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A Class
of Linear Integral Equations and Systems

with Sum and Difference Kernel

L. von Wolfersdorf

Abstract. By means of Fourier transform and Cauchy integral techniques a com-
plete investigation of a class of linear integral equations and corresponding systems
of equations of cross-correlation type in the Lebesgue spaces L1 and L2 is per-
formed. Integral equations of first and second kind are reduced to explicitly solvable
Riemann-Hilbert problems for a holomorphic function in the upper half-plane and
the system of equations to conjugacy problems for a sectionally holomorphic func-
tion, where in the case of a finite interval also the analytic continuation of the
solutions to the lower half-plane can be carried out in explicit way. Further, a resol-
vent representation of the solution to the integral equation and its adjoint equation
is derived.

Keywords: Integral equations of correlation type, boundary value problems for holo-
morphic functions, explicit solutions

AMS subject classification: Primary 45B05, 45E10, 45F05, secondary 30E25

1. Introduction

Cross-correlation technique is an important method for investigating real- and
complex-valued signals in general signal theory [11]. In this paper we study
related linear integral equations of the second kind with a given input signal
as kernel and the sum of both-cross-correlations of it with the wanted signal
as solution in the cases of the half-axis and of a finite interval, respectively.
Equation (2.1) on the finite interval (0, T ) can be considered as a special
case of equation (2.2) on the half-axis for a right-hand side with support on
[0, T ] (measurement of the output signal on [0, T ]) but with the additional
requirement that also only solutions (wanted signals) with support on [0, T ]
are taken into account. Therefore, a separate treatment of equation (2.1) for
finite T is given.

L. von Wolfersdorf: TU Bergakademie Freiberg, Fak. für Math. & Inf., D-09596
Freiberg; wolfersd@math.tu-freiberg.de

ISSN 0232-2064 / $ 2.50 c© Heldermann Verlag Berlin



648 L. von Wolfersdorf

Equations (2.1) - (2.2) also occur in the theory of Markov processes. The
homogeneous equation (2.2) with a probability density as kernel is Feller’s
equation [3] who obtains its solution by eyes and verification. In a systematic
way Berkovič [2] found this solution by reducing Feller’s equation (as well as
the general inhomogeneous equation) via Fourier transformation to a bound-
ary value problem of Carleman type for a holomorphic function in the upper
half-plane.

Our approach generalizes the Fourier transform method in the manner like
in [13, 14]. Using a modified (mixed) form of the Fourier transformation we
reduce the integral equations (2.1) - (2.2) directly to the well-known Rieman-
Hilbert problem for a holomorphic function in the upper half-plane and the
corresponding system of two integral equations (6.1) - (6.2) to a conjugacy
problem of Riemann (or Hilbert) type for a sectionally holomorphic function.
Due to the analyticity of the data in these problems their solutions can be
given in a form simpler in comparison to the general theory. In the case
of equation (2.1) and the system of equations (6.1) - (6.2) with finite T the
holomorphic functions in the upper half-plane have analytic continuations to
the lower half-plane which also can be constructed in an explicit way. This
yields the explicit solutions to the equations of the second kind.

The integral equation (2.1) in the real case can be considered as lineariza-
tion via the Fréchet derivative of the finite autocorrelation equation of second
kind (Percus-Yevick equation). In this context Nussbaum [18] determined the
spectrum of the integral operator in equation (2.1). We further remark that
the system of equations (6.1) - (6.2) for T = ∞ with a special class of real
kernels is studied by Arabadzhyan [1] by the method of successive approxi-
mations.

In the case of integral equations of the first kind (5.1) - (5.2) some ad-
ditional assumptions are required for the existence of the solution. Further,
we represent the solution of equation (2.1) for finite T (formally) in resolvent
form which leads to the explicit solution of the adjoint equation, too. For
convenience, we deal with equations in L2-spaces but make a remark to the
case of L1-spaces in the Appendix at the end of the paper.

The plan of the paper is as follows. In Section 2 we state the integral
equations and the mixed Fourier transformations. The solutions of equations
(2.1) - (2.2) are derived in Section 3 in the regular case and in Section 4 in
the singular case. In Section 5 we briefly deal with corresponding equations of
the first kind (5.1) - (5.2). The more complex case of system of two equations
(6.1) - (6.2) is treated for the regular and singular case in Sections 6 and 7,
respectively. Finally, in Section 8 some examples are worked out in detail.
The resolvent form of the solution is derived in the Appendix.
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2. Statement of equations

For T > 0, we deal with the linear integral equations

p(t)−
∫ T−t

0

k(s)p(s + t) ds−
∫ T−t

0

k(s + t)p(s) ds = g(t) (2.1)

on (0, T ) for a complex-valued solution p ∈ L2(0, T ), given complex-valued
kernel k ∈ L1(0, T ) and right-hand side g ∈ L2(0, T ) and with equation

p(t)−
∫ ∞

0

k(s)p(s + t) ds−
∫ ∞

0

k(s + t)p(s) ds = g(t) (2.2)

on R+ = (0,∞) for complex-valued functions p ∈ L2(R+), kernel k ∈ L1(R+)
and right-hand side g ∈ L2(R+). These equations contain the correspond-
ing real equations with real-valued p, k and g as important particular cases.
Further, we remark that equation (2.1) can be considered as special case of
equation (2.2) for k = g = 0 in (T,∞) where only solutions p with p = 0 in
(T,∞) are looked on.

Equation (2.1) can be written in the form p−Ap = g with integral operator
A defined by

(Ap)(t) =
∫ T

t

k(s− t)p(s) ds +
∫ T−t

0

k(s + t)p(s) ds

on (0, T ). By means of Young’s inequality, ‖Ap‖2 ≤ 2‖k‖1‖p‖2 follows where
‖·‖2 and ‖·‖1 are the norms in L2(0, T ) and L1(0, T ), respectively. Therefore,
for k ∈ L1(0, T ) the operator A is bounded in L2(0, T ). Further, the operator
A can be represented as sum of two convolution operators, and by a well-
known theorem on the compactness of convolution operators with summable
kernels in Lp, 1 ≤ p ≤ ∞ (cf. [17: Chapter 2/Section 2.5]) A is compact in
L2(0, T ), too. Moreover, if in addition k ∈ L2(0, T ), then the operator A has
finite double-norm, i.e. it is of Hilbert-Schmidt type. Therefore, Fredholm
theorems hold for equation (2.1) with k ∈ L1(0, T ).

The homogeneous adjoint equation to (2.1) is given by (cp. [8: Section
11])

q(t) =
∫ t

0

k(t− s)q(s) ds +
∫ T−t

0

k(s + t)q(s) ds (2.3)

on (0, T ). Necessary and sufficient solvability conditions for equation (2.1)
have the form

Re
∫ T

0

g(t)qj(t) dt = 0 (j = 1, ..., n) (2.4)
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where {qj}n
j=1 is a complete system of linearly independent (with respect to

linear combinations with real coefficients) solutions of equation (2.3). In the
following the validity of the Fredholm theorems are shown by our constructive
solution method in a direct manner without relying on the theory.

To equation (2.1) we apply the mixed Fourier transformation F1 defined
by

(F1h)(x) = Re
∫ T

0

eixth(t) dt (x ∈ R) (2.5)

mapping complex functions h ∈ L2(0, T ) into real quadratic summable func-
tions F1h on R. From F1h = γ for real γ ∈ L2(0, T ) of form (2.5) with
complex h ∈ L2(0, T ) we obtain the inversion formula

h(t) =
1
π

∫ ∞

−∞
e−ixtγ(x) dx (0 < t < T ). (2.6)

Namely, we have

Re
∫ T

0

eixth(t) dt =
1
2

∫ T

0

[
eixth(t) + e−ixth(t)

]
dt

=
1
2

∫ T

−T

eixth(t) dt

=
1
2

∫ ∞

−∞
eixth(t) dt

= γ(x)

for x ∈ R if we put h(t) = h(−t) for t ∈ (−T, 0) and h(t) = 0 outside [−T, T ].
Hence (2.6) follows. An analogous inversion formula of the same form is valid
for the transformation

(F2h)(x) = i Im
∫ T

0

eixth(t) dt (x ∈ R) (2.7)

to be used later in Section 6, too.
For h = Ap with p ∈ L2(0, T ) the relation

F1(Ap)(x) = Re
[
K(x)F (x)

]
(x ∈ R) (2.8)

with finite Fourier transforms

F (x) =
∫ T

0

p(t)eixt dt (x ∈ R)

K(x) =
∫ T

0

k(t)eixt dt (x ∈ R)

(x ∈ R) (2.9)
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holds. The proof follows by a simple calculation: we have

∫ T

0

eixt

[ ∫ T−t

0

k(s)p(s + t) ds +
∫ T−t

0

k(s + t)p(s) ds

]
dt

=
∫ T

0

[ ∫ T−s

0

eixtp(s + t) dt · k(s) +
∫ T−s

0

eixtk(s + t) dt · p(s)
]
ds

=
∫ T

0

[ ∫ T

s

eixσp(σ) dσ · e−ixsk(s) +
∫ T

s

eixσk(σ) dσ · e−ixsp(s)
]
ds

=
∫ T

0

[ ∫ s

0

e−ixσk(σ) dσ · eixsp(s) +
∫ T

s

eixσk(σ) dσ · e−ixsp(s)
]
ds

and

Re
∫ T

0

eixt(Ap)(t) dt

=
1
2

[ ∫ T

0

eixt(Ap)(t) dt +
∫ T

0

eixt(Ap)(t) dt

]

=
1
2

[ ∫ T

0

e−ixσk(σ) dσ ·
∫ T

0

eixsp(s) ds

+
∫ T

0

eixσk(σ) dσ ·
∫ T

0

e−ixsp(s) ds

]

=
1
2
[
K(x)F (x) + K(x)F (x)

]

= Re
[
K(x)F (x)

]
.

