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About the Sign
of Oriented Fredholm Operators

between Banach Spaces
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Abstract. We give conditions for an oriented family of bounded Fredholm operators
of index zero between Banach spaces to have a sign jump. In particular, we discuss
criteria for detecting the sign jump in some special situations. For instance, when
a sort of Crandall-Rabinowitz condition for bifurcation is assumed or in the case
of a family of Leray-Schauder type. Finally, some examples of ordinary differential
operators are presented to illustrate the meaning of the abstract results.
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1. Introduction

In [1] the first two authors introduced a fairly simple notion of orientation for
linear Fredholm operators of index zero between real vector spaces. Any such
operator, singular or non-singular, admits exactly two orientations, each of
them making, by definition, the operator oriented. If an operator is invertible,
one of the two possible orientations is more relevant than the other, and for
this reason it is called natural (see Definition 3.4 below). Thus it makes sense
to assign to any oriented isomorphism a sign: 1 if the orientation is natural
and −1 in the opposite case. For a non-invertible Fredholm operator of index
zero no one of the two orientations is more relevant than the other.

In the finite-dimensional context, the orientation of a linear operator turns
out to be equivalent to the choice of a pair of orientations, one of the source
space and one of the target space, up to an inversion of both of them. In this
particular case the sign of an isomorphism agrees with the usual well-known
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notion: 1 or −1 depending on whether the operator preserves or inverts the
orientations of the spaces.

A crucial fact is that in the framework of Banach spaces the orientation has
a sort of stability – in the sense that an orientation of an operator L induces,
in a very natural way, an orientation to any operator which is sufficiently
close to L. Using this fact, the notion of orientation was extended (in [1, 2])
to the nonlinear case; namely, to the case of a C1 Fredholm map of index
zero between real Banach spaces (and Banach manifolds). Such an extension
coincides (in the C1 case) with the notion given by Dold in [5: Exercise 6, p.
271] for maps between finite-dimensional manifolds and, in the most important
cases, with the notion due to Fitzpatrick, Pejsachowicz and Rabier in [9] for
maps between Banach manifolds. The definition in [9], however, does not
agree completely in the finite-dimensional case with that in [5]. For example,
a constant map, whose domain is a non-orientable manifold, is non-orientable
according to Dold and orientable according to Fitzpatrick, Pejsachowicz and
Rabier (but, peculiarly, with only one orientation).

In [1], by means of the concept of orientation, a degree theory for Fredholm
maps between Banach manifolds was introduced. This degree agrees, in the
most important cases, with that developed in [6 - 9]. The difference between
the two theories, however, is mainly in the construction method and, in our
opinion, in the simplicity of the definition given in [1] which easily leads to a
homotopy invariance property in the C1 case.

Let f : M → N be an oriented Fredholm map of index zero between two
real Banach manifolds and let y ∈ N be such that f−1(y) is compact. In this
case the triple (f, M, y) is said to be admissible for the degree (see [1]). Assume
first that (f,M, y) is generic; that is, y is a regular value for f . According to
[1], the degree in this case is, as in the finite-dimensional context, an algebraic
count of the number of solutions of the equation f(x) = y. More precisely,

deg(f, M, y) =
∑

x∈f−1(y)

sign(f ′(x))

where f ′(x) : TxM → TyN is the Fréchet derivative of f at x, and sign(f ′(x))
denotes the sign of the oriented isomorphism f ′(x). In the general case the de-
gree is defined by considering the restriction of f to a convenient neighborhood
U of f−1(y) and putting

deg(f, M, y) = deg(f, U, z)

where z is a regular value for f which is sufficiently close to y.
To compute the degree of an admissible triple, the usual technique is the

following: first, if necessary, deform (f, M, y), via a suitable homotopy, to



The Sign of Oriented Fredholm Operators 621

a simpler admissible triple (g, M, z), where z is a regular value for g; then
compute ∑

x∈g−1(z)

sign(g′(x)).

It is therefore of some interest to develop methods for evaluating the sign
of an oriented isomorphism. That is, methods to decide whether or not the
orientation of a given oriented isomorphism coincides with the natural one.
This is, in fact, our purpose.

As we shall see, a practical way of orienting a Fredholm operator of index
zero L is, when possible, to transport the orientation of a selected, naturally
oriented isomorphism S along the line segment joining S and L. In this case, if
L is invertible, one gets sign(L) = (−1)n, where n is the number of sign jumps
along the segment. This formula, as we shall prove, is in the spirit of Leray-
Schauder theory, where the index of an invertible linear compact perturbation
of the identity L = I −K is (−1)n, where n is the number of characteristic
values of K in (0, 1) with odd algebraic multiplicity. Having this in mind, we
shall give some results for detecting the sign jumps of a one-parameter family
{Lλ} of Fredholm linear operators of index zero.

Another motivation for giving conditions ensuring the existence of a sign
jump of a family {Lλ} as above is related to bifurcation theory. In fact, let
E and F be real Banach spaces and let f : R × E → F be continuous and
continuously differentiable with respect to the second variable. Assume that
the partial derivative ∂2f(λ, x) is Fredholm of index zero for any (λ, x). As
proven in [3, 13], if f(λ, 0) = 0 for all λ ∈ R and the family Lλ = ∂2f(λ, 0)
has a sign jump at some λ0, then λ0 is a bifurcation point for the equation
f(λ, x) = 0. In addition, if f is proper on any bounded closed subset of
R × E, a sign jump at λ0 implies the existence of a connected set of non-
trivial solution pairs (λ, x), i.e. with x 6= 0, whose closure contains (λ0, 0) and
is either unbounded or meets the λ-axis outside (λ0, 0).

2. Preliminaries

Given two vector spaces E and F , we shall denote by L(E, F ), or simply
by L(E) when F = E, the vector space of linear operators from E into F .
By F(E, F ), or F(E) when F = E, we will mean the subspace of L(E,F )
of the operators with finite-dimensional image. The image of an element
L ∈ L(E,F ) will be denoted by Im L, its kernel by Ker L, and its cokernel
(i.e. the quotient F/Im L) by coKer L. Other useful notations are Iso(E,F )
for the set of isomorphisms from E onto F , and GL(E) for the set of the
automorphisms of E (i.e. GL(E) = Iso(E, E)).
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Let us recall some useful properties of Fredholm operators between vector
spaces.

A linear operator L : E → F is (algebraic) Fredholm if KerL and coKer L
are finite-dimensional. In this case, its index is the integer

ind(L) = dim(Ker L)− codim(Im L)

= dim(KerL)− dim(coKerL).

The set of Fredholm operators of index n between E and F will be denoted
by Φn(E, F ).

Observe that, given a vector space E and a finite-codimensional subspace
E1 of E, the inclusion S : E1 → E is Fredholm with ind(S) = −codim(E1),
and any projection P : E → E1 (onto E1) is Fredholm with ind(S) =
codim(E1).

Remark 2.1. If E and F are finite-dimensional, then any linear operator
from E into F is Fredholm of index dim(E)− dim(F ). This is a consequence
of the well-known formula

dim(E) = dim(Ker L) + dim(Im L).

The following useful result is a direct consequence of the definition of
Fredholm operator. Recall first that, given a linear operator L : E → F , a
subspace F1 of F is said to be transverse to L if ImL + F1 = F .

Lemma 2.2. Let L : E → F be a Fredholm operator and let F1 be a
subspace of F which is transverse to L. Then the restriction

L1 : L−1(F1) → F1

of L is Fredholm with ind(L1) = ind(L).

The following lemma is useful for computing the index of a Fredholm
operator written in block-matrix form. For its proof we refer to [10: Part 1,
Chapter 3, Section 1].

