer to [6 - 13, 15 - 16, 19, 21]), we think it is important to
notice once more that the results proved in this paper are partly known. Our
proof does not make use of more or less involved concept (e.g. inner regular-
ization of functionals, dependency on the set) needed in the classical proofs.
We also allow as constraints very general convex sets which can degenerate or
be very anti-symetric. We also remark that an approach similar to that of the
present paper was proposed in [1, 3, 19], and was also worked out in the case
of Neumann problems in [10]. Our contribution consists in a technical sim-
plification of the approach and in an extension of the results to more general
domains. In fact, the approximating functionals we choose for the Γ-lim inf
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are extremely natural and do not require special lemmas. For the Γ-limsup
we use a step by step reconstruction of the limit functional on different classes
of functions. However, the way we do it is considerably simple thanks to the
approximation used in Lemma 4.10 and to the classes of functions we choose.
In particular, the method of calculus of the Γ-limsup permits to extend the
results to non-convex domains Ω and to avoid various notions of regularization
of set functions as the ”inner regularization” which is commonly used in this
topic.

The plan of the paper is the following: in Section 2 we introduce some no-
tations, we recall the definition and the main properties of the Γ-convergence
and of the inf-convolution of convex functions. Then we introduce the regular-
ized functionals Fε,λ and recall the standard homogenization theory which can
be applied to these functionals. The main results are stated and commented
in Section 3 while the proof of the Γ-convergence result is given in Section 4.

2. Notations and preliminary results

2.1 Γ-convergence. We now recall the notion of Γ-convergence which will
be widely employed in the following. For more details on this tool we refer to
the book [18]. Letting X be a metric space, we say that a sequence (Fn)n of
functionals from X to R Γ-converges to F at x if

Γ− lim inf
n→+∞

Fn(x) = Γ− lim sup
n→+∞

Fn(x) (2.1)

where Γ-liminf and Γ-limsup are defined by

Γ− lim inf Fn(x) = inf
{

lim inf
n→+∞

Fn(xn) : xn → x in X
}

Γ− lim supFn(x) = inf
{

lim sup
n→+∞

Fn(xn) : xn → x in X
}

.
(2.2)

Moreover, the sequence (Fn)n Γ-converges to F if it Γ-converges at every x in
X. Then the family (Fε)ε>0 Γ-converges to F if (Fεn)n∈N Γ-converges to F
for any sequence (εn)n of positive real numbers converging to 0.

The following theorem reports fundamental properties of Γ-convergence
(we refer to the first chapters in [18]).

Theorem 2.1. Assume that the sequence (Fn)n Γ-converges to F . Then
F is lower semicontinuous on X. Moreover, if the family (Fn)n is equicoercive
on X, then F is coercive too and for any sequence of positive numbers εn

converging to 0 the following holds:
(1) The sequence (infX Fn)n converges to the minimum of F on X.
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(2) If xn are such that Fn(xn) ≤ infX Fn + εn and xnk
converges to x for

some subsequence (xnk
)k of (xn)n, then F (x) = minX F .

Remark. The sequence (Fn)n is equicoercive on X if for every t ∈ R
there exists a compact subset K of X such that {Fn ≤ t} ⊂ K for every
n ∈ N.

The following proposition which links the Γ-convergence with the point-
wise convergence in a monotone case will be useful. We denote by F the lower
semi-continuous envelope (or relaxed functional) of F on X.

Proposition 2.2. If Fn is a non-decreasing sequence on X, then

Γ− lim
n→+∞

Fn = lim
n→∞

Fn = sup
n

Fn.

Remark. The proof of this proposition is simple and based just on the
exploitation of the definitions (see, for instance, [18: Chapter 5] where it is
stated in an even more general setting).

2.2 Regularization and approximating problems. We recall that the
question we address in this article is to get an homogenization formula for
the family of problems (Pε). We regularize the integrand f in Fε by inf-
convolution in order to get an approximating family of integrands (fλ)λ>0

satisfying standard growth conditions of order N + 1. Each function fλ is
given by

fλ(x, ξ) = inf
{

f(x, ζ) + λ|ξ − ζ|N+1 : ζ ∈ RN
}

for all (x, ξ) where λ is a positive parameter intended to go to +∞. The main
properties of this new integrand are the following:

(1) For any x and ξ, max{0, |ξ| −R}N+1 ≤ fλ(x, ξ) ≤ f(x, 0) + λ|ξ|N+1.
(2) fλ(x, ξ) → f(x, ξ) increasingly when λ →∞.