Relation (2.8) holds true for T = ∞ with the Fourier transforms

F (x) =
∫ ∞

0

p(t)eixt dt

K(x) =
∫ ∞

0

k(t)eixtdt

(x ∈ R). (2.10)

Remark. The equation

p1(t)−
∫ T−t

0

k(s)p1(s + t) ds +
∫ T−t

0

k(s + t)p1(s) ds = g1(t)

on (0, T ) can be reduced to equation (2.1) putting p1 = ip and g1 = ig. In
the real case it may be more straightforward to treat this equation directly by
applying the Fourier sine transformation to it. (Remind that transformation
(2.5) reduces to the Fourier cosine transformation in the real case.)
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3. Method of solution – the regular case

Applying the transformation F1 to equation (2.1), in view of (2.8) we obtain
the condition

Re
[
(1−K(x))F (x)

]
= G(x) (x ∈ R) (3.1)

where G = F1g ∈ L2(R), i.e.

G(x) = Re
∫ T

0

eixtg(t) dt (x ∈ R). (3.2)

By the assumption g ∈ L2(0, T ), the real-valued function G is continuous on
R and vanishes for x → ±∞. The complex Fourier transforms of p ∈ L2(0, T )
and k ∈ L1(0, T )

F (z) =
∫ T

0

p(t)eiztdt

K(z) =
∫ T

0

k(t)eiztdt

(z = x + iy) (3.3)

are entire functions of exponential type which are bounded and vanish at
infinity on Im z ≥ 0 and have continuous values on R.

We construct the Fourier transform F of the solution p to equation (2.1)
in two steps. At first we derive F on the upper half-plane Im z > 0 as solution
of the Riemann-Hilbert problem with boundary condition (3.1) on R, and then
we perform an analytic continuation of F across the real axis into the lower
half-plane Im z < 0. The Riemann-Hilbert problem (3.1) is equivalent to the
conjugacy problem [4, 7]

Φ+(x) = A(x)Φ−(x) + H(x) (x ∈ R) (3.4)

for the sectionally holomorphic function

Φ(z) =
{

F (z) in Im z > 0
−F (z) in Im z < 0

(3.5)

satisfying the symmetry relation Φ(z) = −Φ(z) and the limiting relation
Φ(∞) = 0 where

A(x) =
1−K(x)
1−K(x)

, H(x) =
2G(x)

1−K(x)
(3.6)

satisfy the limiting relations A(±∞) = 1 and H(±∞) = 0.
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In the regular case we have

1−K(x) 6= 0 (x ∈ R). (3.7)

We introduce the index

κ =
1
2π

[
arg(1−K(x))

]
R (3.8)

which is finite and equal to the number of zeros of the function K1(z) =
1 − K(z) in the upper half-plane. Hence κ ≥ 0. We remark that in [4] the
index is defined by expression (3.8) with 1 −K(x) replaced by A(x), i.e. by
2κ. We prefer to work with κ equal to the number of zeros of K1 in Im z > 0
which is in analogy to the real case.

In the case κ = 0 the homogeneous problem (3.4) has only the trivial
solution Φ = 0 satisfying Φ(∞) = 0. The solution of the non-homogeneous
problem (3.4) is given by

Φ(z) =
{

Φ+(z) in Im z > 0
Φ−(z) in Im z < 0

(3.9)

where
Φ+(z) ≡ F (z) = K1(z)Ψ(z)

Φ−(z) = K2(z)Ψ(z)
(3.10)

with K1(z) = 1−K(z),K2(z) = K1(z) = 1−K(z) and

Ψ(z) =
1
πi

∫ ∞

−∞

G(ξ)
B(ξ)

dξ

ξ − z
, B(x) = K1(x)K2(x). (3.11)

In view of (3.7) the real function B(x) = |1 − K(x)|2 is positive on R with
B(±∞) = 1. From (3.10) - (3.11) and the Plemelj-Sochozky formula we obtain
F on R as

F (x) = Φ+(x) =
G(x)
K2(x)

+ K1(x)
1
πi

∫ ∞

−∞

G(ξ)
B(ξ)

dξ

ξ − x
(3.12)

which by G ∈ L2(R) is in L2(R), too.
In the case κ > 0 the function K1 has the zeros zj (j = 1, ..., κ) in Im z > 0

counted according to their multiplicities. The solutions of the homogeneous
problem (3.4) can be easily constructed by analytic continuation writing the
conjugacy condition in the form

R(x)Φ+(x)
K1(x)

=
R(x)Φ−(x)

K2(x)
(x ∈ R) (3.13)
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with polynomial of degree 2κ

R(z) =
κ∏

j=1

(z − zj)(z − zj) (3.14)

satisfying R(z) = R(z). From (3.13) the general solution of the homogeneous
problem (3.4) has the form

Φ0(z) =
{

Φ+
0 (z) in Im z > 0

Φ−0 (z) in Im z < 0
(3.15)

where

Φ+
0 (z) ≡ F0(z) =

K1(z)
R(z)

iP 0
2κ−1(z) (Im z > 0) (3.16)

Φ−0 (z) =
K2(z)
R(z)

iP 0
2κ−1(z) (Im z < 0) (3.17)

with a polynomial P 0
2κ−1 of degree 2κ−1 which in view of the relation Φ0(z) =

−Φ0(z) has (arbitrary) real coefficients.
Further, as a particular solution Φ1 of the non-homogeneous problem (3.4)

in the case κ > 0 we can take the same solution (3.9) as in the case κ = 0.
This yields the general solution F of the non-homogeneous problem (3.1) in
the upper half-plane in the form

F (z) =
K1(z)
R(z)

iP2κ−1(z) + K1(z)Ψ(z) (Im z > 0) (3.18)

where K1(z) = 1−K(z), R and Ψ are given by (3.14) and (3.11), respectively,
and P2κ−1 is a polynomial of degree 2κ− 1 with real coefficients. Because of
additional conditions resulting from the analytic continuation of F into the
lower half-plane below we have to choose the polynomials P 0

2κ−1 and P2κ−1 of
the homogeneous and non-homogeneous problem (3.1) as different, in general.
The values of F on R are given by the Plemelj-Sochozky formula in the form
(cp. (3.12))

F (x) =
K1(x)
R(x)

iP2κ−1(x) +
G(x)
K2(x)

+ K1(x)
1
πi

∫ ∞

−∞

G(ξ)
B(ξ)

dξ

ξ − x
. (3.19)

In the second step we continue F analytically across R into the lower
half-plane. From (3.16) we have for the homogeneous problem (3.1)

F0(z) =
K1(z)
R(z)

iP 0
2κ−1(z) (Im z < 0) (3.20)
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and from (3.18), observing the Plemelj-Sochozky formulae, for the non-homo-
geneous problem (3.1) we have

F (z) =
K1(z)
R(z)

iP2κ−1(z) +
2G(z)
K2(z)

+ K1(z)Ψ(z) (Im z < 0) (3.21)

with real polynomials P 0
2κ−1 and P2κ−1 of degree 2κ−1, funtion Ψ defined by

(3.11), and function

G(z) =
1
2

∫ T

0

[
g(t)eizt + g(t)e−izt

]
dt (3.22)

satisfying G(z) = G(z).

The functions F0 and F must be finite in the points zj (j = 1, ..., κ)
which are the zeros of the functions R and K2 in the lower half-plane. Let us
assume here that zj are simple zeros of K1 in the upper half-plane, shifting
the general case of multiple zeros to the Appendix. Then solution (3.20) of
the homogeneous problem (3.1) should fulfil the conditions

K1(zj)P 0
2κ−1(zj) = 0 (j = 1, ..., κ) (3.23)

for the 2κ real coefficients of P 0
2κ−1. If zj is a zero of K1, the corresponding

condition (3.23) is fulfilled. Otherwise, for K1(zj) 6= 0, it is equivalent to the
condition P 0

2κ−1(zj) = 0 or, what is the same, to P 0
2κ−1(zj) = 0. So, if

K1(zj) =
{

0 for j = 1, ..., κ0

6= 0 for j = κ0 + 1, ..., κ
(0 ≤ κ0 ≤ κ), (3.24)

conditions (3.23) are equivalent to the κ− κ0 complex of conditions

P 0
2κ−1(zj) = 0 (j = κ0 + 1, ..., κ) (3.25)

leaving free n = 2κ0 real parameters in the polynomial P 0
2κ−1. I.e., for the

homogeneous problem (3.1) there remain n = 2κ0 linearly independent solu-
tions (over the real field). The polynomial P 0

2κ−1 in the general solution F0(z)
of the homogeneous problem (3.1) has the form

P 0
2κ−1(z) =

κ∏

j=κ0+1

(z − zj)(z − zj)Q0
2κ0−1(z) (3.26)

where Q0
2κ0−1 is an arbitrary real polynomial of degree 2κ0 − 1.



656 L. von Wolfersdorf

For solution (3.21) of the non-homogeneous problem (3.1), the conditions

K1(zj)P2κ−1(zj) = 2i cj G(zj) (j = 1, ..., κ) (3.27)

have to be satisfied with constants cj = limz→zj

[ R(z)
K2(z)

] 6= 0. These conditions
split up into the κ0 complex of solvability conditions for the non-homogeneous
problem (3.1)

G(zj) = 0 (j = 1, ..., κ0) (3.28)

and the κ− κ0 complex of conditions for P2κ−1

i P2κ−1(zj) = 2dj G(zj) (j = κ0 + 1, ..., κ) (3.29)

with (non-vanishing) constants dj = cj

K2(zj)
= 1

K2(zj)
limz→zj

R(z)
K1(z) . If P 1

2κ−1

is a particular real polynomial satisfying conditions (3.29), then the polyno-
mial P2κ−1 in formula (3.21) for the general solution of the non-homogeneous
problem (3.1) is given by P2κ−1 = P 0

2κ−1+P 1
2κ−1 with P 0

2κ−1 defined by (3.26).
By (3.22), the solvability conditions (3.28) for the non-homogeneous prob-

lem (3.1) are of form (2.4) with the n = 2κ0 linearly independent functions

q
(1)
j = e−izjt + e−izjt

q
(2)
j = i

[
e−izjt − e−izjt

] (j = 1, ..., κ0).