Lemma 2.3. Assume E = E1 ⊕ E2 and F = F1 ⊕ F2, and write a
Fredholm operator L : E → F in the block-matrix form L =

(
A
C

B
D

)
. If

A : E1 → F1 is invertible, then ind(L) = ind(D − CA−1B).

The following result is the algebraic analogy of a well-known one in the
context of Banach spaces (see statement (ii) in Theorem 2.6 below). The
simple proof is given for the sake of completeness.
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Theorem 2.4. Let L : E → F be Fredholm, and take K ∈ F(E, F ).
Then the operator L + K is Fredholm and ind(L + K) = ind(L).

Proof. Let F1 be a finite-dimensional subspace of F containing Im K and
transverse to L. Put E1 = L−1(F1). Clearly, E1 is finite-dimensional. In fact,
because of Lemma 2.2 and Remark 2.1, one has dim(E1)−dim(F1) = ind(L).
Let E0 be such that E0 ⊕ E1 = E, and define F0 = L(E0). It is easy to
check, using the transversality of F1, that F = F0 ⊕ F1. Writing L and K in
block-matrix form, we get

L =
(

L00 0
0 L11

)
and L + K =

(
L00 0
K10 L11 + K11

)
.

Thus L + K is Fredholm, L00 : E0 → F0 being an isomorphism. Lemma 2.3
implies the following two equalities:

ind(L) = ind(L11) and ind(L + K) = ind(L11 + K11).

The assertion now follows from Remark 2.1

Theorem 2.5. Let L1 : E1 → E2 and L2 : E2 → E3 be Fredholm
operators. Then L2L1 is Fredholm and ind(L2L1) = ind(L1) + ind(L2).

Proof. See, e.g., the proof of Theorem 13.1 in [14: Chapter IV] which is
still valid in the purely algebraic context

We pass now to recall some useful properties of Fredholm operators in
the framework of Banach spaces. In this category, whose objects are Banach
spaces, the morphisms are bounded linear operators. Therefore, from now
on, all the linear operators between Banach spaces will be assumed continu-
ous. In this particular context, the spaces L(E, F ) and F(E, F ), and the sets
Iso(E, F ), GL(E) and Φn(E,F ) will be considered made up of bounded op-
erators only. Any direct sum in a Banach space is assumed to be topological
(besides being algebraic); that is, the summands are closed subspaces of the
containing space.

Fredholm operators between Banach spaces enjoy many properties and are
studied in detail by several authors (see, e.g., [14]). We state two important
properties that are meaningful in this context.

Theorem 2.6. Let E and F be Banach spaces. The following properties
hold:

(i) The set Φn(E, F ) is open in the Banach space L(E, F ).
(ii) If K ∈ L(E, F ) is compact and L ∈ Φn(E, F ), then L+K ∈ Φn(E, F ).

We conclude this section by recalling that if L : E → F is a Fredholm
operator between Banach spaces, then its image is necessarily a closed sub-
space of F . Moreover, the set of surjective operators between E and F (not
necessarily Fredholm) is open in L(E, F ).
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3. Oriented Fredholm operators and oriented maps

In this section we first summarize (with some minor changes) the notion of
orientation for a Fredholm operator of index zero between real vector spaces
introduced in [1]. After that we show how such a notion becomes stable in
the context of Banach spaces. Then we give a brief review of the concept
of orientability for a continuous family of (bounded) Fredholm operators of
index zero between Banach spaces. We refer to [1 - 3] for more details.

The concept of orientation for a Fredholm operator of index zero is purely
algebraic. The basic tool to define such a notion is a simple extension of
the determinant to the infinite-dimensional context. Let us recall first this
extension.

Let T : E → E be an endomorphism of a (not necessarily real) vector
space and denote by I the identity operator on E. Assume that the image
of the operator K = I − T is contained in a finite-dimensional subspace E1

of E. Thus T maps E1 into itself and, consequently, the determinant of its
restriction T1 : E1 → E1 is well defined. As shown in [1], this determinant
does not depend on the space E1 containing Im K. Therefore, it makes sense
to call determinant of T this common value, and to denote it by det(T ). From
Theorem 2.4 it follows that T is Fredholm of index zero. Moreover, one can
easily check that, as in the case when E is finite-dimensional, T is invertible
if and only if det(T ) 6= 0.

From now on, given a vector space E, the affine subspace of L(E) of the
operators that are admissible for the determinant will be denoted by Ψ(E).
Namely,

Ψ(E) =
{
T ∈ L(E) : I − T ∈ F(E)

}
.

The proof of the following useful result is a routine task.

Proposition 3.1. The determinant has the following fundamental prop-
erties:

(1) If T ∈ Ψ(E) and E1 is any subspace of E containing Im (I −T ), then
the restriction T1 of T to E1 belongs to Ψ(E1) and det(T ) = det(T1).

(2) If T1, T2 ∈ Ψ(E), then T2T1 ∈ Ψ(E) and det(T2T1) = det(T2)det(T1).

(3) If S : F → E is an isomorphism and T ∈ Ψ(E), then S−1TS ∈ Ψ(F )
and det(S−1TS) = det(T ).

(4) If T1 ∈ Ψ(E1) and T2 ∈ Ψ(E2), then T1 × T2 ∈ Ψ(E1 × E2) and
det(T1 × T2) = det(T1)det(T2).

In many cases, a practical method for computing the determinant of an
operator T ∈ Ψ(E) is given by the following consequence of Proposition 3.1.
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Corollary 3.2. Let T ∈ L(E) and let E = E0 ⊕ E1. Assume that, with
this decomposition of E, the matrix representation of T is of the type

(
I0 U
V S

)

where I0 is the identity operator on E0. If dim(E1) < +∞ (or, more gener-
ally, if S ∈ Ψ(E1) and the operators U and V have finite-dimensional image),
then T ∈ Ψ(E) and

det(T ) = det(S − V U). (3.1)

Proof. Recall that, given the decomposition E = E0 ⊕ E1, the en-
tries of the matrix representation of an operator R ∈ L(E) are defined as
PjRSi (i, j = 0, 1) where S0 : E0 → E and S1 : E1 → E denote the in-
clusions, and P0 : E → E0 and P1 : E → E1 are the projections associated
with the decomposition. Taking into account this, it is easy to show that
T ∈ Ψ(E). Hence det(T ) makes sense.

Observe first that equality (3.1) is true in the particular case of a lower
triangular matrix; that is, when U is the trivial operator. In this case, in fact,
I − T maps E into E1, therefore det(T ) = det(S), since S is the restriction of
T to E1 (use property (1) of Proposition 3.1 if dim(E1) = +∞).

The assertion is also true for the upper triangular matrix R =
(

I0
0
−U
I1

)
where I1 denotes the identity on E1. To show this, it is enough to consider
the restriction of R to any finite-dimensional space containing E1 + Im U .

To prove the assertion in the general case, consider the composite operator
TR. Given x0 ∈ E0 and x1 ∈ E1, with a standard computation one gets

TR(x0 + x1) = x0 + (V x0 + Sx1 − V Ux1).

Therefore TR can be represented by the triangular matrix
(

I0
V

0
S−V U

)
. Thus,

det(TR) = det(S − V U). On the other hand, property (2) of Proposition 3.1
implies det(TR) = det(T )det(R) and, consequently, det(T ) = det(S − V U),
as claimed

Let now E and F be two real vector spaces and let L ∈ Φ0(E, F ). A linear
operator A : E → F is a corrector of L if its image is finite-dimensional and
L + A is an isomorphism. Denote by C(L) the set of correctors of L. It is
easy to see that C(L) is non-empty. Indeed, any linear operator A ∈ L(E,F )
such that Ker A ⊕ KerL = E and Im A ⊕ ImL = F is a corrector of L. In
particular, if L is an isomorphism, the trivial operator belongs to C(L).