The main consequence of the first property is that the associated functionals
Fε,λ given on C0(Ω) by

Fε,λ(v) =
{ ∫

Ω
fλ

(
x
ε , Dv(x)

)
dx if v ∈ W 1,N+1(Ω;RN ) ∩ C0(Ω)

+∞ elsewhere
(2.3)

is coercive as well as lower semicontinuous on C0(Ω).
The approximating energies associated to each Fε we will then consider

are the functionals Fε,λ defined by (2.3) for positive real numbers λ. The
approximating problems are thus

(Pε,λ) inf
{

Fε,λ(v) +
∫

Ω

β(x)v(x) dx : v ∈ C0(Ω)
}

.
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As we shall see, the monotonicity of this regularization scheme will be of help
in the following proofs.

2.3 The classical periodic homogenization formula. In this subsection
we report a classical result in the periodic homogenization theory. This part
of the theory has been widely developed in the literature (having to select a
reference we refer to the recent book [5: Chapter 14]).

Define Gε : C0(Ω) → R as

Gε(v) =
{ ∫

Ω
g
(

x
ε , Dv(x)

)
dx if v ∈ W 1,p(Ω) ∩ C0(Ω)

+∞ elsewhere

where N < p < +∞ and the integrand g is a Borel function which satisfies
the following conditions:
• (Periodicity) g(·, ξ) is (0, 1)N -periodic for all ξ.
• (Convexity) g(x, ·) is lower semicontinuous and convex for all x.
• (Standard p-growth conditions) There exist 0 < a ≤ b such that a|ξ|p ≤

g(x, ξ) ≤ b(1 + |ξ|p) for all x and ξ.
Under the above assumptions, the following theorem holds.

Theorem 2.3. The functionals Gε Γ-converge in C0(Ω) as ε → 0 to
Ghom, with

Ghom(v) =
{ ∫

Ω
ghom(Dv(x)) dx if v ∈ W 1,p(Ω) ∩ C0(Ω)

+∞ elsewhere

where ghom : RN 7→ R+ is given for ξ ∈ RN by the formula

ghom(ξ) =

inf

{∫

(0,1)N

g
(
x, ξ + Dv(x)

)
dx : v ∈ W 1,p

#

(
(0, 1)N

) ∩ C((0, 1)N
)
}

.
(2.4)

Remark. In the above formula, W 1,p
]

(
(0, 1)N

)
denotes the set of func-

tions of W 1,p
loc (RN ) which are (0, 1)N -periodic.

As a consequence, we get the following homogenization results for the
approximating functionals Fε,λ for fixed λ > 0.

Corollary 2.1. For any λ > 0, the family of functionals (Fε,λ)ε Γ-
converges to Fhom with

Fhom,λ(v) =
{ ∫

Ω
fhom,λ(Dv(x)) dx if v ∈ W 1,N+1(Ω) ∩ C0(Ω)

+∞ elsewhere
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for the uniform convergence in C0(Ω) and where fhom,λ is given by

fhom,λ(ξ) =

inf

{∫

(0,1)N

fλ

(
y, ξ + Dv(y)

)
dy : v ∈ W 1,N+1

#

(
(0, 1)N

) ∩ C((0, 1)N
)
}

.

3. Main results

The main result of this paper is the following Γ-convergence property for the
family (Fε)ε>0.

Theorem 3.1. Assume that hypotheses (1) − (3) as well as (1.1) hold.
Then the family of functionals (Fε)ε>0 Γ-converges in C0(Ω) to the homoge-
nized functional Fhom.

As we shall see in the proof of the above theorem (see Section 4), the
Γ-liminf estimate on the family (Fε)ε does not require hypothesis (1.1), which
is only necessary for the proof of the upper bound for the Γ-limsup.

Since the family (Fε)ε is equicoercive on C0(Ω), we infer from Theorems
2.1 and 3.1 the following result that is the homogenization property discussed
in the introduction.