It is easy to verify that these functions are solutions of the homogeneous
adjoint integral equation (2.3) if

∫ T

0
k(t)eizjtdt =

∫ T

0
k(t)eizjtdt = 1.

It remains to prove that the function F defined by (3.18) and (3.21) with
values (3.19) on R can be represented as a finite Fourier integral of form (3.3)
with p ∈ L2(0, T ). In view of G ∈ L2(R), from (3.19) we have F ∈ L2(R).
Further, F is an entire function of exponential type since G and K1 are such
ones and 1

K2
is bounded at infinity on Im z ≤ 0. Finally, for applying the

Paley-Wiener theorem [6: Chapter 6/Section E] we show that the parameters

a = lim sup
y→∞

1
y ln |F (−iy)|

b = lim sup
y→∞

1
y ln |F (iy)|

satisfy the inequalities b ≤ 0 and a ≤ T . Indeed, from (3.18) and (3.21), for
y > 0 we have

|F (iy)| ≤ |K1(iy)|
[ |P2κ−1(iy)|

|R(iy)| + |Ψ(iy)
]

|F (−iy)| ≤ |K1(−iy)|
[ |P2κ−1(−iy)|

|R(−iy)| + |Ψ(−iy)
]

+
2|G(−iy)|
|K2(−iy)| .
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For sufficiently large y (≥ 1) the estimations

|K1(iy)| ≤ C0, |K1(−iy)| ≤ C0e
yT , |K2(−iy)| ≥ 1

C0∣∣∣P2κ−1(iy)
R(iy)

∣∣∣ ≤ C1,
∣∣∣P2κ−1(−iy)

R(−iy)

∣∣∣ ≤ C2

2|G(−iy)| ≤
∫ T

0

|g(t)| dt · (eyT + 1) ≤ D0 eyT

with C0 = 1 +
∫ T

0
|k(t)|dt and some positive constants C1, C2, D0 hold, and

|Ψ(±iy)|2 ≤ 1
π2

∫ ∞

−∞

G2ξ)
B2(ξ)

dξ ·
∫ ∞

−∞

dξ

ξ2 + y2
≤ 1

π

∫ ∞

−∞

G2(ξ)
B2(ξ)

dξ < ∞

since G ∈ L2(R) and B(x) ≥ d > 0 on R. Therefore, for sufficiently large y
we obtain the inequalities |F (iy)| ≤ A and |F (−iy)| ≤ C + D eyT with some
positive constants A,C, D from which b ≤ 0 and a ≤ T follow. Hence, in view
of (2.9)1 and the unique invertibility of the transformation F1,

p(t) =
1
2π

∫ ∞

−∞
F (x)e−ixtdx (0 < t < T ) (3.30)

with F given by (3.19) is the general solution of equation (2.1).

Theorem 1. Let be k ∈ L1(0, T ) and g ∈ L2(0, T ), let the function
K1(z) = 1 − ∫ T

0
k(t)eitzdt (z = x + iy) satisfy the condition K1(x) 6= 0 on

R and let it possess κ simple zeros zj (j = 1, ..., κ) in Im z > 0 where for
j = 1, ..., κ0 (0 ≤ κ0 ≤ κ) also zj is a zero of K1. Then:

(i) The homogeneous equation (2.1) has n = 2κ0 linearly independent
solutions over the real field given by (3.30) with

F0(x) =
K1(x)
R(x)

iP 0
2κ−1(x), R(x) =

κ∏

j=1

(x− zj)(x− zj) (3.31)

where the real polynomial P 0
2κ−1 of form (3.26) has zeros in the points zj (j =

κ0 + 1, ..., κ) for which K1(zj) 6= 0.
(ii) The non-homogeneous equation (2.1) is solvable if and only if zj (j =

1, ..., κ0) are zeros of the function
∫ T

0

[
g(t)eizt + g(t)e−izt

]
dt. The general

solution of equation (2.1) is given by (3.30), where F is defined by (3.19) and
the real polynomial P2κ−1 of degree 2κ− 1 obeys the 2(κ− κ0) real conditions
(3.29) in the points zj (j = κ0 + 1, ..., κ).
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Corollary 1. In the general case of zeros ζk (k = 1, ..., r) of K1 with
multiplicities νk in Im z > 0 the function R in (3.14) is defined by (A.1), and
conditions (3.25), (3.28) and (3.29) must be replaced by conditions (A.5), (A.7)
and (A.3), respectively, in the Appendix.

Corollary 2. For real-valued kernel k and right-hand side g in (2.1) we
have the relations K(−z) = K(z) leading to Kα(−z) = Kα(z) (α = 1, 2),
and G(z) =

∫ T

0
g(t) cos zt dt leading to G(−z) = G(z) = G(z) and real values

G(x) on R. Looking for real-valued solutions p of (2.1), the function F must
satisfy the relation F (−z) = F (z). The solution p is then given by

p(t) = Re
(

1
π

∫ ∞

0

F (x)e−ixtdx

)
(3.32)

on (0, T ). The κ simple zeros zj of K1 in Im z > 0 are divided into N0

zeros of the form zj = iyj (yj > 0; j = 1, ..., N0) and 2N zeros of the form
zj = ±xj + iyj (xj , yj > 0; j = N0 + 1, ..., N0 + N) so that κ = N0 + 2N .
The function R in (3.14) is given by

R(z) =
N0∏

j=1

(z2 + y2
j )

N0+N∏

j=N0+1

(z2 − z2
j )(z2 − z2

j ) (3.33)

satisfying the relation R(−z) = R(z) = R(z) with real values R(x) on R.
The solutions F0 of the homogeneous problem (3.1) defined by (3.16), (3.20)

fulfil the relation F0(−z) = F0(z) if the real polynomial P 0
2κ−1 has only odd

powers so that we have now κ free real parameters in it. Further, the κ0 zeros
zj (j = 1, ..., κ0) of K1 in Im z < 0 are divided into ν0 (0 ≤ ν0 ≤ N0) zeros
of the form zj = −iyj (yj > 0; j = 1, ..., ν0) and 2ν (0 ≤ ν ≤ N) zeros of the
form zj = ±xj − iyj (xj , yj > 0; j = N0 +1, ..., N0 + ν) so that κ0 = ν0 +2ν.
Therefore, conditions (3.25) split up into the N0 − ν0 real conditions

P 0
2κ−1(iyj) = 0 (j = ν0 + 1, ..., N0) (3.34)

and the N − ν complex conditions

P 0
2κ−1(xj + iyj) = 0 (j = N0 + ν + 1, ..., N0 + N), (3.35)

i.e. together there are N0 − ν0 + 2(N − ν) = κ − κ0 real conditions. That
means, the homogeneous problem (3.1) has n = κ0 linearly independent real
solutions in the real case.

The solvability conditions (3.28) for the non-homogeneous problem (3.1)
take the form

G(iyj) = 0 (j = 1, ..., ν0)

G(xj + iyj) = 0 (j = N0 + 1, ..., N0 + ν)
(3.36)
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which are equivalent to the n = κ0 = ν0 + 2ν real conditions
∫ T

0

g(t)qj(t) dt = 0 (j = 1, ..., ν0)

∫ T

0

g(t)q+,−
j (t) dt = 0 (j = N0 + 1, ..., N0 + ν)

(3.37)

where qj(t) = cosh yjt and q+,−
j (t) =

{
cos xjt · cosh yjt
sin xjt · sinh yjt

. In the real case the

function Ψ in (3.11) satisfies the relation Ψ(−z) = Ψ(z), and the polynomial
P2κ−1 in solution (3.18), (3.21) of the non-homogeneous problem (3.1) contains
only odd powers (like P 0

2κ−1) and conditions (3.29) reduce to κ−κ0 real ones.
In the general real case with multiple zeros of K1 the function R is defined

by (A.8), and conditions (3.34)− (3.37) must be replaced by conditions (A.5)
with (A.9) and (A.10)− (A.11), respectively, of the Appendix.

For equation (2.2) the solution can be derived in an analogous manner. But
F is now a holomorphic function in Im z > 0 only and it has to be constructed
only there. Therefore, we obtain the Fourier transforms F0 and F by formulas
(3.16) and (3.18) with boundary values (3.19) where P2κ−1 is an arbitrary
real polynomial of degree 2κ − 1. Functions (3.16) and (3.18) are bounded
on Im z ≥ 0 and the boundary values (3.19) are lying in L2(R). Hence, a
corresponding Paley-Wiener theorem [9: Theorem 8] proves the representation
of F0 and F in the form of Fourier integral (2.11). Then

p(t) =
1
2π

∫ ∞

−∞
F (x)e−ixtdx (t > 0) (3.38)

represents a solution of equation (2.2).

Theorem 2. Let be k ∈ L1(R+) and g ∈ L2(R+), let the function
K1(z) = 1 − ∫∞

0
k(t)eiztdt (z = x + iy) satisfy the condition K1(x) 6= 0

on R and let it possess κ zeros zj (j = 1, ..., κ) (counted according to their
multiplicities) in Im z > 0. Then:

(i) The homogeneous equation (2.2) has n = 2κ linearly independent
solutions over the real field given by (3.38) with (3.31) where P 0

2κ−1 is an
arbitrary real polynomial of degree 2κ− 1.

(ii) The non-homogeneous equation (2.2) is always solvable and has the
general solution (3.38) where F is defined by (3.19) with an arbitrary real
polynomial P2κ−1 of degree 2κ− 1.

Corollary 3. In the case of real-valued kernel k and right-hand side g we
have n = κ linearly independent real solutions p of (2.2). The general solution
p is given by formula (3.32) in t > 0 where F is defined by (3.19) with real
polynomial P2κ−1 of degree 2κ− 1 having odd powers only.
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4. Method of solution – the singular case

In the singular case of equation (2.1) the entire function K1(z) = 1 − K(z)
with limits K1(±∞) = 1 on R has finitely many zeros xm (m = 1, ..., ρ) of
integer order nm on R:

K1(z) = Π(z)K0(z), Π(z) =
ρ∏

m=1

(z − xm)nm (4.1)

where K0(x) 6= 0 (x ∈ R) and K0(x) ∼ x−N with N =
∑ρ

m=1 nm (≥ 1) for
x → ±∞. Then the coefficients in the conjugacy problem (3.4) take the form

A(x) =
K0(x)
K0(x)

, H(x) =
2G0(x)
K0(x)

(4.2)

with real-valued function G0 = G
Π .