We define an equivalence relation on C(L) as follows. Let A,B ∈ C(L)
and consider the endomorphism of E

T = (L + B)−1(L + A) = I − (L + B)−1(B −A).
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Clearly, T is an invertible finite-dimensional perturbation of the identity.
Thus, its determinant is defined and non-zero. We say that A is equivalent to
B or, more precisely, A is L-equivalent to B, if

det
(
(L + B)−1(L + A)

)
> 0.

In [1] it is shown that this is an equivalence relation on C(L) with two equiva-
lence classes. A simpler proof of this could be carried out as a straightforward
consequence of Proposition 3.1.

Definition 3.3. Let L be a Fredholm operator of index zero between
real vector spaces. An orientation of L is one of the two equivalence classes
of C(L). The operator L is oriented when one of its orientations is selected.

Formally, an oriented operator is a pair L = (L′, ω), where L′ ∈ Φ0(E,F )
and ω is one of the two equivalence classes of C(L′). However, for the sake
of simplicity, unless required for the understanding, we shall not use different
symbols to discern between an oriented operator L and its underlying non-
oriented part L′.

As in [2], the set of all oriented operators from E into F will be denoted by
Φ̂0(E,F ), or simply by Φ̂0(E) when F = E. Observe that there is a natural
projection

p : Φ̂0(E,F ) → Φ0(E,F )

defined by forgetting the orientation.

Given L ∈ Φ̂0(E,F ), its orientation is denoted by C+(L) and called class of
positive correctors of L. The other equivalence class is the opposite orientation
of L and denoted by C−(L). The elements of C−(L) are the negative correctors
of L.

When an operator L is invertible, a distinguished orientation emerges.

Definition 3.4 (Natural orientation). An oriented isomorphism L : E →
F has the natural orientation if the trivial operator is a positive corrector of
L.

Let L ∈ Φ0(E, F ). Given an isomorphism S : G → E, from property (3)
of Proposition 3.1 one can immediately deduce that two correctors A and B of
L are L-equivalent if and only if AS and BS are LS-equivalent. An analogous
assertion holds for a composition of the type SL, with S ∈ Iso(F, G). This
justifies the following

Definition 3.5. Let L1 ∈ Φ̂0(E1, E2) and L2 ∈ Φ̂0(E2, E3) be two ori-
ented operators, and denote by L′1 and L′2 the corresponding non-oriented
operators. The oriented composition L2L1 is the composition L′2L

′
1 with
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the orientation obtained by choosing as a positive corrector any operator
K ∈ F(E1, E3) of the type

K = (L′2 + A2)(L′1 + A1)− L′2L
′
1

with A1 ∈ C+(L1) and A2 ∈ C+(L2).

Notice that the oriented composition is associative. Thus, it makes sense
to consider the oriented composition of three, or even more, oriented operators.
Unless otherwise specified, from now on, the composition of oriented operators
will be regarded as an oriented composition.

The orientation of an operator L ∈ Φ0(E, F ) can be regarded as the
orientation of the restriction of L to any suitable pair of subspaces of E and
F . Precisely, let F1 be a subspace of F that is transverse to L and let E1 =
L−1(F1). Consider any direct complement E0 to E1 in E and split E and F
as E = E0 ⊕ E1 and F = L(E0) ⊕ F1. With this decomposition, L can be
represented by a matrix

(
L0
0

0
L1

)
. Clearly, L0 is an isomorphism and L1 ∈

Φ0(E1, F1). Thus, any linear operator A : E → F of the type
(0

0
0

A1

)
(3.2)

is a corrector of L if and only if A1 is a corrector of L1. From Proposition
3.1 one can easily deduce that two correctors of L1 are L1-equivalent if and
only if the corresponding correctors of L (according to (3.2)) are L-equivalent.
This shows that the following definition is well posed.

Definition 3.6. Given L ∈ Φ0(E,F ), let F1 be a subspace of F which is
transverse to L, and denote by L1 the restriction of L to L−1(F1) as domain
and to F1 as codomain. Two orientations, of L and L1 respectively, are said
to be correlated (or one induced by the other) if there exists a projection P
of E onto L−1(F1) and a positive corrector A1 of L1 such that the operator
A = SA1P is a positive corrector of L, where S : F1 → F is the inclusion. If
L and L1 are oriented with correlated orientations, L1 is called the oriented
restriction of L and L the oriented extension of L1.

We define now the sign of an oriented operator.

Definition 3.7. Given L ∈ Φ̂0(E, F ), its sign is the integer

sign(L) =

{+1 if L is invertible and naturally oriented
−1 if L is invertible and not naturally oriented
0 if L is not invertible.

Remark 3.8. Let L ∈ Φ0(E, F ) and let A be a corrector of L. We have

(L + A)−1L = I − (L + A)−1A.
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Thus (L + A)−1L is a finite-dimensional perturbation of the identity and,
consequently, its determinant is well defined. One can easily check that if L
is oriented and A is a positive corrector of L, then

sign(L) = sign
(
det

(
(L + A)−1L

))
.

From the notion of correlated orientations (Definition 3.6) one can easily
deduce the following property of the sign.

Proposition 3.9 (Reduction Property). Let L ∈ Φ0(E,F ) and let F1

be a subspace of F that is transverse to L. Denote by L1 the restriction of
L to the spaces L−1(F1) and F1. If L and L1 are oriented with correlated
orientations, then

sign(L) = sign(L1).

Another useful property of the sign is expounded by the following propo-
sition, whose proof is immediate.

Proposition 3.10 (Invariance Property). Let L ∈ Φ̂0(E, F ), and let
S : G → E and T : F → H be two naturally oriented isomorphisms. Then

sign(TLS) = sign(L).

From now on, unless otherwise specified, all the vector spaces considered
are real Banach spaces, and all the linear operators between them are assumed
to be bounded. Therefore, given any (bounded) L ∈ Φ0(E, F ), by a corrector
of L we shall actually mean a bounded corrector. By abuse of notation, the
set of correctors of L will be still denoted by C(L), even if it is a subset of the
set considered in the purely algebraic case. As a consequence of the Hahn-
Banach Theorem, the set C(L) is non-empty also in this enriched context,
and an orientation of L can be regarded as an equivalence class of bounded
correctors of L. As in the algebraic case, the set of oriented operators from a
Banach space E into a Banach space F will be denoted by Φ̂0(E, F ), even if,
we recall, all the operators are assumed to be bounded.

The salient fact that distinguishes the orientation in the context of Banach
spaces from the orientation in the algebraic case is, loosely speaking, the
influence exerted by an oriented operator over its neighbors. More precisely,
due to the fact that Iso(E, F ) is open in L(E, F ), any corrector of a given
L ∈ Φ0(E, F ) remains a corrector for all the operators in a neighborhood of
L. This means that an oriented operator induces, by a sort of stability, an
orientation on any sufficiently close operator. Thus, it is evident how to endow
Φ̂0(E,F ) with a topology which makes the natural projection

p : Φ̂0(E,F ) → Φ0(E,F )

a two-fold covering space (see [2] for a formal definition).
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In the context of Banach spaces one may ask whether or not the determi-
nant function det : Ψ(E) → R is continuous. The following example provides
a negative answer.