Theorem 3.2. Assume that hypotheses (1) − (3) and (1.1) hold. Then
the family of minima (min(Pε))ε of problems (Pε) converges as ε goes to 0 to
the minimum min(Phom) of problem (Phom). Moreover, if for each ε > 0 the
function uε is a minimizer of (Pε) and if (uεk

)k converges in C0(Ω) to some
function uhom, then uhom is a minimizer of problem (Phom) and

lim
k

(
Fε(uεk

) +
∫

Ω

β(x)uεk
(x) dx

)

= Fhom(uhom) +
∫

Ω

β(x)uhom(x) dx

= min(Phom).

Remark. In the above result, the linear functional v 7→ ∫
Ω

β(x)v(x) dx
may of course be replaced by any continuous functional v 7→ F (v) on C0(Ω).

In [16], a Γ-convergence result analogous to Theorem 3.1 is obtained under
more restrictive hypotheses than (1)− (3), while hypothesis (1.1) is replaced
by its part a), i.e.

0 belongs to the interior of dom(fhom). (3.1)
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In [19], Theorem 3.1 is also shown under slightly more restrictive hypotheses
than those assumed here, and (1.1) is replaced by the following alternative:

either

or

(3.1) holds

the interior of Chom is empty and part b) of (1.1) holds.

We notice that part b) of (1.1) may be satisfied even if the interior of Chom

is empty. For instance, take f(x, ξ) = |ξ|2 + δ[0,1[N (ξ) for any x and ξ. Then
Chom = [0, 1[N and b) of (1.1) holds with w ≡ 0.

4. Proof of Theorem 3.1

We split the proof of the Γ-convergence result into two parts: the first one,
which is devoted to the proof of the lower bound on the Γ-liminf, is mainly
based on Theorem 4.2 and the properties of the Moreau-Yosida approximation,
while in the second part the upper bound for the Γ-limsup is obtained by more
classical approximation arguments.

4.1 Proof of the lower bound Γ-liminf Fε ≥ Fhom. This subsection
is devoted to the following lower bound for the Γ-liminf of the family (Fε)ε.

Theorem 4.1. Assume that hypotheses (1)−(3) hold. Then Γ-lim infε Fε

≥ Fhom.

The corner stone to prove this theorem is the following Γ-convergence
result for the approximating functionals Fε,λ. Its proof mainly relies on the
fact that the approximation scheme λ 7→ fλ is monotone.

Theorem 4.2. Assume that hypotheses (1) − (3) hold. Then for every
ε > 0 the family of functionals (Fε,λ)λ>0 Γ-converges in C0(Ω) to Fε as λ →
∞. Moreover, one has

Γ− lim
λ

(
Γ− lim

ε
Fε,λ

)
= Γ− lim

λ
Fhom,λ = Fhom

where the Γ-limit is taken for the uniform convergence norm on C0(Ω).

Since for any λ > 0 and ε > 0 one has Fε ≥ Fε,λ on C0(Ω), we easily infer
from Theorem 4.2 that

Γ− lim inf
ε

Fε ≥ Γ− lim inf
λ

(
Γ− lim inf

ε
Fε,λ

)
= Fhom

where the Γ-limits are taken for the uniform convergence norm on Ω. It thus
remains to prove Theorem 4.2.

We begin with a result on the Γ-convergence of non-decreasing families
of integral functionals. This result is not optimal but it is sufficient for our
purpose, and its proof is given here for the sake of completeness.
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Proposition 4.3. Let ω be a bounded open subset of RN , and (gλ)λ>0 be
a non-decreasing family of functions from ω ×RN to [0, +∞) for which there
is a p > N with the property: for all λ > 0 there exists a bλ ≥ aλ > 0 such
that

aλ(|ξ|p − 1) ≤ gλ(x, ξ) ≤ bλ(|ξ|p + 1)

for all x and ξ. We assume that the integral functionals Gλ defined on C(ω̄)
by

Gλ(v) =
{ ∫

Ω
gλ(x,Dv(x)) dx if v ∈ X

+∞ otherwise

are lower semicontinuous on X, where X is a closed subspace
(
in W 1,p(ω)

)
of W 1,p(ω)∩ C(ω̄). Let g∞ : ω ×RN → R∪ {+∞} denote the pointwise limit
(as λ tends to infinity) of (gλ)λ>0 and G∞ the associated functional on C(ω̄)
given by

G∞(v) =
{ ∫

Ω
g∞(x,Dv(x)) dx if it is finite and v ∈ X

+∞ otherwise.