Observing the asymptotic behaviour of K0 at infinity, the general solution
of the homogeneous problem (3.4) with (4.2) is given by

F0(z) =
K0(z)
R(z)

iP 0
2κ−1+N (z) (4.3)

where κ is again the number of zeros zj of the function K1 in Im z > 0, R is
defined by (3.14) and P 0

2κ−1+N is a polynomial of degree 2κ−1+M with real
coefficients. If the zeros zj (j = 1, ..., κ) of K1 are simple, the polynomial
P 0

2κ−1+N must satisfy the κ− κ0 complex conditions

P 0
2κ−1+N (zj) = 0 (j = κ0 + 1, ..., κ) (4.4)

in zj with K1(zj) 6= 0, leaving free n = 2κ + N − 2(κ − κ0) = N + 2κ0 real
parameters in P 0

2κ−1+N . That means, the homogeneous problem (3.1) has
n = N +2κ0 (≥ N) linearly independent (over the real field) solutions, where
κ0 (0 ≤ κ0 ≤ κ) is the number of (simple) zeros zj (j = 1, ..., κ0) of K1 in
Im z > 0 which are also zeros of K1(z).

For the non-homogeneous problem, at first from G0 = G
Π we have the N

real solvability conditions

G(k)(xm) = 0 (k = 0, ..., nm − 1; m = 1, ..., ρ). (4.5)

Further, the function G has to fulfill the κ0 complex conditions (3.28).
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The Fourier transform F of the solution p of the non-homogeneous prob-
lem (3.1) can be given in the form

F (z) =





K0(z)
R(z) iP2κ−1+N (z) + K0(z)Ψ0(z) if Im z > 0
K0(z)
R(z) iP2κ−1+N (z) + 2G0(z)

K̃0(z)
+ K0(z)Ψ0(z) if Im z < 0

where G0(z) = G(z)
Π(z) , K̃0(z) = K0(z),

Ψ0(z) =
1

2πi

∫ ∞

−∞

[(z + i

ξ + i

)N

+
(z − i

ξ − i

)N] G0(ξ)
|K0(ξ)|2

dξ

ξ − z

and P2κ−1+N is a real polynomial of degree 2κ−1+N satisfying the conditions
(cp. (3.29))

i P2κ−1+N (zj) = 2dj G0(zj) (j = κ0 + 1, ..., κ) (4.6)

with constants dj = 1

K̃0(zj)
limz→zj

R(z)
K0(z) . We remark that for even N = 2M

the function Ψ0 can be given in the simpler form

Ψ0(z) = (z2 + 1)M 1
πi

∫ ∞

−∞

G0(ξ)
(ξ2 + 1)M |K0ξ)|2

dξ

ξ − z
.

The function F has the values

F (x) =
K0(x)
R(x)

iP2κ−1+N (x)

+
G0(x)
K0(x))

K0(x)
1
πi

∫ ∞

∞
Q(x, ξ)

G0(ξ)
|K0(ξ)|2

dξ

ξ − x

(4.7)

on R where Q(x, ξ) = 1
2

[(
x+i
ξ+i

)N +
(

x−i
ξ−i

)N ]
, respectively Q(x, ξ) =

[
x2+1
ξ2+1

]M

for N = 2M .
The Paley-Wiener condition can be proved as in the regular case above.

Theorem 3. Let be k ∈ L1(0, T ), g ∈ L2(0, T ), let the function K1(z) =
1 −K(z) with K defined in (3.3)2 has form (4.1) with K0(x) 6= 0 on R and
let K0 possess the κ simple zeros zj (j = 1, ..., κ) in Im z > 0 where for
j = 1, ..., κ0 (0 ≤ κ0 ≤ κ) also zj is a zero of K0. Then:

(i) The homogeneous equation (2.1) has n = N + 2κ0, with N given in
(4.1), linearly independent solutions over the real field given by (3.30) with

F0 =
K0

R
iP 0

2κ−1+N , R(x) =
κ∏

j=1

(x− zj)(x− zj) (4.8)
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where the real polynomial P 0
2κ−1+N of degree 2κ−1+N has zeros in the points

zj (j = κ0 + 1, ..., κ) for which K0(zj) 6= 0.
(ii) The non-homogeneous equation (2.1) is solvable if and only if the N

real conditions (4.5) and the κ0 complex conditions (3.28) are fulfilled. The
general solution of equation (2.1) is given by (3.30), where F is defined by (4.7)
and the real polynomial P2κ−1+N of degree 2κ−1+N obeys the 2(κ−κ0) real
conditions (4.6) in the points zj (j = κ0 + 1, ..., κ).

Corollary 4. In the general case of zeros ζk (k = 1, ..., r) of K1 with mul-
tiplicities νk in Im z > 0 the function R in (3.14) is again defined by (A.1) and
conditions (4.4), (3.28) and (4.6) must be replaced by conditions (A.5), (A.7
and (A.3), respectively, in the Appendix, with P 0

2κ−1+N and P2κ−1+N instead
of P 0

2κ−1 and P2κ−1 in (A.5) and (A.3), respectively.

Corollary 5. For real-valued kernel k in (2.1) it follows K1(−x) = K1(x)
so that with xk (> 0) also −xk is a zero of K1 on R. Therefore, the polynomial
Π in (4.1) takes the form

Π(z) = zn0

ρ1∏

k=1

[
(z − xk)(z + xk)

]nk (xk > 0)

and K0 with K0(x) 6= 0 (x ∈ R) satisfies K0(−z) = (−1)n0K0(z) and
K0(x) ∼ x−N with N = n0 + 2

∑ρ1
k=1 nk for x → ±∞. Arranging the zeros zj

of K1 in Im z > 0 as in Corollary 2, again R is defined by (3.33) satisfying
R(−z) = R(z). The solution F0 of the homogeneous problem (3.1) defined by
(4.3) fulfils the condition F0(−z) = F0(z) for real solutions p of (2.1) if the real
polynomial P 0

2κ−1+M has only odd powers for even n0 and only even powers
for odd n0. Hence, we have κ +

[
N+1

2

]
free parameters in P 0

2κ−1+M . Further,
P 0

2κ−1+M has to satisfy the κ−κ0 real conditions (3.34)−(3.35). That means,
the homogeneous problem (3.1) has in the singular real case n = κ0 +

[
N+1

2

]
linearly independent real solutions.

Solvability conditions for the non-homogeneous problem (3.1) with (4.1)
in the real case are given by conditions (4.5) in the points x0 = 0,±xk (k =
1, ..., ρ1), respectively, and the κ0 real conditions (3.36). But for real right-hand
side g in (2.1) the function G defined by (3.2) is even such that conditions (4.5)
in the points −xk (k = 1, ..., ρ1) are left out and there remain n = κ0 +

[
N+1

2

]
linearly independent real conditions. The general real solution of the non-
homogeneous equation (2.1) is given by formula (3.32) where F is defined by
(4.7) with real polynomial P2κ−1+N of degree 2κ− 1 + N possessing for even
N only odd powers and for odd N only even powers (like P 0

2κ−1+N ).

For equation (2.2), where T = ∞, the function K1 on R can have infinitely
many zeros and zeros of non-integer order. Avoiding further lengthy discus-
sions we restrict ourselves to the most important case of finitely many zeros
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of integer order such that again (4.1) holds. Then, proceeding as above, we
obtain

Theorem 4. Let be k ∈ L1(R+), g ∈ L2(R+), let the function K1(z) =
1− ∫∞

0
k(t)eiztdt have form (4.1) where K0 possesses κ zeros zj (j = 1, ..., κ)

(counted according to their multiplicities) in Im z > 0 and let the function G
given by (3.2) be sufficiently smooth near the points xm (m = 1, ..., ρ). Then:

(i) The homogeneous equation (2.2) has n = N +2κ linearly independent
solutions over the real field given by (3.38) with (4.8) where P 0

2κ−1+N is an
arbitrary real polynomial of degree 2κ− 1 + N .

(ii) The non-homogeneous equation (2.2) is solvable for any right-hand
side g satisfying the N real conditions (4.5) and has the general solution (3.38)
where F is defined by (4.7) with arbitrary real polynomial P2κ−1+N = P 0

2κ−1+N

of degree 2κ− 1 + N .

Corollary 6. In the real singular case we have for homogeneous equation
(2.2) n = κ+

[
N+1

2

]
linearly independent solutions of form (3.32) with T = ∞

and (4.8) where the real polynomial P 0
2κ−1+N of degree 2κ−1+N has only odd

powers if N is even and only even powers if N is odd. The general solution
of the non-homogeneous equation (2.2) is given by (3.32) with T = ∞ and
expression (4.7) for F where P2κ−1+N = P 0

2κ−1+N and the
[

N+1
2

]
solvability

conditions (4.5) in the points x0 = 0 and xk > 0 (k = 1, ..., ρ1) must be
satisfied.

5. Equations of the first kind

We briefly deal with the equations of the first kind

∫ T−t

0

k(s)p(s + t) ds +
∫ T−t

0

k(s + t)p(s) ds = g(t) (5.1)
∫ ∞

0

k(s)p(s + t) ds +
∫ ∞

0

k(s + t)p(s) ds = g(t) (5.2)

on (0, T ) and R+, respectively, where we assume that k, g ∈ L2(0, T ) and
k ∈ L1(R+)∩L2(R+), g ∈ L2(R+), respectively. We are looking for quadratic
summable solutions p again. Applying the transformation F1 to equations
(5.1) and (5.2), the condition

Re
[
K(x)F (x)

]
= G(x) (x ∈ R) (5.3)

is obtained where again G = F1g ∈ L2(R). The complex Fourier transforms F
of p and K of k are holomorphic functions in Im z > 0, bounded on Im z ≥ 0



664 L. von Wolfersdorf

and vanishing at infinity in Im z > 0, and for T < 0 they are entire functions
of exponential type.