Example 3.11. For any n ∈ N, let Tn : `2 → `2 be the operator obtained
by multiplying the first n coordinates of any x ∈ `2 by 1 + 1

n (and leaving
unchanged all the others). Clearly, Tn ∈ Ψ(`2). Moreover,

det(Tn) =
(
1 +

1
n

)n

since 1 + 1
n is the only eigenvalue different from 1 and its multiplicity is n.

Thus det(Tn) → e. On the other hand, Tn → I and det(I) = 1.

Notice that, in the above example, the images of the operators I −Tn are
not equicontained in a finite-dimensional subspace of L(`2). In fact, when this
happens, the determinant is continuous. More precisely, as a straightforward
consequence of the definition of determinant, one gets the following result.

Lemma 3.12. Let E1 be a finite-dimensional subspace of a Banach space
E. Then the restriction of the determinant function to the affine subspace

{
T ∈ L(E) : Im (I − T ) ∈ E1

}

of Ψ(E) is continuous.

The following useful result shows that, in spite of fact that the determinant
function can be discontinuous, its sign, if non-zero, is stable.

Proposition 3.13. Let E be a Banach space. Then the restriction of
the function T 7→ sign(det(T )) to the open subset GL(E) ∩ Ψ(E) of Ψ(E) is
continuous.

Proof. Let T0 ∈ GL(E) ∩ Ψ(E). Since GL(E) is open, there exists a
convex neighborhood U of T0 in Ψ(E) contained in GL(E). Thus det(T ) 6= 0
for all T ∈ U . Let us show that

sign(det(T )) = sign(det(T0))

for all T ∈ U . Given any T1 ∈ U , let E1 be a finite-dimensional subspace of
E containing both Im (I − T0) and Im (I − T1). Thus, for any λ ∈ [0, 1], the
operator

Tλ = (1− λ)T0 + λT1

is such that Im (I − Tλ) ⊆ E1. On the basis of Lemma 3.12 this implies that
the function λ 7→ det(Tλ) is continuous. The result now follows since, for any
λ ∈ [0, 1], Tλ belongs to U and, consequently, det(Tλ) 6= 0



630 P. Benevieri et al.

We are ready to introduce the concept of orientation for a continuous
family of Fredholm operators of index zero.

Definition 3.14. Let Λ be a topological space and h : Λ → Φ0(E, F ) be
a continuous map. An orientation of h is a continuous choice of an orientation
ω(λ) of h(λ) for each λ ∈ Λ, where “continuous” means that for any λ ∈ Λ
there exists Aλ ∈ ω(λ) such that Aλ ∈ ω(µ) for all µ in a neighborhood of λ.
The map h is orientable when it admits an orientation and oriented when an
orientation has been chosen. In particular, a subset A of Φ0(E, F ) is said to
be orientable (or oriented) if so is the inclusion i : A → Φ0(E, F ).

Notice that if A ⊆ Φ0(E,F ) is orientable, then so is any subset of A and,
more generally, any continuous map h : Λ → A. In fact, an orientation of A
induces an orientation on any map h : Λ → A.

An outstanding (and somehow surprising) result of Kuiper (see [11]) as-
serts that the subset GL(`2) of Φ0(`2) is contractible. In particular, it is
connected. As shown in [2], this implies that Φ0(`2) is not orientable.

Perhaps the simplest example of a non-constant orientable map h : Λ →
Φ0(E,F ) is when any h(λ) is invertible. To show this, endow h with the natu-
ral orientation, namely the orientation given by choosing the trivial operator
as a positive corrector of h(λ) for any λ ∈ Λ. Observe that in this case one
has sign(h(λ)) = 1 for all λ ∈ Λ.

Clearly, any orientable map h admits at least two orientations. In fact, if
h is oriented by ω, reverting this orientation at any λ ∈ Λ, one gets what we
call the opposite orientation ω− of h.

Remark 3.15. As a consequence of Proposition 3.13, one can easily de-
duce that if A and B are two equivalent correctors of a given L0 ∈ Φ0(E, F ),
then they remain L-equivalent for any L in a neighborhood of L0. This implies
that the notion of “continuous choice of an orientation” in Definition 3.14 is
equivalent to the following:
• For any λ ∈ Λ and any Aλ ∈ ω(λ), there exists a neighborhood U of λ

such that Aλ ∈ ω(µ) for all µ ∈ U .

Remark 3.15 implies that the set in which two orientations of h coincide is
open in Λ, and for the same reason it is open the set in which two orientations
of h are opposite one to the other. Therefore, if Λ is connected, the map
h, if orientable, admits exactly two orientations. As a straightforward conse-
quence of this argument (or, if one prefers, of Proposition 3.13) one obtains
the following result, which is a sort of intermediate value theorem.

Proposition 3.16. Let h : Λ → Φ0(E,F ) be an oriented map defined on
a connected space Λ. Assume there are two points λ1, λ2 ∈ Λ such that

sign(h(λ1)) sign(h(λ2)) < 0.



The Sign of Oriented Fredholm Operators 631

Then there exists λ0 ∈ Λ such that sign(h(λ0)) = 0.

We observe that the notion of “continuous choice of an orientation” in
Definition 3.14 becomes the usual concept of continuity if one regards the
orientation of the map h : Λ → Φ0(E,F ) as a lifting ĥ : Λ → Φ̂0(E, F ) of h
in the covering space

p : Φ̂0(E, F ) → Φ0(E, F ).

The advantage of this point of view is that one could use known results on
covering space theory to deduce important properties of orientable maps, such
as the homotopy invariance of the orientability, the transport of the orientation
by means of a homotopy, the orientability and non-orientability of some maps
(see [2] for details).

In particular, from covering space theory one gets that if Λ is simply
connected and locally path connected, then any continuous map h : Λ →
Φ0(E,F ) is orientable (see [2]). Hence, in this case, h admits exactly two
orientations, each of them is uniquely determined by the orientation of h at
any chosen λ0 ∈ Λ.

As a consequence of this, any convex subset of Φ0(E,F ) is orientable.
More generally, given S ∈ Φ0(E,F ), let Star S denote the union of all convex
subsets of Φ0(E, F ) containing S. Clearly, an operator L ∈ L(E, F ) belongs to
Star S if and only if the line segment joining S and L is contained in Φ0(E, F ).
Consequently, since Φ0(E, F ) is open in L(E, F ), so is Star S. Thus, Star S
is simply connected (being star-shaped) and locally path connected (being
open). In particular, it is orientable with just two orientations. Taking this
into account, the following definition provides a practical way to assign an
orientation to a large class of orientable subsets of Φ0(E, F ).

Definition 3.17. Given S ∈ Iso(E, F ) and L ∈ L(E,F ), we say that L is
oriented by S (or S-oriented, for short) if the line segment SL joining S and L
is contained in Φ0(E, F ) and L is oriented according to the orientation of SL
determined by the natural orientation of S. A subset A of Star S is S-oriented
if so is any L ∈ A. More generally, an orientation of a map h : Λ → StarS is
an S-orientation if any h(λ) is S-oriented.

The following is a simple and important example of a set oriented by the
identity.

Example 3.18 (Leray-Schauder case). Let ΨK(E) denote the compact
hull of the identity operator in a Banach space E; that is,

ΨK(E) =
{
L ∈ L(E) : I − L ∈ K(E)

}

where K(E) is the subspace of L(E) of the compact linear operators. Then
ΨK(E) is a convex subset of Star I (actually, an affine subspace of L(E)) and,
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therefore, can be (and will be, unless otherwise specified) oriented by the
identity.

It is not difficult to check that, between the two orientations of L(Rn) =
Star(I), the I-orientation is the one satisfying the condition

sign(L) = sign(det(L)) (L ∈ L(Rn)).