Then the family of functionals (Gλ)λ>0 Γ-converges to G∞ in C(ω).

Proof. Since the family (Gλ)λ>0 is non-decreasing on C(ω), we conclude
from Proposition 2.2 that

Γ− lim
λ→+∞

Gλ = sup
λ>0

Gλ

where the Γ-limit is taken for the uniform convergence on Ω. It thus remains
to prove that G∞ = supλ Gλ. For this, let v belong to C(ω). Then if G1(v) =
+∞, one gets supλ Gλ(v) = +∞ = G∞(v), which is our claim. Otherwise,
the function g1(·, Dv(·)) belongs to L1(Ω), so that we can apply Lebesgue’s
monotone convergence theorem to the non-negative and non-decreasing family(
gλ(·, Dv(·))− gN+1(·, Dv(·)))

λ>0
, which yields

lim
λ→+∞

Gλ(v) = sup
λ>0

Gλ(v) = G∞(v).

This concludes the proof

As consequence of Proposition 4.3 we easily get the first part of Theorem
4.2, that is

Γ− lim
λ→+∞

Fε,λ = Fε

where the Γ-limit is taken for the uniform convergence norm on C0(Ω). Propo-
sition 4.3 also yields the following convergence result.
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Lemma 4.4. The family (fhom,λ)λ>0 is non-decreasing on RN and con-
verges to fhom as λ tends to +∞.

Proof. The monotonicity of the family (fhom,λ)λ>0 follows from that of
fλ. For any ξ in RN , λ > 0 and (y, ζ) in (0, 1)N × RN , we set

gξ
λ(y, ζ) = fλ(y, ξ + ζ)

gξ
∞(y, ζ) = f(y, ξ + ζ)

and define the associated functionals on C((0, 1)N
)

Gξ
λ(v) =





∫
(0,1)N gξ

λ(y, Dv(y)) dy when





v ∈ W 1,N+1
#

(
(0, 1)N

)

∩C((0, 1)N
)

∫
(0,1)N v(x) dx = 0

+∞ otherwise

Gξ
∞(v) =





∫
(0,1)N gξ

∞(y, Dv(y)) dy when





v ∈ W 1,∞
#

(
(0, 1)N

)

∩C((0, 1)N
)

∫
(0,1)N v(x) dx = 0

+∞ otherwise.

With these notations, fhom,λ(ξ) = inf(Gξ
λ) as well as fhom(ξ) = inf(Gξ

∞). No-
tice that each functional Gξ

λ is lower semicontinuous on C((0, 1)N
)
. Since the

family (gξ
λ)λ>0 is non-decreasing and converges to gξ

∞, we can apply Proposi-
tion 4.3 so that the family (Gξ

λ)λ>0 Γ-converges to Gξ
hom in C((0, 1)N

)
. Since

the family (Gξ
λ)λ>0 is equicoercive, we deduce from Theorem 2.1 that the

family (fhom,λ(ξ))λ>0 converges to fhom(ξ), and the proof is complete

As consequence of Proposition 4.3 and Lemma 4.4, the family (Fhom,λ)λ>0

Γ-converges in C0(Ω) to Fhom as λ tends to +∞. This concludes the proof of
Theorem 4.2.

4.2 Proof of the upper bound Γ-limsup Fε ≤ Fhom. We now prove the
upper bound on the Γ-limsup of the family (Fε)ε, which is stated as follows.

Theorem 4.5. Assume that hypotheses (1) − (3) as well as hypothesis
(1.1) hold. Then Γ− lim supε Fε ≤ Fhom.

To prove this theorem, we introduce the functional G, given on C0(Ω) by

G(v) =
{ ∫

Ω
g(Dv(x)) dx if finite and v in W 1,∞(Ω) ∩ C0(Ω)

+∞ elsewhere
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where the integrand g is defined on RN by g(ξ) = fhom(ξ) if ξ 6= 0 and

g(0) = inf
{ ∫

(0,1)N

f(y, Dv(y)) dy : v ∈ W 1,∞(
(0, 1)N

) ∩ C0

(
(0, 1)N

)}
.