As in Section 3, at first we construct the holomorphic function F in Im z >
0 as a solution of the Riemann-Hilbert problem (5.3) reducing this one to the
conjugacy problem

Φ+(x) = A0(x)Φ−(x) + H0(x) (x ∈ R)

for the sectionally holomorphic function Φ defined by (3.5) and satisfying the
relation Φ(z) = −Φ(z) with Φ(∞) = 0, where A0 = K

K0
and H0 = 2G

K0
with

K0(x) = K(x) (in this section we partly use other notations as in the sections
above).

For the homogeneous equations (5.1) and (5.2) we have the condition

K0(x)Φ+(x) = K(x)Φ−(x) (x ∈ R). (5.4)

Problem (5.4) has the solution

Φ(z) =
{

C iK(z) in Im z > 0
C iK0(z) in Im z < 0 (5.5)

with arbitrary C ∈ R and K0(z) = K(z). This gives the obvious solution
p = Cik to the homogeneous equations (5.1) and (5.2). There are further
solutions

Φ(z) =
{

i PN (z)K(z) in Im z > 0
i PN (z)K0(z) in Im z < 0

of (5.4) where PN is a real polynomial of degree N ≥ 1 if the kernel k is
N times differentiable, with k(n)(0) = k(n)(T ) = 0 (n = 0, ..., N − 1) and
k(N) ∈ L2(0, T ) for equation (5.1) and k(n)(0) = limt→∞ k(n)(t) = 0 (n =
0, ..., N − 1) and k(n) ∈ L2(R+) (n = 0, ..., N) for equation (5.2). The
corresponding solutions p of the homogeneous equations (5.1) and (5.2) are

p(t) = i

N∑
n=0

anink(n)(t) (an ∈ R) (5.6)

if PN (z) =
∑N

n=0 anzN .
Finally, let K have the zeros zj (j = 1, 2, ...) of order νj ≥ 1 in Im z > 0

where zj is a zero of order µj ≥ 0 of K in Im z < 0. Then

Φ(z) =

{
i P2N (z)

R(z) K(z) in Im z > 0

i P2N (z)
R(z) K0(z) in Im z < 0,
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where R(z) =
∏r

j=1(z−zj)νj (z−zj)νj and N =
∑r

j=1 νj , with arbitrary r ≥ 1
zeros zj yields a solution of (5.4). The corresponding holomorphic function
F (z) = i P2N (z)

R(z) K(z) (z ∈ C) is regular in Im z < 0 if the real polynomial
P2N satisfies the complex conditions

P
(l)
2N (zj) = 0

{
l = 0, ..., max(νj − µj , 0)
j = 1, ..., r

(5.7)

which leave free

ρ = (2N + 1)− 2
r∑

j=1

max(νj − µj , 0) = 1 + 2
r∑

j=1

min(νj , µj) ≥ 1 (5.8)

(real) coefficients in P2N . Therefore, for any combination of r zeros zj with
multiplicities νj of K in Im z > 0 we obtain the solutions

p(t) =
i

2π

∫ ∞

−∞

P2N (x)K(x)
R(x)

e−ixtdx

for T = ∞ with an arbitrary real polynomial P2N of degree 2N = 2
∑r

j=1 νj .

For T < ∞ the polynomial P2N has to fulfil conditions (5.7) giving ρ,
defined by (5.8), linearly independent (with respect to the real field) solutions.
In particular, if the orders νj and µj of the zeros zj and zj of K are equal,
we have 2N + 1 solutions as for T = ∞, and if µj = 0, we come back to the
solution p = Cik from (5.5).

If the kernel k is real-valued and we are looking for real solutions p, too, the
function F must satisfy the relation F (z) = F (−z) such that the polynomial
P2N could have only odd powers. In particular, solution (5.5) falls out and
in (5.6) we have the coefficients an = 0 for even n. Further, for zeros of the
form zj = iyj (yj > 0) conditions (5.7) are real and for zeros of the form zj =
±xj + iyj (yj > 0) conditions (5.7) for fixed j coincide. Therefore, if we take
r = s0 + 2s zeros zj of K in Im z > 0 with zj = iyj (yj > 0; j = 1, ..., s0) and
zj = xj + iyj (xj , yj > 0; j = s0 +1, ..., s0 +s), we have max1≤j≤s0(νj−µj , 0)
and 2maxs0+1≤j≤s0+s(νj − µj , 0) real conditions (5.7) yielding

ρ0 = N −
s0∑

j=1

max(νj − µj , 0)− 2
s0+s∑

j=s0+1

(νj + µj , 0)

=
r∑

j=1

min(νj , µj) ≥ 0

linearly independent real solutions of the homogeneous equation (5.1) and N
real solutions of the homogeneous equation (5.2).
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In the case of the non-homogeneous equations (5.1) and (5.2) we assume
that K(x) 6= 0 (x ∈ R) and for equation (5.1) also that K has no zeros in the
finite half-plane Im z > 0. We restrict ourselves to a discussion of the (formal)
solution (cp. (3.18), (3.21))

F (z) =
{

K(z)Ψ0(z) in Im z > 0
K(z)Ψ0(z) + 2G(z)

K0(z) in Im z < 0 (5.9)

for T < ∞, and F (z) = K(z)Ψ0(z) (Im z > 0) for T = ∞ where K0(z) =
K(z), G is again defined by (3.22), and

Ψ0(z) =
1
πi

∫ ∞

−∞

G(ξ)
B0(ξ)

dξ

ξ − z
, B0(x) = K(x)K0(x) = |K(x)|2.

We further assume that G
B0

∈ L2(R). In virtue of this assumption the values
of F on R

F (x) =
G(x)
K0(x)

+ K(x)
1
πi

∫ ∞

−∞

G(ξ)
B0(ξ)

dξ

ξ − x
(5.10)

define a function in L2(R) since K is bounded by k ∈ L1.

For equation (5.1) we have to show that (5.9) represents an entire function
of exponential type which satisfies the Paley-Wiener condition for represen-
tation (3.3). The first statement is fulfilled if

∣∣ G(z)
K(z)

∣∣ ≤ C exp[A|z|] (C, A >

0; Im z ≥ 0) for large |z| which we assume. For this an estimation of the form
|K(z)| ≥ C0 exp[−A0|z|] (C0, A0 > 0; Im z ≥ 0) for large |z| is sufficient. For
the parameter

b = lim sup
y→∞

1
y

ln |F (iy)| = lim sup
y→∞

1
y

ln |K(iy)Ψ0(iy)|

we have b ≤ 0 in view of the relations |K(iy)|, |Ψ0(iy)| = O(1) for y →∞ (cp.
Section 3). For the estimation of the parameter

a = lim sup
y→∞

1
y

ln |F (−iy)| = lim sup
y→∞

1
y

ln
∣∣∣K(−iy)Ψ0(−iy) +

2G(−iy)
K0(−iy)

∣∣∣

we use the relations (cp. Section 3 again)

|K(−iy)| = O(eyT )

|Ψ0(−iy)| = O(1)

|G(−iy)| = O(eyT )





(y →∞)
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to obtain

|F (−iy)| = O(eyT )
[ 1
|K0(−iy)| + 1

]
.

Hence we have a ≤ T if additionally we assume limy→∞ 1
y ln |K(iy)| ≥ 0

which is, for instance, satisfied if |K(iy)| ≥ C1y
−β (C1, β > 0) for large y. In

particular, this is fulfilled with β = 1 for a real kernel k satisfying k(t) ≥ δ > 0
in [0, T ].

For equation (5.2) we ensure that F (z) = K(z)Ψ0(z) is a bounded func-
tion on Im z ≥ 0 assuming in addition to G

B0
∈ L2(R) that G

B0
is a Hölder-

continuous function in R with | G(x)
B0(x) | ≤ Const |x|−α (α > 1

2 ) for large |x|.
The solution p for equations (5.1) - (5.2) is then given by formula (3.30)

with F defined in (5.10). In particular, if k and g are real-valued functions
such that K(−x) = K(x), B(−x) = B(x) and G(−x) = G(x) = G(x), the
function F satisfies also the relation F (−x) = F (x) and p is a real-valued
solution which can be obtained from formula (3.32).

6. System of equations – the regular case

Finally, we treat the system of equations

pα(t)− (Aαp)(t) = gα(t) (α = 1, 2) (6.1)

on (0, T ) for complex-valued p = (p1, p2) ∈ L2(0, T )× L2(0, T ) where

(A1,2p)(t) =
∫ T−t

0

k1,2(s) p1,2(s + t) ds +
∫ T−t

0

k2,1(s + t) p2,1(s) ds (6.2)

and the corresponding system for T = ∞. Again we assume that k1,2 ∈
L1(0, T ) and g1,2 ∈ L2(0, T ). To equations (6.1) - (6.2) we apply the mixed
Fourier transformation

(F̂h)(x) =
∫ T

0

[
eixth1(t) + e−ixth2(t)

]
dt (6.3)

which maps a pair of complex functions h = (h1, h2) ∈ L2(0, T ) × L2(0, T )
into complex functions F̂h ∈ L2(0, T ). It follows

F̂h = F1(h1 + h2) + F2(h1 − h2) (6.4)
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with F1,F2 defined by (2.5), (2.7) and mapping quadratic summable complex
functions into real and purely imaginary quadratic summable functions, re-
spectively. As in Section 2 this yields the inversion formula F̂(h1, h2) = γ for
γ ∈ L2(0, T ) of form (6.3) as

h1(t) =
1
2π

∫ ∞

−∞
e−ixtγ(x) dx

h2(t) =
1
2π

∫ ∞

−∞
e−ixtγ(x) dx

(6.5)

in (0, T ). Formulae (6.3) and (6.5) are valid for T = ∞, too.
For h = (h1, h2) = (A1p,A2p) with p = (p1, p2) ∈ L2(0, T )× L2(0, T ) the

relation
F̂(A1p,A2p)(x) = K1(x)F1(x) + K2(x)F2(x) (6.6)

with Fα(x) =
∫ T

0
pα(t)eixtdt and Kα(x) =

∫ T

0
kα(t)eixtdt (α = 1, 2) on R

holds. The proof of (6.6) is quite analogous to the one for the similar relation
(2.8) in Section 2 and is omitted. Relation (6.6) is also valid for T = ∞ with
Fourier transforms Fα(x) =

∫∞
0

pα(t)eixtdt and Kα(x) =
∫∞
0

kα(t)eixtdt (α =
1, 2) on R.