Clearly, the opposite orientation is such that

sign(L) = −sign(det(L)) (L ∈ L(Rn)).

More generally, as a consequence of Corollary 5.2 (see Remark 5.3) we will
show that, given any I-oriented automorphism L ∈ ΨK(E), its sign equals its
Leray-Schauder degree.

4. Finite dimensional reduction

Let J ⊆ R be an open interval, and consider an oriented family {Lλ}λ∈J of
Fredholm operators of index zero between two Banach spaces E and F ; that
is, an oriented map from J into Φ0(E,F ). Assume there exists λ0 ∈ J such
that

Lλ is an isomorphism for any λ ∈ J \ {λ0}.
We are interested in sufficient (and necessary) conditions for Lλ to have a sign
jump at λ = λ0.

From now on, without loss of generality, we shall assume λ0 = 0 and L0

singular, the last assumption being necessary for the existence of a sign jump
(because of Proposition 3.16).

Let F0 be a Banach space and let P : F → F0 and Q : F → Rn be
bounded linear operators with the following properties:

P and Q are surjective (4.1a)
Ker Q⊕KerP = F (4.1b)
PL0 is surjective. (4.1c)

We observe that such a pair of operators, P and Q, always exists. For example,
one could take as P any projection of F onto F0 = Im L0 (or onto a finite-
codimensional subspace F0 of Im L0) and as Q the associated projection I−P
onto the space Ker P , which can be regarded as Rn for some n ∈ N.
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Remark 4.1. Properties (4.1a) - (4.1b) above hold if and only if the
operator P ×Q : y 7→ (Py,Qy) is an isomorphism between F and F0 × Rn.

Remark 4.2. Property (4.1c) holds if and only if P is surjective and L0

is transverse to Ker P .

Remark 4.3. Since Q is surjective, Ker Q has codimension n. Hence,
from (4.1b) it follows dim KerP = n. Thus P , being surjective, is Fredholm
of index n. Therefore, PLλ is Fredholm and

ind(PLλ) = ind(P ) + ind(Lλ) = n.

Moreover, since PL0 is surjective, so is PLλ for λ small. Consequently, for
these values of λ one has dim (Ker PLλ) = n.

Given P and Q as above, the space F can be regarded as the direct sum
of two fixed subspaces: Ker Q and Ker P . The fact that PL0 is surjective
allows us to define a λ-dependent splitting of E in two subspaces in such a
way that Lλ can be represented, up to the composition with isomorphisms,
as a triangular 2× 2 block-matrix.

Let Aλ : Rn → E, with λ ∈ J sufficiently small, be a continuous family
of isomorphisms between Rn and Ker PLλ. (An explicit construction of such
a family is given in Lemma 4.5 below.) Let E0 be a direct complement to
KerPL0 in E. Clearly, for small values of λ, the map

Bλ : E0 × Rn → E

given by (u0, u1) 7→ u0 + Aλu1 is an isomorphism and depends continuously
on λ. Let

Cλ : E0 × Rn → F0 × Rn

be the composition (P ×Q)LλBλ, which can be regarded as a representation
of Lλ, up to the isomorphisms Bλ and (P × Q). Since PLλAλ = 0, writing
Cλ in block-matrix form, we get

Cλ =
(

PLλ|E0 0
QLλ|E0 QLλAλ

)
.

Remark 4.4. Since Lλ is an isomorphism for small λ 6= 0, so is the
endomorphism QLλAλ of Rn.

The following result, applied to Mλ = PLλ, ensures the existence of the
family Aλ required in the above construction.
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Lemma 4.5. Let Mλ : E → F0 (λ ∈ J) be a continuous family of
linear operators between Banach spaces. Assume that M0 is surjective with
n-dimensional kernel (n ∈ N). Then, for λ small enough, there exists a con-
tinuous family of injective linear operators Aλ : Rn → E such that any Aλ

maps Rn onto Ker Mλ.

Proof. Let A0 : Rn → E be an isomorphism between Rn and Ker M0,
and let E0 be a (closed) complement to Ker M0 in E. The operator from
E0 × Rn to E defined by (u0, u1) 7→ u0 + A0u1 is an isomorphism. Fix any
λ ∈ J and let u ∈ KerMλ be given. There exist (and are unique) u0 ∈ E0

and u1 ∈ Rn such that u = u0 + A0u1. One has

0 = Mλu = Mλu0 + MλA0u1. (4.2)

Since M0|E0 is an isomorphism between E0 and F0, the same is true for Mλ|E0

when λ is small. Thus, by (4.2),

u0 = − (Mλ|E0)
−1

MλA0u1

u = A0u1 − (Mλ|E0)
−1

MλA0u1. (4.3)

For small λ, define Aλ : Rn → E by

Aλx = A0x− (Mλ|E0)
−1

MλA0x.

Clearly, Aλ depends continuously on λ, and the notation is consistent with
the initial choice of A0 since M0A0 = 0.

From (4.2) - (4.3) one gets Ker Mλ ⊆ Im Aλ. Clearly, dim Im Aλ ≤ n.
Since, for λ small, Mλ is onto and Fredholm of index n, one has dimKer Mλ =
n. Thus Ker Mλ = Im Aλ, which implies the assertion

The following is the main result of this section.

Theorem 4.6. Let {Lλ}λ∈J , P : F → F0 and Q : F → Rn be as above.
Let Aλ : Rn → E be a continuous family of injective linear operators such
that ImAλ = Ker PLλ. Then Lλ has a sign jump at λ = 0 if and only if the
same is true for the function λ 7→ det(QLλAλ).

Proof. We will deduce the assertion from the reduction and invariance
properties of oriented operators (see Propositions 3.9 and 3.10).

As above, let E0 be such that E = E0 ⊕ Ker PL0 and define Bλ : E0 ×
Rn → E by Bλ(u0, u1) = u0 +Aλu1. Endow the isomorphisms Bλ and P ×Q
with the natural orientation. Recalling that {Lλ}λ∈J is an oriented family,
consider the oriented composition

Cλ = (P ×Q)LλBλ : E0 × Rn → F0 × Rn.
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By the Invariance Property of the sign (Proposition 3.10),

sign(Cλ) = sign(Lλ). (4.4)

Since PL0 is surjective, so is PLλ for λ small. Therefore, for these values of
λ, Cλ is transverse to the subspace {0} × Rn of F0 × Rn.

Now, observe that C−1
λ ({0}×Rn) coincides, for any λ, with the subspace

{0} ×Rn of E0 ×Rn. Consequently, by the Reduction Property (Proposition
3.9), the sign of Cλ, for λ small, coincides with the sign of the oriented re-
striction Ĉλ of Cλ to the subspace {0} × Rn of E0 × Rn, as domain, and to
the subspace {0} × Rn of F0 × Rn, as codomain.

Clearly, the operator Ĉλ can be canonically identified with the endomor-
phism QLλAλ of Rn, whose induced orientation, without loss of generality,
can be assumed to be the I-orientation. Indeed, the existence of a sign jump
does not depend on the chosen orientation of {Lλ}λ∈J . Thus, with this as-
sumption, one has

sign(Cλ) = sign(QLλAλ) = sign(det(QLλAλ)),

and the assertion follows from (4.4)

In some applications it may happen that the choice of one of the operators,
P or Q, is quite natural. It is useful to have criteria which allow, given P , to
construct Q so that properties (4.1) are satisfied, and vice versa.

Assume we are given P : F → F0 such that
(1) PL0 is surjective
(2) Ker P has finite dimension, say n.

In this case, we can define Q by composing any projection onto Ker P with
any isomorphism from Ker P to Rn.