We notice that the integrand g obviously has the same domain as fhom, and
we shall denote this domain Chom in the following. Notice that Chom is a
bounded convex subset of RN . We also point out that, for any ξ in Chom, the
infimum in the definition of fhom (or g) is attained thanks to hypothesis (3).

Remark. If part a) of (1.1) holds, then Fhom ≤ G while if part b) of (1.1)
holds, then Fhom = G.

We now proceed in three steps for the proof of Theorem 4.5. First we prove
that Γ− lim sup Fε(u) ≤ G(u) for the function u = u0 where u0 denotes the
null function on Ω. Then we notice that if 0 is not in the interior of Chom, then
the theorem follows from hypothesis (1.1). Otherwise, when 0 ∈ int(Chom),
we extend the inequality Γ-lim supFε(u) ≤ G(u) to the functions u which are
continuous, piecewise affine and have compact support in Ω. What we mean
by “u is continuous, piecewise affine and has compact support in Ω” is that u
belongs to C0(Ω) and there exists a finite family (Ki)1≤i≤n of disjoint open sets
in Ω such that ∪{1≤i≤n}Ki is relatively compact in Ω, u is affine on each Ki and
u is null on K0 = Ω\∪{1≤i≤n}Ki. We then infer Γ-lim sup Fε(u) ≤ Fhom(u) for
any such function u, and finally we prove it for any function u in the domain
of Fhom (there is nothing to prove for functions u for which Fhom(u) = +∞).
The proofs of these steps consist in the following serie of lemmas, which hold
under the same assumptions as those of Theorem 4.5.

Lemma 4.6. We have (Γ− lim supFε)(u0) ≤ G(u0), where u0 denotes
the null function on Ω.

Proof. Let w0 in W 1,∞(
(0, 1)N

) ∩ C0((0, 1)N ) be such that

g(0) =
∫

(0,1)N

f(y,Dw0(y)) dy.

For each number ε >, we set

Zε =
{
z ∈ ZN : ε(z + (0, 1)N ) ⊂ Ω

}

Ωε = Ω \ ( ∪{z∈Zε} ε(z + [0, 1]N )
)
.

We notice that since Ω is open, |Ωε| → 0 as ε → 0. We also set

Rε =
{
z ∈ ZN : ε(z + (0, 1)N ) ∩ Ωε 6= ∅}
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and we notice that ∪{z∈Rε}ε(z + [0, 1]N ) is included in Ωε + B(0, ε1/N ). We
now consider the family (u0

ε)ε of functions of W 1,∞(Ω) ∩ C0(Ω) given by

u0
ε(x) =

{
εw0(x−εz

ε ) if, for some z ∈ Zε, x ∈ ε(z + (0, 1)N )
0 if x ∈ Ωε.

This family converges in C0(Ω) to u0, and we have

Fε(u0
ε) =

∫

Ωε

f
(x

ε
, 0

)
dx +

∑

z∈Zε

εN

∫

(0,1)N

f(y,Dw0(y)) dy

≤
∑

z∈Rε

εN

∫

(0,1)N

f(y, 0) dy +
∣∣ ∪{z∈Zε} ε(z + (0, 1)N )

∣∣g(0)

≤
∣∣Ωε + B(0,

√
Nε)

∣∣
∫

(0,1)N

f(y, 0) dy + |Ω|g(0).

Since |Ωε + B(0,
√

Nε)| goes to 0 as ε goes to 0 and f(·, 0) is in L1
(
(0, 1)N

)
,

we infer that lim sup Fε(u0
ε) ≤ |Ω|g(0) = G(u0), which concludes the proof

Lemma 4.7. Assume that 0 /∈ int (Chom). Then the domain of the func-
tional Fhom reduces to u0.

Proof. Since 0 belongs to the boundary of the convex set Chom, there
exists ξ in RN \ {0} such that 〈ξ, ζ〉 ≤ 0 for every ζ in Chom. Letting u ∈
W 1,∞(Ω)∩C0(Ω) be such that Fhom(u) < +∞, we want to show that u = u0.
Since u = 0 on ∂Ω, we have

∫
Ω

Du(x) dx = 0 and thus
∫
Ω
〈Du(x), ξ〉dx = 0.