By (6.6) the system of equations (6.1) - (6.2) is reduced to the problem
of finding the Fourier transforms Fα (α = 1, 2) of the solutions pα satisfying
the condition

[1−K1(x)]F1(x) + [1−K2(x)]F2(x) = G(x) (x ∈ R) (6.7)

where G = F̂g ∈ L2(0, T ) for g = (g1, g2), i.e. G(x) =
∫ T

0

[
g1(t)eixt +

g2(x)e−ixt
]
dt (x ∈ R). We look on (6.7) as a Riemann-Hilbert type problem for

the bounded holomorphic functions Fα(z) =
∫ T

0
eiztpα(t) dt (z = x+iy) in the

upper half-plane vanishing at infinity. Introducing the sectionally holomorphic
function

Φ(z) =
{

F1(z) if Im z > 0
−F2(z) if Im z < 0,

(6.7) writes as the conjugacy condition for Φ with Φ(∞) = 0 (cp. (3.4))

Φ+(x) = A(x)Φ−(x) + H(x) (x ∈ R) (6.8)

where

A(x) =
1−K2(x)
1−K1(x)

, H(x) =
G(x)

1−K1(x)
. (6.9)

For simplicity of presentation, here we restrict ourselves to the regular
case where

1−Kα(x) 6= 0 (x ∈ R; α = 1, 2) (6.10)
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shifting the singular case to the next section. The index of problem (6.8) with
(6.10) is defined by κ = κ1 + κ2 with κα = 1

2π

[
arg(1 −Kα(x))

]
R (α = 1, 2)

where κα are finite non-negative numbers equal to the numbers of zeros of the
functions Lα(z) = 1−Kα(z) with Kα(z) =

∫ T

0
kα(t)eiztdt (z = x + iy) in

the upper half-plane.

In the case κ = 0 the homogeneous problem (6.8) has only the solution
Φ = 0 satisfying Φ(∞) = 0. The solution of the inhomogeneous problem (6.8)
is given by

Φ(z) =
{

Φ+(z) in Im z > 0
Φ−(z) in Im z < 0

where
{

Φ+(z) = F1(z) = L2(z)Ψ(z)
Φ−(z) = −F2(z) = M1(z)Ψ(z)

with Lα(z) = 1−Kα(z),Mα(z) = Lα(z) = 1−Kα(z) and

Ψ(z) =
1

2πi

∫ ∞

−∞

G(ξ)
B(ξ)

dξ

ξ − z
, B(x) = M1(x)L2(x). (6.11)

By (6.10) we have B(x) 6= 0 on R with B(±∞) = 1. Further,

F1(x) = Φ+(x) =
1
2

G(x)
M1(x)

+
L2(x)
2πi

∫ ∞

−∞

G(ξ)
B(ξ)

dξ

ξ − x

F2(x) = −Φ−(x) =
1
2

G(x)
M2(x)

+
L1(x)
2πi

∫ ∞

−∞

G(ξ)
B(ξ)

dξ

ξ − x

(6.12)

on R, where B(x) = L1(x)M2(x). The complete functions Fα (α = 1, 2) are
then defined by

F1(z) =
{

L2(z)Ψ(z) if Im z > 0
G(z)

M1(z) + L2(z)Ψ(z) if Im z < 0

F2(z) =
{
−L1(z)Ψ(z) if Im z > 0
G(z)M2(z) + L1(z)Ψ(z) if Im z < 0

(6.13)

where G(z) =
∫ T

0

[
g1(t)eizt + g2(t)e−izt

]
dt. As in the case of equation (2.1)

the functions Fα obey the Paley-Wiener conditions so that

pα(t) =
1
2π

∫ ∞

−∞
e−ixtFα(x) dx, (6.14)

with Fα ∈ L2(R) given by (6.12), represent the solutions of system (6.1) -
(6.2) in the case κ = 0.
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In the case κ > 0 the functions L1 and L2 have zeros zj (j = 1, ..., r)
with multiplicities nj and zeros ζk (k = 1, ..., ρ) with multiplicities νk, respec-
tively, in the upper half-plane where κ1 =

∑r
j=1 nj and κ2 =

∑ρ
k=1 νk. The

homogeneous problem (6.8) can be written in the form

R(x)
Φ+(x)
L2(x)

= R(x)
Φ−(x)
M1(x)

(x ∈ R) (6.15)

with polynomial R(z) =
∏r

j=1(z − zj)nj ·∏ρ
k=1(z − ζk)νk of degree κ. From

(6.15) we obtain the general solution of the homogeneous problem (6.8)

Φ0(z) =

{
Φ+

0 (z), Φ+
0 (z) = F 0

1 (z) = L2(z)
R(z) P 0

κ−1(z) (Im z > 0)

Φ−0 (z), Φ−0 (z) = −F 0
2 (z) = M1(z)

R(z) P 0
κ−1(z) (Im z < 0)

or F 0
2 (z) = −L1(z)

R0(z) Q0
κ−1(z) (Im z > 0) with an arbitrary complex polynomial

P 0
κ−1 of degree κ − 1, and with R0(z) = R(z) and Q0

κ−1(z) = P 0
κ−1(z). The

general solution of the inhomogeneous problem (6.8) can be given as

Φ+(z) = F1(z) =
L2(z)
R(z)

Pκ−1(z) + L2(z)Ψ(z) (Im z > 0)

Φ−(z) = −F2(z) =
M1(z)
R(z)

Pκ−1(z) + M1(z)Φ(z) (Im z < 0)
(6.16)

where Pκ−1 is a complex polynomial Pκ−1 of degree κ− 1 and Ψ is defined
by (6.11) again. From the last expression the formula for F2 in Im z > 0

F2(z) = −L1(z)
R0(z)

Qκ−1(z)− L1(z)Ψ(z) (6.17)

follows with Qκ−1(z) = Pκ−1(z). The values of Fα (α = 1, 2) on R are

F1(x) =
L2(x)
R(x)

Pκ−1(x) +
1
2

G(x)
M1(x)

+
L2(x)
2πi

∫ ∞

−∞

G(ξ)
B(ξ)

dξ

ξ − x

F2(x) = −L1(x)
R0(x)

Qκ−1(x) +
1
2

G(x)
M2(x)

+
L1(x)
2πi

∫ ∞

−∞

G(ξ)
B(ξ)

dξ

ξ − x
.

(6.18)

Analytic continuation yields for the functions F 0
α and Fα (α = 1, 2) in the

lower half-plane Im z < 0 the expressions

F 0
1 (z) =

L2(z)
R(z)

P 0
κ−1(z)

F 0
2 (z) = −L1(z)

R0(z)
Q0

κ−1(z) (6.19)

F1(z) =
L2(z)
R(z)

Pκ−1(z) +
G(z)
M1(z)

+ L2(z)Ψ(z)

F2(z) = −L1(z)
R0(z)

Qκ−1(z) +
G(z)
M2(z)

− L1(z)Ψ(z).
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The functions F 0
α and Fα must be regular in the points zj (j = 1, ..., r) and

ζk (k = 1, ..., ρ), respectively. This implies the conditions

[
L2(z)P 0

κ−1(z)
](l)(zj) = 0 (6.20)

[
L2(z)Pκ−1(z) + R(z)

M1(z) G(z)
](l)(zj) = 0 (6.21)

for l = 0, ..., nj − 1 and j = 1, ..., r, and the conditions

[
L1(z)Q0

κ−1(z)
](l)(ζk) = 0 (6.22)

[− L1(z)Qκ−1(z) + R0(z)
M2(z) G(z)

](l)(ζk) = 0 (6.23)

for l = 0, ..., νk − 1 and k = 1, ..., ρ. Now let zj be a zero of order mj ≥ 0 of
L2 and ζk a zero of order µk ≥ 0 of L1, i.e.

L
(l)
2 (zj) = 0

{
l = 0, ..., mj − 1
j = 1, ..., r

, L
(mj)
2 (zj) 6= 0

L
(l)
1 (ζk) = 0

{
l = 0, ..., µk − 1
k = 1, ..., ρ

, L
(µk)
1 (ζk) 6= 0.

Then conditions (6.20) and (6.22) are equivalent to

[P 0
κ−1(z)](l)(zj) = 0

{
l = 0, ..., max(nj −mj , 0)− 1
j = 1, ..., r

[P 0
κ−1(z)](l)(ζk) = 0

{
l = 0, ..., max(νk − µk, 0)− 1
k = 1, ..., ρ.

(6.24)

These relations, for

κ0 =
r∑

j=1

min(nj ,mj) +
ρ∑

k=1

min(νk, µk), (6.25)

represent κ − κ0 linearly independent complex conditions, i.e. in the poly-
nomial P 0

κ−1 there remain κ0 free complex parameters. That is, if κ0 ≥ 1,
we have n = κ0 linearly independent (over the complex field) solutions of the
form

F 0
1 (x) =

L2(x)
R(x)

P 0
κ−1(x)

F 0
2 (x) = −L1(x)

R(x)
P 0

κ−1(x)
(x ∈ R) (6.26)

to the homogeneous problem (6.7).
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Conditions (6.21) and (6.23) for the inhomogeneous problem (6.7) divide
into the κ0 complex conditions

G(l)(zj) = 0
{

l = 0, ..., min(nj ,mj)− 1
j = 1, ..., r

G(l)(ζk) = 0
{

l = 0, ..., min(νk, µk)− 1
k = 1, ..., ρ

(6.27)

and the κ− κ0 complex conditions (6.21) and (6.23) for

l =
{

min(nj , µj), ..., nj − 1 (j = 1, ..., r)
min(νk, µk), ..., νk − 1 (k = 1, ..., ρ),

respectively, for the κ complex coefficients of Pκ−1. Hereby, (6.23) is equivalent
to [

−M1(z)Pκ−1(z) +
R(z)
L2(z)

G(z)
](l)

(ζk) = 0 (6.28)

for l = 0, ..., νk − 1 and k = 1, ..., ρ.