Assume now we are given Q : F → Rn such that:
(1) Q is surjective.
(2) There exists a subspace F1 of F such that Ker Q⊕ F1 = F and F1 is

transverse to Im L0. (For example, this is true when Ker Q ⊆ ImL0.)
In this case we can take P as the projector onto F0 = Ker Q associated with
the decomposition Ker Q⊕ F1 = F .

We observe that, given an oriented family {Lλ}λ∈J as above, one can
always split both the spaces E and F in two subspaces, say E0, E1 ⊆ E
and F0, F1 ⊆ F , in order to express Lλ as

(
Tλ

Vλ

Uλ

Sλ

)
with E1 and F1 finite-

dimensional, and T0 invertible. For example, take E0 a (closed) complement
to Ker L0, E1 = Ker L0, F0 = Im L0, and F1 a complement to F0. Since E1

and F1 must have the same dimension (say n), up to isomorphisms we may
suppose E1 = F1 = Rn. With this in mind, we state the following consequence
of Theorem 4.6.
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Theorem 4.7. Let Lλ : E → F (λ ∈ J) be as above, and assume
E = E0 ×Rn and F = F0 ×Rn, with E0 and F0 Banach spaces. Let

(
Tλ

Vλ

Uλ

Sλ

)
be the matrix representation of Lλ according to the above decompositions of E
and F . If T0 is invertible, then Lλ has a sign jump at λ = 0 if and only if the
same happens to the real function λ 7→ det(Sλ − VλT−1

λ Uλ).

Proof. Let P and Q denote the two canonical projections of F = F0×Rn

onto the factors F0 and Rn, respectively. Observe that

KerPLλ =
{

(x0, x1) ∈ E0 × Rn : Tλx0 + Uλx1 = 0
}

coincides with the image of the injective operator Aλ : Rn → E0×Rn given by
Aλx1 = (−T−1

λ Uλx1, x1), which is defined for λ small because T0 is invertible.
Thus

QLλAλ = Sλ − VλT−1
λ Uλ

and the assertion follows from Theorem 4.6

5. Special cases

In this section we discuss criteria for detecting a sign jump in particular sit-
uations. Although the cases considered look quite different, the construction
presented in the previous section provides a general framework.

As before, E and F denote real Banach spaces, J is an open interval
containing λ = 0, and {Lλ}λ∈J is an oriented family of Fredholm operators
of index zero between them. Which one of the two orientations is chosen is
not important for the detection of a sign jump at λ = 0, the only point of J
where Lλ is assumed singular.

We are concerned first with the case when Lλ = L0 + λKλ, where Kλ :
E → F is a family of linear operators which depend continuously on λ ∈ J .
As a consequence of Theorem 4.6 we have the following result, in which a sort
of Crandall-Rabinowitz condition for bifurcation is considered (see [4]).

Corollary 5.1. Let L0 ∈ Φ0(E, F ) and let Kλ : E → F (λ ∈ J) be
a continuous family of linear operators. Assume that the following Crandall-
Rabinowitz type condition is satisfied:

(CR) u ∈ KerL0 and K0 u ∈ Im L0 imply u = 0.

Then Lλ = L0 + λKλ has a sign jump at λ = 0 if and only if Ker L0 is odd
dimensional.

Proof. Let n = dim (Ker L0) > 0 and let P : F → ImL0 be any projec-
tion onto the closed subspace F0 = Im L0 of F . Let S : coKer L0 → Rn be
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any isomorphism and define Q : F → Rn as the composition Q = SR, where
R : F → coKer L0 denotes the natural projection. In other words, consider
any linear operator Q onto Rn such that Ker Q = Im L0.

Clearly, P and Q satisfy assumptions (4.1) and therefore, as observed in
Remark 4.3, PL0 is Fredholm of index n.

Let Aλ : Rn → E be as in Lemma 4.5, with Mλ = PLλ. By Theorem 4.6
it is enough to prove that det(QLλAλ) changes sign at λ = 0 if and only if n
is odd. Since QL0 = 0, we have

det
(
Q(L0 + λKλ)Aλ

)
= det(λQKλAλ) = λndet(QKλAλ).

Thus the assertion follows if we show that det(QKλAλ) is non-zero when λ is
small. This is true since assumption (CR) means that the operator

RK0|Ker L0 : Ker L0 → coKer L0

is injective and, consequently, det(QK0A0) 6= 0

A very special and interesting case of a family Lλ is the one considered by
Leray-Schauder in [12], where Lλ = I−(α+λ)K, with K : E → E a compact
linear operator and L0 = I−αK a singular operator (i.e., α−1 is an eigenvalue
of K). They proved that the (Leray-Schauder) degree of Lλ (which is defined
for λ in a pinched neighborhood of 0, α−1 being isolated in the spectrum of
K) has a sign jump at λ = 0 if and only if the algebraic multiplicity of α−1

is odd. We recall that the algebraic multiplicity of an eigenvalue µ 6= 0 of K
is the dimension of the space ∪∞k=1Ker (µI −K)k which is well-known to be
finite, since K is compact.

Corollary 5.2 below, which will be deduced directly from Theorem 4.7,
shows that for the above special family the same jump phenomenon occurs
to the sign function. That is, Lλ has a sign jump at λ = 0 if and only
if the algebraic multiplicity of α−1 is odd (hence, the same is true for the
degree defined in [1]). Actually, in Corollary 5.2 a more general situation is
considered, even if apparently different: the family Lλ is of the type L0 + λI,
which formally does not include the case

I − (α + λ)K (5.1)

studied by Leray and Schauder. However, composing (5.1) with (α + λ)−1I
yields a new family which, as regards the possible existence of a sign jump, is
equivalent to the previous one and, up to a reparametrization, is of the type
L0 + λI. We observe that in this (Leray-Schauder) case L0 is a very special
Fredholm operator of index 0; namely L0 = α−1I −K.



638 P. Benevieri et al.

Corollary 5.2. Let L0 : E → E be a non-invertible Fredholm operator
of index 0. Assume that dim

( ∪∞k=1 Ker Lk
0

)
= n < ∞. Then Lλ = L0 + λI

has a sign jump at λ = 0 if and only if n is odd.

Proof. By assumption, there exists p ∈ N such that Ker Lp+i
0 = Ker Lp

0

for all i ∈ N. Put E0 = ImLp
0 and E1 = Ker Lp

0. It is known that E = E0⊕E1

(see, for example, [14: Chapter V, Theorem 6.2]). Clearly, one has L0(E0) ⊆
E0 and L0(E1) ⊆ E1. Thus, Lλ can be represented as a diagonal block-matrix
as

Lλ =
(

T0 + λI0 0
0 S0 + λI1

)

where I0 is the identity of E0, I1 is the identity of E1, and T0 and S0 are the
restrictions of L0 to E0 and E1, respectively. Observe now that T0 : E0 → E0

is Fredholm of index 0 and injective; therefore it is actually invertible. Thus,
by Theorem 4.7, Lλ has a sign jump at λ = 0 if and only if the same is true
for the function λ 7→ det(S0 + λI1). The assertion now follows from the fact
that det(S0 + λI1) = λn, since the spectrum σ(S0 + λI1) of S0 + λI1 is given
by {λ}+ σ(S0), which coincides with the singleton {λ}, S0 being nilpotent

Remark 5.3. Corollary 5.2 implies that, whenever I −C ∈ ΨK(E) is an
I-oriented automorphism, then sign(I − C) = (−1)p, where p is the number
of the eigenvalues of C greater than 1 with odd multiplicity. Thus, by a
well-known result of Leray and Schauder, we get

sign(I − C) = degLS(I − C, B, 0)

where B is any open ball centered at the origin of E.