But as Fhom(u) < +∞, Du(x) belongs to Chom for a.e. x in Ω, so that
〈Du(x), ξ〉 = 0 for a.e. x ∈ Ω.

Supposing that u 6≡ 0, we extend u on RN by u = 0 on RN \ Ω, and
consider uδ = γδ ∗ u, where δ is a positive real number and γδ is a mollifier,
i.e. γδ(x) = δNγ(x

δ ) for some function γ such that

γ ∈ C∞
(
RN , [0, +∞)

)
, supp(γ) ⊂ B(0, 1),

∫

RN

γ(x) dx = 1.

Since u 6≡ 0, for δ small enough there exists y in RN such that uδ(y) 6= 0. If
we define v on R by v(t) = uδ(y + tξ) for such δ and y, then v has compact
support and

v′(t) = 〈Duδ(y + tξ), ξ〉 =
∫

RN

γδ(y + tξ − x)〈Du(x), ξ〉 dx = 0

for all t ∈ R so that v is constant on R and hence null, which contradicts
v(0) = uδ(y) 6= 0
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If 0 does not belong to the interior of Chom, then we deduce from hypoth-
esis (1.1) that g(0) = fhom(0) so that G(u0) = Fhom(u0). Then Lemmas 4.6
and 4.7 yield that Theorem 4.5 holds in this case.

Remark. From now on we thus assume that 0 belongs to the interior of
Chom.

Lemma 4.8. Assume that u is continuous, piecewise affine and has com-
pact support in Ω. Then (Γ− lim sup Fε)(u) ≤ G(u).

Proof. Let (Ki)1≤i≤n be a finite family of disjoint open sets such that
∪{1≤i≤n}Ki is relatively compact in Ω, u is affine on each Ki and u is null on
K0 = Ω \ ∪1≤i≤nKi. Then, for each i ∈ {1, . . . , n}, there exist αi in R and ξi

in RN such that u(x) = ξi · x + αi for any x in Ki (of course, we set ξ0 = 0
and α0 = 0). As a consequence, one has G(u) =

∑
{0≤i≤n} |Ki|g(ξi). In

the sequel, we assume that G(u) < +∞, otherwise there is nothing to prove.
Moreover, we assume that (ξi, αi) 6= (ξj , αj) for i 6= j.

For indices i ∈ {0, . . . , n} such that ξi = 0, we set ui
ε = αi + u0

ε for any
ε > 0, where the family of functions (u0

ε)ε is that given in Lemma 4.6. For
the indices i in {1, . . . , n} for which ξi 6= 0, we take wi in W 1,∞

#

(
(0, 1)N

) ∩
C((0, 1)N

)
so that

g(ξi) =
∫

(0,1)N

f(y, ξi + Dwi(y)) dy.

For such indices i and ε > 0, we define the function ui
ε ∈ W 1,∞(Ω) ∩ C(Ω) by

ui
ε(x) = ξi · x + αi + εwi

(x− εz

ε

)
if

{
x ∈ ε(z + (0, 1)N )
for some z ∈ ZN .

(4.1)

Then, for any i in {0, . . . , n}, the family (ui
ε)ε converges in C(Ω) to ui, where

ui is defined on Ω by ui(x) = ξi · x + αi.
Since the function u has compact support in Ω, we can extend it on RN

by u ≡ 0 on RN \ Ω. We may thus apply [10: Theorem 2.1] which state
that the real-valued continuous piecewise affine function u may be written as
a finite combination of “min” and “max” of its affine components. We shall
formally denote u = c(u0, . . . , un) where c is a combination of “min” and
“max” operators. For any positive ε, we then define the function uε ∈ C(Ω)
through the same combination uε = c(u0

ε, . . . , u
n
ε ). We now set

Ki
ε =

{
x ∈ Ω : uε(x) = ui

ε(x)
} \ ∪{j<i}Kj

ε

for any ε > 0 and i ∈ {0, . . . , n}. We notice that Duε(x) = Dui
ε(x) for a.e. x

in Ki
ε. Moreover, uε = 0 on ∂Ω for ε small enough, so that

Fε(uε) =
n∑

i=0

∫

Ki
ε

f
(x

ε
,Dui

ε(x)
)
dx. (4.2)
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The same argument as in the proof of Lemma 4.6 then yields

∣∣ ∪{z∈Zi
ε} ε(z + (0, 1)N )

∣∣g(ξi) ≤
∫

Ki
ε

f
(x

ε
,Dui

ε(x)
)
dx

≤
∣∣Ki

ε + B(0, ε1/N )
∣∣g(ξi)

(4.3)

for any ε > 0 and i ∈ {1, . . . , n}, where

Zi
ε =

{
z ∈ ZN : ε(z + (0, 1)N ) ⊂ Ki

ε

}
.