Since the functions F 0
α and Fα again satisfy the Paley-Wiener conditions

and the transformation F̂ is injective we obtain

Theorem 5. Let be kα ∈ L1(0, T ) and gα ∈ L2(0, T ), let the functions
Lα(z) = 1− ∫ T

0
kα(t)eiztdt satisfy the conditions Lα(x) 6= 0 on R (α = 1, 2),

and let L1 possess zeros zj (j = 1, ..., r) with multiplicities nj and L2 zeros
ζk (k = 1, ..., ρ) with multiplicities νk in Im z > 0. Then:

(i) The homogeneous system (6.1)−(6.2) has n = κ0 linearly independent
complex solutions where κ0 is defined by (6.25). The solutions are given by
(6.14) with F 0

α defined in (6.26) where the polynomial P 0
κ−1 of degree κ−1 with

κ = κ1 + κ2, κ1 =
∑r

j=1 nj and κ2 =
∑ρ

k=1 νk, satisfies the κ− κ0 conditions
(6.24).

(ii) The inhomogeneous system (6.1)− (6.2) is solvable if and only if the
κ0 solvability conditions (6.27) are satisfied. The general solution of system
(6.1)− (6.2) is then given by (6.14) with Fα defined by (6.18) where the poly-
nomial Pκ−1 of degree κ − 1 obeys the κ − κ0 conditions (6.21), (6.28) in the
points zj and ζk, respectively.

Corollary 7. For real-valued functions hα and gα we are looking for real
solutions

pα(t) = Re
(

1
π

∫ ∞

0

Fα(x)e−ixtdx

)
(6.29)

of system (6.1)− (6.2) where Fα(−z) = Fα(z) (α = 1, 2) is required.
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(i) We divide the zeros of Lα in Im z > 0 into

zj = iyj (yj > 0; j = 1, ..., r1)

ζk = iηk (ηk > 0; k = 1, ..., ρ1)

and
zj = ±xj + iyj (xj , yj > 0; j = r1 + 1, ..., r)

ζk = ±ξk + iηk (ξk, ηk > 0; k = ρ1 + 1, ..., ρ)

and put

N1 =
r1∑

j=1

nj , N2 =
ρ1∑

k=1

νk, M1 =
r∑

j=r1+1

nj , M2 =
ρ∑

h=ρ1+1

νk

such that κα = Nα + 2Mα (α = 1, 2). Then the function

R(z) =
r1∏

j=1

(z + iyj)nj

r∏

j=r1+1

[
(z − xj + iyj)(z + xj + iyj)

]nj

×
ρ1∏

k=1

(z − iηk)νk

ρ∏

k=ρ1+1

[
(z − ξk − iηk)(z + ξk − iηk)

]νk

satisfies R(−z) = (−1)NR(z) with N = N1 + N2. Therefore, the solutions
F 0

α (α = 1, 2) of the homogeneous problem (6.7) defined by (6.16) − (6.17)
and (6.19) fulfil the relations F 0

α(−z) = F 0
α(z) if the polynomial P 0

κ−1 obeys
the relation P 0

κ−1(−z) = (−1)NP 0
κ−1(z). Further, conditions (6.24) for P 0

κ−1

are equivalent to κ− κ0 real conditions where

κ0 =
r1∑

j=1

min(nj ,mj) +
ρ1∑

k=1

min(νk, µk)

+ 2
[ r∑

j=r1+1

min(nj ,mj) +
ρ∑

k=ρ1+1

min(νk, µk)
]
.

(6.30)

So we have n = κ0 real solutions to the homogeneous system of equations
(6.1)− (6.2).

(ii) In the same way, the solvability conditions (6.27) represent κ0 real
conditions on the right-hand sides gα (α = 1, 2) of the inhomogeneous system
(6.1)− (6.2). The solutions pα of the inhomogeneous system (6.1)− (6.2) are
given by means of formulas (6.14), (6.18) where we can replace R0(x), G(x),
B(x) correspondingly by (−1)NR(−x), G(−x), B(−x) and where Pκ−1 satisfies
Pκ−1(x) = (−1)NPκ−1(−x) and (6.21), (6.28).
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Corollary 8.

(i) In the case T = ∞, under the regularity assumption (6.10), there
exist n = κ linearly independent complex (in the real case: real) solutions of
the homogeneous system of equations (6.1) − (6.2) given by (6.14) with F 0

α

defined in (6.26), with an arbitrary complex polynomial P 0
κ−1 of degree κ − 1(

or, in the real case, by (6.29) with (6.26) and a polynomial P 0
κ−1 of degree

κ− 1 satisfying P 0
κ−1(x) = (−1)NP 0

κ−1(−x)
)
.

(ii) The inhomogeneous system (6.1) − (6.2) is always solvable and its
solutions are given by (6.14), respectively (6.29), with Fα defined by formulae
(6.18) with Pκ−1 = P 0

κ−1.

7. System of equations – the singular case

In the singular case of system (6.1) - (6.2) the conjugacy problem (6.8) is
of singular (exceptional) type in general where the coefficient A(x) can have
zeros and poles on R (cf. [5: Chapter 3] and [10: Section 10.4]). Let the
entire functions Lα(z) = 1 − Kα(z) (α = 1, 2) have finitely many zeros
xm (m = 1, ..., ρ1) of integer order nm and ξj (j = 1, ..., ρ2) of integer order
νj , respectively, on R. Then the representations

L1(z) = Π1(z)L1,0(z), Π1(z) =
ρ1∏

m=1

(z − xm)nm (7.1)

L2(z) = Π2(z)L2,0(z), Π2(z) =
ρ2∏

j=1

(z − ξj)νj (7.2)

hold where Lα,0(x) 6= 0 (x ∈ R) and Lα,0(x) ∼ x−Nα (x → ±∞) with
N1 =

∑ρ1
m=1 nm and N2 =

∑ρ2
j=1 νj .

The conjugacy problem (6.8) has the coefficients

A(x) = Π(x)
L2,0(x)
M1,0(x)

, H(x) =
G1(x)

M1,0(x)
(7.3)

where Π(z) = Π2(z)
Π1(z) , M1,0(x) = L1,0(x) and G1(x) = G(x)

Π1(x) . Now let be
ξk = xk (k = 1, ..., ρ) and ξj 6= xm for j, m > ρ where 0 ≤ ρ ≤ min(ρ1, ρ2).
Then

Π(z) =
ρ∏

k=1

(z − xk)νk−nk

∏ρ2
j=ρ+1(z − ξj)νj

∏ρ1
m=ρ+1(z − xm)nm

.
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Further, let be νk ≥ nk (k = 1, ..., ρ0; 0 ≤ ρ0 ≤ ρ) and νk < nk (k =
ρ0 + 1, ..., ρ). Then, finally, Π = Π2,0

Π1,0
where

Π1,0(z) =
ρ∏

k=ρ0+1

(z − xk)nk−νk

ρ1∏
m=ρ+1

(z − xm)nm

is a (real) polynomial of degree N1,0 =
∑ρ

k=ρ0+1(nk − νk) +
∑ρ1

m=ρ+1 nm and

Π2,0(z) =
ρ0∏

k=1

(z − xk)νk−nk

ρ2∏

j=ρ+1

(z − ξj)νj

is a (real) polynomial of degree N2,0 =
∑ρ0

k=1(νk − nk) +
∑ρ2

j=ρ+1 νj . There
holds N1 −N1,0 = N2 −N2,0 =

∑ρ
k=1 min(nk, νk).

Further, let the functions Lα (α = 1, 2) have zeros zj (j = 1, ..., r1) with
multiplicities dj and zeros ζk (k = 1, ..., r2) with multiplicities δk, respectively,
in Im z > 0. We put κ1 =

∑r1
j=1 dj and κ2 =

∑r2
k=1 δk and set κ = κ1 +κ2 (≥

0). Then the homogeneous problem (6.8) with (7.3) can be written in the form

R(x)Π1,0(x)
Φ+(x)
L2,0(x)

= R(x)Π2,0(x)
Φ−(x)
M1,0(x)

(x ∈ R)

with polynomial R(z) =
∏r1

j=1(z − zj)dj
∏r2

k=1(z − ζk)δk of degree κ. In view
of the asymptotic behaviour of Lα at infinity the general solution to the ho-
mogeneous problem (6.8) with (7.3) is given by

F 0
1 (z) =

L2,0(z)
R(z)

P 0
κ+λ−1(z)
Π1,0(z)

F 0
2 (z) =

L1,0(z)
R0(z)

Q0
κ+λ−1(z)
Π2,0(z)

where R0(z) = R(z) and P 0
κ+λ−1 is a complex polynomial of degree κ + λ− 1

with

λ = N1 + N2,0 = N2 + N1,0 =
ρ1∑

m=ρ0+1

nm +
ρ0∑

k=1

νk +
ρ2∑

j=ρ+1

νj (7.4)

and Q0
κ+λ−1(z) = P 0

κ+λ−1(z). Regularity of F 0
α in the points xm, ξj on R

requires that P 0
κ+λ−1 = Π1,0Π2,0P

0
κ+λ0−1 with a complex polynomial P 0

κ+λ−1

of degree κ + λ0 − 1,

λ0 = λ− [N1,0 + N2,0] =
ρ∑

k=1

min(nk, νk) (7.5)
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such that

F 0
1 (z) =

L2,0(z)
R(z)

Π2,0(z)P 0
κ+λ0−1(z)

F 0
2 (z) = −L1,0(z)

R0(z)
Π1,0(z)Q0

κ+λ0−1(z).