We now consider the situation in which one has a continuous family Mλ

of surjective Fredholm operators of index n ∈ N between two Banach spaces
G and F , and a surjective operator C : G → Rn. To understand how this
situation can arise, we may think of Mλ as a family of differential operators
associated with a parameter-dependent differential equation, and of C as ex-
pressing a set of boundary conditions (compare Examples 6.5 and 6.6 below).

The following result is a consequence of Theorem 4.6.

Corollary 5.4. Let Mλ : G → F be a continuous family of surjective
Fredholm operators of index n ∈ N, and let Aλ : Rn → G be a continuous
family of injective linear operators such that Im Aλ = Ker Mλ. Let C : G →
Rn be linear and surjective, put E = Ker C and define Lλ : E → F by
Lλ = Mλ|E. Then Lλ has a sign jump at λ = 0 if and only if the real function
λ 7→ det(CAλ) changes sign crossing λ = 0.

Proof. Define Nλ : G → F × Rn by Nλx = (Mλx,Cx). Theorems 2.4
and 2.5 imply that Nλ is Fredholm of index 0 since Nλ = SMλ + K, where S
is the inclusion of F into F×Rn and K : G → F×Rn is the map x 7→ (0, Cx).
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Let P and Q denote the projections of F × Rn onto the factors F and
Rn, respectively. One can easily verify that P and Q satisfy properties (4.1),
that PNλ = Mλ and that QNλAλ = CAλ. Therefore, Theorem 4.6 implies
that Nλ has a sign jump at λ = 0 if and only if the same is true for the real
function det(CAλ).

The assertion now follows from the fact that, by the reduction property
of the sign (Proposition 3.9), we have sign(Lλ) = sign(Nλ) for any λ ∈ J .
(Observe that the subspace F×{0} of F×Rn is transverse to Nλ and N−1

λ (F×
{0}) = E)

6. Examples

We provide now some simple examples of ordinary differential operators in
order to illustrate the meaning of the abstract results obtained in the previous
sections.

Given a compact interval [a, b], as usual C0([a, b]), or simply C([a, b]),
stands for the Banach space of the continuous real functions defined on [a, b],
with the norm

‖x‖0 = sup
t∈[a,b]

|x(t)|

of uniform convergence. More generally, given n ∈ N, Cn([a, b]) denotes the
Banach space of the Cn real functions on [a, b] with the norm

‖x‖n = ‖x‖0 + ‖x′‖0 + . . . + ‖x(n)‖0

or any equivalent norm (such as ‖x‖n = ‖x‖0 + ‖x(n)‖0).
We now show how Theorem 4.6 can be applied in some concrete cases.

Example 6.1. Take E = C2([0, π]) and F = C0([0, π]) × R2 and, for
λ in a neighborhood J of 0, consider the family of bounded linear operators
Lλ : E → F given by

Lλ(x) =
(
ẍ + x + λx, x(0), x(π)

)
.

Clearly, given λ, the operator Lλ is associated with the boundary value prob-
lem

ẍ + x + λx = y(t)

x(0) = a

x(π) = b





where y ∈ C0([0, π]) and a, b ∈ R.
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Let us show first that Lλ is Fredholm of index 0. To this end we will use
an argument that can be adapted to any (linear) boundary value problem for
a linear ordinary differential equation (or system).

The differential operator

Mλ : C2([0, π]) → C0([0, π]),

defined by Mλ(x) = ẍ + x + λx, is onto with a two-dimensional kernel. Con-
sequently, it is Fredholm of index 2. Thus, because of Theorem 2.5, the
composition Cλ = SMλ of Mλ with the natural inclusion

S : C0([0, π]) → C0([0, π])× R2

is Fredholm of index zero. Now observe that Lλ = Cλ +K, with K ∈ F(E,F )
given by K(x) = (0, x(0), x(π)), and apply Theorem 2.4 to show that Lλ ∈
Φ0(E,F ).

With the notation of Theorem 4.6, put F0 = C([0, π]) and define P : F →
F0 by P (y, a, b) = y and Q : F → R2 by Q(y, a, b) = (a, b). As already pointed
out, the differential operator M0 = PL0 is surjective and Fredholm of index
2. For λ > −1, the kernel of PLλ is the subspace of C2([0, π]) spanned by the
functions uλ

1 (t) = cos(
√

1 + λ t) and uλ
2 (t) = sin(

√
1 + λ t). Thus, for λ small,

we define Aλ : R2 → E by

(α1, α2) 7→ α1u
λ
1 + α2u

λ
2 .

Hence, in (canonical) matrix form,

QLλAλ =
(

uλ
1 (0) uλ

2 (0)
uλ

1 (π) uλ
2 (π)

)
.

Therefore, by Theorem 4.6, Lλ has a sign jump at λ = 0 since

det(QLλAλ) = sin(
√

1 + λπ).

Example 6.2. One may tackle the family {Lλ} of Example 6.1 putting
F0 = C0([0, π]) × R and defining the operators P : F → F0 and Q : F → R
by P (y, a, b) = (y, a) and Q(y, a, b) = b. With this choice, the kernel of PLλ

is one-dimensional and spanned by uλ(t) = sin(
√

1 + λ t). Therefore, given λ,
one may define Aλ : R → E by Aλ(α) = αuλ. Thus, det(QLλAλ) = uλ(π),
and the same conclusion as in Example 6.1 follows.

The following two examples illustrate how Corollary 5.1 applies.
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Example 6.3. Take E = {x ∈ C2([0, π]) : x(0) = x(π) = 0} and F =
C0([0, π]), and consider the family of bounded linear operators Lλ : E → F
given by Lλx = ẍ + x + λx. Clearly, these operators differ from those of
Examples 6.1 and 6.2 but are related to the same boundary value problem.
In fact, because of the surjectivity of the boundary operator x 7→ (x(0), x(π)),
this problem can be transformed into an equivalent one with the homogeneous
boundary conditions x(0) = 0 and x(π) = 0.

Clearly, for any given λ, Lλ is Fredholm of index zero, since it is the
composition of the inclusion S : E → C2([0, π]) with the differential operator
Mλ : C2([0, π]) → C0([0, π]) defined by Mλx = ẍ+x+λx (see Theorem 2.5).

We can write Lλ = L0 + λK, where K is the inclusion of E into F . In
order to apply Corollary 5.1, we need to show that condition (CR) is satisfied.

Since Ker L0 is one-dimensional (precisely the vector space spanned by
u(t) = sin t), so is coKer L0. Therefore, there exists a (unique up to a
multiplicative constant) non-trivial linear functional Q : F → R such that
KerQ = ImL0. Let us try to find Q of the type

Q(y) =
∫ π

0

y(t)ϕ(t) dt

where ϕ is a (sufficiently regular) non-trivial function. Since ImL0 and Ker Q
have the same (finite) codimension (which is one, in this case), any of the
inclusions

Im L0 ⊆ Ker Q or Im L0 ⊇ Ker Q

implies the equality Im L0 = Ker Q. It is therefore sufficient to find ϕ such
that ∫ π

0

(
ẍ(t) + x(t)

)
ϕ(t) dt = 0 (x ∈ E) (6.1)

which means Im L0 ⊆ KerQ. Integrating twice (6.1) by parts one can check
that ϕ(t) = sin t satisfies this requirement. Thus, condition (CR) of Corollary
5.1 is verified since

∫ π

0
sin2 t dt 6= 0. Finally, since the dimension of Ker L0 is

odd, Lλ has a sign jump at λ = 0.