Since the families of functions (ui
ε)ε converge uniformly on Ω to ui for any

i, we infer that (uε)ε converges uniformly on Ω to u and that the families of
(|Ki

ε|)ε converge to |Ki| for any i. We then infer from (4.3) that, for any index
i ∈ {1, . . . , n},

lim sup
ε→0

∫

Ki
ε

f
(x

ε
,Dui

ε(x)
)
dx ≤ |Ki|g(ξi).

The same inequality also holds for the index i = 0, by the same argument as
in the proof of Lemma 4.6. Therefore, identity (4.2) yields lim supFε(uε) ≤
G(u), which concludes the proof

Lemma 4.9. Let 0 belong to the interior of Chom. If u is continuous,
piecewise affine and has compact support in Ω, then (Γ− lim supFε)(u) ≤
Fhom(u).

Proof. Let u be continuous, piecewise affine, with compact support in Ω
and such that Fhom(u) < +∞. As in the proof of Lemma 4.8, (Ki)1≤i≤n is a
finite family of disjoint open sets such that ∪{1≤i≤n}Ki is relatively compact
in Ω, u is affine on each Ki and u is null on K0 = Ω \ ∪1≤i≤nKi. We shall
then write u(x) = ξi · x + αi for any x ∈ Ki. We claim that there exists a
sequence of continuous, piecewise affine functions (un)n with compact support
in Ω which converges to u in C0(Ω) and for which limn→+∞G(un) = Fhom(u).

Setting I = {i : ξi = 0} and J = {0, . . . , n} \ I, we notice that for j ∈ J
one has g(ξj) = fhom(ξj). Further, for any i ∈ I and n ∈ N∗ we set

Zi
n =

{
z ∈ ZN :

1
n

(z + [0, 1]N ) ⊂ Ki
}

Ωn =
⋃

{i∈I}

⋃

{z∈Zi
n}

1
n

(z + [0, 1]N ).

Notice that Ωn ⊂⊂ Ω. Let now w be the piecewise affine function on [0, 1]N

given by

w(x) = w(x1, . . . , xN ) = min
{
x1, . . . , xN , 1− x1, . . . , 1− xN},
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then w is constant equal to 0 on the boundary of [0, 1]N and 0 < |Dw| ≤ 1
a.e. in [0, 1]N . For any n ∈ N∗ we define the function un ∈ C0(Ω) by

un(x) =
{

u(x) if x ∈ Ω \ Ωn

u(x) + 1
n2 w(nx− z) if x ∈ 1

n (z + [0, 1]N ), z ∈ Zi
n.

For any n, the function un is then continuous, piecewise affine and has compact
support in Ω; moreover, the sequence (un)n converges to u in C0(Ω). Since
Dun 6= 0 a.e. in Ωn, one has

∫

Ki

g(Dun(x))dx = |Ki \ Ωn|g(0) +
∑

z∈Zi
n

∫
1
n (z+[0,1]N )

fhom(Dun(x)) dx

= |Ki \ Ωn|g(0) + |Ki ∩ Ωn|
∫

(0,1)N

fhom

( 1
n

Dw(x)
)
dx

for any i ∈ I. Since fhom is Lipschitz continuous in a neighborhood of 0, we
deduce from the previous inequality that limn→+∞G(un) = Fhom(u).

We can now conclude from the lower-semicontinuity of the functional
Γ− lim sup Fε and from Lemma 4.8 that

Γ− lim supFε(u) ≤ lim inf
n→∞

Γ− lim sup Fε(un) ≤ lim inf
n→∞

G(un) = Fhom(u)

and the proof is completed

To complete the proof of Theorem 4.5, it thus remains to prove the fol-
lowing

Lemma 4.10. Let 0 belong to int(Chom) and take u in W 1,∞(Ω)∩C0(Ω)
such that Fhom(u) < +∞. Then Γ− lim supFε(u) ≤ Fhom(u).

Proof. From Lemma 4.9, it is sufficient to show that there exists a fam-
ily (uη)η of functions which are continuous, piecewise affine and which have
compact support in Ω and such that

(uη)η converges in C0(Ω) to u

lim supη→0 Fhom(uη) ≤ Fhom(u).

To define such a sequence (uη)η, we fix some positive real number η, and
proceed in three steps.

First step. For α in ( 1
2 , 1), we consider the Lipschitz function θα given on

R by

θα(y) =





0 if |y| ≤ 1−α
2

2
1+α y − sign (y) 1−α

1+α if 1−α
2 ≤ |y| ≤ 1

y if |y| ≥ 1.
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Then if we set vα,n = 1
nθα(nαu), the family (vα,n)n∈N converges in C0(Ω)

to αu. Notice that, for every α and n, vα,n has compact support in Ω since
u ∈ C0(Ω). Moreover, for a.e. x in Ω, Dvα,n(x) = αθ′α(nαu(x))Du(x). But for
every y in R, θ′α(y) belongs to [0, 2

1+α ). As a consequence, Dvα,n(y) belongs
to 2α

1+αChom ⊂⊂ Chom for a.e. x in Ω. Since fhom is convex, we get

Fhom(vα,n) ≤
∫

Ω

fhom(Du(x)) dx + (1− α)
∫

Ω

fhom(0) dx

so that for α close enough to 1 and n large enough, we have

Fhom(vα,n) ≤ Fhom(u) + 1
3 η

‖u− vα,n‖L∞(Ω) ≤ 1
3 η.

We now fix such an α and n, and extend v = vα,n by 0 on RN \ Ω.

Second step. For any δ > 0 we set vδ = γδ ∗ v, where γδ is a mollifier
defined as in the proof Lemma 4.7. Since supp (vδ) ⊂ supp (v) + B(0, δ), vδ

has compact support in Ω for δ small enough. We infer from the definition of
v, the convexity of Chom and from the identity

Dvδ(x) =
∫

RN

γδ(x− y)Dv(y) dy (x ∈ RN )

that Dvδ(x) also belongs to 2α
1+αChom for a.e. x in Ω. Since fhom is Lips-

chitz continuous on 2α
1+αChom, we may choose δ small enough to have ‖vδ −

v‖L∞(Ω) ≤ 1
3 η as well as Fhom(vδ) ≤ Fhom(v) + 1

3 η.

Third step. For such a positive real number δ, the function vδ is of class
C∞ and has compact support in Ω. It can thus be approximated by a sequence
(vδ,k)k of continuous and piecewise affine functions with compact support in
Ω and which converge to vδ in W 1,∞(Ω). Then for k large enough, Dvδ,k

belongs to βChom a.e. in Ω, for some β ∈ (0, 1). Once again we use the fact
that fhom is Lipschitz continuous on βChom, so that for k large enough, the
continuous and piecewise affine function uη = vδ,k has compact support in Ω
and satisfies ‖vδ − uη‖L∞(Ω) ≤ 1

3 η as well as Fhom(uη) ≤ Fhom(vδ) + 1
3 η.

Finally, we thus get a family (uη)η>0 such that ‖u − uη‖L∞(Ω) ≤ η and
Fhom(uη) ≤ Fhom(u) + η for all η > 0. This concludes the proof

Lemmas 4.6 - 4.10 conclude the proof of Theorem 4.5.
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Anal. Non Linéaire 11 (1994), 553 – 609.

[15] Corbo Esposito, A. and R. De Arcangelis: Homogenization of Dirichlet problems
with nonnegative bounded constraints on the gradient. J. d’Anal. Math. 64
(1994), 53 – 96.



608 T. Champion and L. De Pascale

[16] Corbo Esposito, A. and R. De Arcangelis: A characterization of sets of func-
tions and distributions on Rn described by constraints on the gradient. J. Con-
vex Anal. 3 (1996), 167 – 194.

[17] Dal Maso, G.: An Introduction to Γ-Convergence (Progress in Nonlinear Dif-
ferential Equations and their Applications: Vol. 8). Basel: Birkhäuser 1993.
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