We point out that the existence of a sign jump of the differential operator
Lλ in Example 6.3 could be deduced directly from Example 6.1 using the
reduction property of the sign (Proposition 3.9). In fact, this operator is the
restriction to the pair of spaces

{
x ∈ C2([0, π]) : x(0) = x(π) = 0

}
and C0([0, π])

of the other operator Lλ in Example 6.2. Obviously, also the converse impli-
cation could be considered.
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The method used to deduce a sign jump of the differential operator Lλ in
Example 6.3 applies to a more general situation. Namely, to the case when
the perturbation λK : E → F is of the type (λKx)(t) = λg(t)x(t) where g
is a continuous real function defined on [0, π]. In this case condition (CR) of
Corollary 5.1 is fulfilled provided that

∫ π

0
g(t) sin2 t dt 6= 0.

The following example shows that for a periodic problem the sign jump,
in some sense, is not likely to occur. Again we apply Corollary 5.1.

Example 6.4. Consider the Banach spaces

E =
{

x ∈ C2([0, 2π]) : x(0) = x(2π), ẋ(0) = ẋ(2π)
}

F = C0([0, 2π])

and the family Lλ : E → F of bounded linear operators given by

(Lλx)(t) = ẍ(t) + x(t) + λg(t)x(t)

where g is a continuous function defined on [0, 2π]. Clearly, Lλ is related to
the problem with periodic boundary conditions

ẍ + x + λg(t)x = y(t)

x(0) = x(2π)

ẋ(0) = ẋ(2π)





.

As in the previous example, for any given λ, Lλ is Fredholm of index
zero, since it is the composition of the inclusion S : E → C2([0, 2π]) with
the differential operator Mλ : C2([0, 2π]) → C0([0, 2π]) defined by Mλx =
ẍ + x + λgx.

Denote by L0 and K the operators (from E to F ) defined by L0 x = ẍ+x
and Kx = gx, so that Lλ = L0 + λK. In order to apply Corollary 5.1,
we need to determine the spaces KerL0 and ImL0. The subspace Ker L0

of E contains the functions u1(t) = cos t and u2(t) = sin t, thus it is two-
dimensional (L0 being a second order differential operator). Consequently,
Im L0 has codimension two. With the same argument as in Example 6.3, one
can check that y belongs to Im L0 only if (and consequently if)

∫ 2π

0

y(t) cos t dt =
∫ 2π

0

y(t) sin t dt = 0.

Thus, if the determinant of the matrix
( ∫ 2π

0
g(t) cos2 t dt

∫ 2π

0
g(t) sin t cos t dt∫ 2π

0
g(t) cos t sin t dt

∫ 2π

0
g(t) sin2 t dt

)
(6.2)
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is different from zero, condition (CR) of Corollary 5.1 is verified. Hence, in
this case, Lλ has not a sign jump at λ = 0, the dimension of Ker L0 being
even.

As regards the above example, and with the same notation, if the deter-
minant of the matrix (6.2) is zero (e.g. when g(t) = 1 + 2 sin 2t), Corollary
5.1 does not apply. In this case, to verify whether Lλ has a sign jump at
λ = 0 one can use another consequence of Theorem 4.6; namely, Corollary
5.4. In order to apply this result it is not necessary to determine ImL0, but it
is not sufficient to find out just KerL0: we actually need to evaluate Ker Mλ

for λ in a neighborhood of 0. This can be very hard with pencil and paper,
and in most cases impossible. Numerical computations, however, may help to
overcome these difficulties, as shown in the following example.

Example 6.5. Consider the Banach spaces

G = C2([0, 2π])

E =
{
x ∈ G : x(0) = x(2π), ẋ(0) = ẋ(2π)

}

F = C0([0, 2π])

and the family Lλ : E → F given by the restriction to E of the differential
operators Mλ : G → F defined as

(Mλx)(t) = ẍ(t) + x(t) + λ(1 + 2 sin 2t)x(t).

To detect a possible sign jump of Lλ, the method employed in Example 6.4
does not work in this case, since the determinant of matrix (6.2) is zero when
g(t) = 1 + 2 sin 2t. However, we will use Corollary 5.4, in combination with
numerical computations, to verify that Lλ has a sign jump at λ = 0. Here,
the boundary operator C : G → R2 is given by

Cx =
(
x(2π)− x(0), ẋ(2π)− ẋ(0)

)
.

Given λ in a neighborhood of 0, let uλ
1 and uλ

2 denote the solutions of the
differential equation

ẍ(t) + x(t) + λ(1 + 2 sin 2t)x(t) = 0

satisfying the Cauchy conditions uλ
1 (0) = 1, u̇λ

1 (0) = 0 and uλ
2 (0) = 0, u̇λ

2 (0) =
1. Thus, for λ small, the kernel of Mλ is spanned by uλ

1 and uλ
2 , and a

continuous family of injective operators Aλ : R2 → G such that Im Aλ =
KerMλ is, for example, Aλ(α, β) = αuλ

1 + βuλ
2 . With this choice of Aλ, the

real function σ(λ) = det(CAλ) as in Corollary 5.4 is

σ(λ) = det
(

uλ
1 (2π)− uλ

1 (0) uλ
2 (2π)− uλ

2 (0)
u̇λ

1 (2π)− u̇λ
1 (0) u̇λ

2 (2π)− u̇λ
2 (0)

)
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and a computer analysis of this function by a standard numerical ODE-solver
shows that σ(λ) changes sign at λ = 0. Thus, as claimed, Lλ has a sign jump
at λ = 0.

The method used in Example 6.5 to detect a sign jump can be extended in
order to include any linear boundary value problem for a family of first order
differential systems. We close with the following abstract example, which
illustrates this extension.

Example 6.6. Consider the family of ordinary differential equations in
Rn

ẋ(t) + (A(t) + λB(t))x(t) = y(t) (λ ∈ R) (6.3)

where A and B are n×n matrices of continuous functions defined on a compact
interval [a, b], the assigned function y : [a, b] → Rn is continuous, and the
unknown function x : [a, b] → Rn is of class C1. Let G and F denote,
respectively, the Banach spaces

C1([a, b],Rn) ∼= (C1([a, b]))n and C0([a, b],Rn) ∼= (C0([a, b]))n.

Associated with (6.3) one has the operators Mλ : G → F defined by

(Mλx)(t) = ẋ(t) + (A(t) + λB(t))x(t)

which are surjective with n-dimensional kernel (because of well-known results
on differential equations). Let Cx = 0 be a (well-posed) linear boundary
condition for (6.3); that is, C is a surjective linear operator from G to Rn

(so that Ker C has codimension n in G). Put E = Ker C and define the
family of differential operators Lλ : E → F by the restriction of Mλ to E.
The operators Lλ are Fredholm of index 0, as composition of the inclusion
S : E → G (whose index is −n) with Mλ (whose index is n).

Assuming that L0 is singular, to detect a possible sign jump for Lλ (at
λ = 0) we proceed as follows. Let {e1, e2, . . . , en} be the canonical basis of Rn.
For any i ∈ {1, 2, . . . , n} let uλ

i denote the (maximal) solution of equation (6.3)
satisfying the Cauchy condition uλ

i (a) = ei. Clearly, because of the linearity of
equation (6.3), any uλ

i is defined on the whole interval [a, b]. Notice that, given
λ, the matrix Yλ(t) whose columns are the solutions uλ

i (t) is a fundamental
matrix of system (6.3). Denote by CYλ the n× n real matrix whose columns
are the vectors Cuλ

i . As in Example 6.5, Corollary 5.4 implies that if the
function σ(λ) = det(CYλ) has a sign jump at λ = 0, the same is true for the
family Lλ.
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