Finally, regularity of F 0
α in the points zj and ζk in Im z < 0 leads to the

conditions

[
L2,0(z)P 0

κ+λ0−1(z)
](l)(zj) = 0

{
l = 0, ..., dj − 1
j = 1, ..., r1

[
L1,0(z)Q0

κ+λ0−1(z)
](l)(ζk) = 0

{
l = 0, ..., δk − 1
k = 1, ..., r2).

(7.6)

Now let zj be a zero of order mj ≥ 0 of L2,0 and ζk a zero of order µk ≥ 0
of L1,0. Then conditions (7.6) are equivalent to

[P 0
κ+λ0−1(z)](l)(zj) = 0

{
l = 0, ..., max(dj −mj , 0)− 1
j = 1, ..., r1

[P 0
κ+λ0−1(z)](l)(ζk) = 0

{
l = 0, ..., max(δk − µk, 0)− 1
k = 1, ..., r2.

(7.7)

These relations represent κ−κ0 linearly independent complex conditions with

κ0 =
r1∑

j=1

min(dj ,mj) +
r2∑

k=1

min(δk, µk). (7.8)

Therefore, the homogeneous problem (6.7) has exactly n = κ0 + λ0 linearly
independent (over the complex field) solutions of the form

F 0
1 (x) =

L2,0(x)
R(x)

Π2,0(x)P 0
κ+λ0−1(x)

F 0
2 (x) = −L1,0(x)

R(x)
Π1,0(x)Pκ+λ0−1(x)

(7.9)

where the complex polynomial P 0
κ+λ0−1 of degree κ + λ0 satisfies the κ − κ0

conditions (7.7).
In the case T = ∞ the solutions of the homogeneous system (6.1) - (6.2)

with (7.1) - (7.2) are given by (7.9) with an arbitrary complex polynomial
P 0

κ+λ0−1 of degree κ + λ0. Further, in the real case the polynomial P 0
κ+λ0−1

must satisfy the symmetry relation P 0
κ+λ0−1(x) = (−1)N0P 0

κ+λ0−1(−x) where
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N0 = Ñ1+Ñ2+min(n0, ν0), with n0, ν0 the multiplicities of the zero x0 = 0 of
L1, L2, respectively, and Ñα (α = 1, 2) the sums of multiplicities of the zeros
of Lα on the positive imaginary axis (cf. Corollary 7). And conditions (7.7)
reduce to κ − κ0 real conditions so that we have n = κ0 + λ0 real solutions
to the homogeneous system of equations (6.1) - (6.2) in the real singular case
where κ0 defined by (7.8) has the form of (6.30) again.

For the inhomogeneous system (6.1) - (6.2), from (6.8) with (7.3) it follows
that in the points xk (k = 1, ..., ρ0) the function G1 = G

Π1
and in the points

xk (k = ρ0 + 1, ..., ρ) the function G2 = G
Π2

must be bounded. This yields λ0

solvability conditions

G(l)(xk) = 0
{

l = 0, ..., min(nk, νk)− 1
k = 1, ..., ρ.

(7.10)

Further, the function G has to fulfill κ0 conditions

G(l)(zj) = 0
{

l = 0, ..., min(dj ,mj)− 1
j = 1, ..., r1

G(l)(ζk) = 0
{

l = 0, ..., min(δk, µk)− 1
k = 1, ..., r2

(7.11)

(cp. (6.27)).
The Fourier transforms of the solutions p = (p1, p2) to system (6.1) - (6.2)

can be given in the form

F1(z) =
L2,0(z)
Π1,0(z)

[Pκ+λ−1(z)
R(z)

+ Ψ̂(z)
]

(Im z > 0)

F2(z) = −L1,0(z)
Π2,0(z)

[Qκ+λ−1(z)
R0(z)

+ Ψ̂(z)
]

(Im z > 0)

where Pκ+λ−1 is a complex polynomial of degree κ + λ − 1, Qκ+λ−1(z) =
Pκ+λ−1(z) and

Ψ̂(z) =
1

4πi

∫ ∞

−∞

[(z + i

ξ + i

)N̂

+
(z − i

ξ − i

)N̂] G(ξ)
Π0(ξ)B(ξ)

dξ

ξ − z

with B(x) = M1,0(x)L2,0(x), N̂ = N1 + N2 − λ0 and the polynomial

Π0(x) =
Π1(x)
Π1,0(x)

=
Π2(x)
Π2,0(x)

=
ρ∏

k=1

(x− xk)min(nk,νk).

of degree λ0. We point out that G
Π0
∈ L2(R) due to conditions (7.10).
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The polynomial Pκ+λ−1 must fulfil λ−λ0 = N1,0+N2,0 conditions that F1

and F2 are regular in the zeros of Π1,0 and Π2,0 on R, respectively, and κ−κ0

conditions, κ0 defined in (7.8), that the analytic continuations of Fα (α = 1, 2)
in Im z < 0 are regular in the conjugate points zj and ζk to the zeros zj and
ζk of Lα. The last conditions are left out in the case T = ∞ where we assume
that G and Kα are sufficiently smooth near the zeros xm and ξj , respectively,
of Lα on R.

Finally, we write out the values of Fα (α = 1, 2) on R as

F1(x) =
L2,0(x)
Π1,0(x)

[Pκ+λ−1(x)
R(x)

+ Ψ̂(x)
]

+
1
2

G(x)
Π1(x)M1,0(x)

F2(x) = −L1,0(x)
Π2,0(x)

[Pκ+λ−1(x)
R(x)

+ Ψ̂(x)
]

+
1
2

G(x)
Π2(x)M2,0(x)

(7.12)

where Mα,0(x) = Lα(0, x) and

Ψ̂(x) =
1

2πi

∫ ∞

−∞
Q̂(x, ξ)

G(ξ)
Π0(ξ)B(ξ)

dξ

ξ − x
(x ∈ R)

with Q̂(x, ξ) = 1
2

[
(x+i

ξ+i )
N̂ + (x−i

ξ−i )
N̂

]
. The formulae for Fα in the real case are

analogous.
In view of formulae (7.12) the λ − λ0 conditions in the zeros of Π1,0 and

Π2,0 can be expressed in the form
[Pκ+λ−1(x)

R(x)
+ Ψ̂(x) +

1
2

G(x)
Π0(x)B(x)

](l)

(xm) = 0 (7.13)

for

l =
{

0, ..., nm − νm − 1 (m = ρ0 + 1, ..., ρ)
0, ..., nm − 1 (m = ρ + 1, ..., ρ1)

and [Pκ+λ−1(x)
R(x)

+ Ψ̂(x)− 1
2

G(x)
Π0(x)B(x)

](l)

(ξj) = 0 (7.14)

for

l =
{

0, ..., νj − nj − 1 (j = 1, ..., ρ0)
0, ..., νj − 1 (j = ρ + 1, ..., ρ2).

The κ − κ0 conditions in the points zj and ζk can be written as (cp. (6.21)
and (6.28))

[
L2,0(z)Pκ+λ−1(z) +

R(z)
M1,0(z)

G(z)
Π0(z)

](l)

(zj) = 0 (7.15)

for l = min(dj ,mj), ..., dj − 1 (j = 1, ..., r1) and
[
−M1,0(z)Pκ+λ−1(z) +

R(z)
L2,0(z)

G(z)
Π0(z)

](l)

(ζk) = 0 (7.16)

for l = min(δk, µk), ..., δk − 1 (k = 1, ..., r2) where Mα,0(z) = Lα,0(z).
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Theorem 6. Let be kα ∈ L1(0, T ) and gα ∈ L2(0, T ), let the functions
Lα(z) = 1 − ∫ T

0
kα(t)eiztdt (α = 1, 2) have form (7.1) − (7.2), and let the

function L1 possess zeros zj (j = 1, ..., r1) with multiplicities dj and L2

possess zeros ζk (k = 1, ..., r2) with multiplicities δk in Im z > 0. Then:
(i) The homogeneous system (6.1) − (6.2) has n = κ0 + λ0 linearly in-

dependent (complex; in the real case – real) solutions where κ0 is defined by
(7.8) and λ0 by (7.5). The solutions are given by (6.14) with F 0

α defined in
(7.9) where the polynomial P 0

κ+λ0−1 of degree κ + λ0 − 1 with κ = κ1 + κ2,
κ1 =

∑r1
j=1 dj and κ2 =

∑r2
k=1 δk satisfies the κ− κ0 conditions (7.7) (and in

the real case additionally a symmetry relation).
(ii) The inhomogeneous system (6.1) − (6.2) is solvable if the κ0 + λ0

solvability conditions (7.10) − (7.11) are satisfied. The general solution of
system (6.1) − (6.2) is then given by (6.14) with Fα defined by (7.12) where
the polynomial Pκ+λ−1 of degree κ + λ − 1 with λ given by (7.4) obeys the
(λ− λ0) + (κ− κ0) conditions (7.13)− (714) and (7.15)− (7.16), respectively
(and, in the real case, additionally a symmetry relation).

For T = ∞ there holds κ0 = κ and conditions (7.7) and (7.15) − (7.16)
are omitted.

8. Examples

We illustrate the above results by several examples where we restrict ourselves
to the real case.

Example 1. (Generalized Feller equation). We consider equations (2.1)
- (2.2) for a non-negative real-valued kernel k ∈ L1(0, T ) with

∫ T

0
k(t) dt ≤ 1

divided in the two cases

k(t) ≥ 0 on (0, T ),
∫ T

0
k(t) dt < 1 (8.1)

k(t) ≥ 0 on (0, T ),
∫ T

0
k(t) dt = 1. (8.2)

In the second case k is a probability density function with support on [0, T ].
In this case we denote the finite expectation

c =
∫ T

0

t k(t) dt > 0 (8.3)

assuming also t k ∈ L1(R+) for T = ∞. Then the function k1(z) = 1−K(z) =
1 − ∫ T

0
k(t)eizt dt has no zeros on Im z ≥ 0 in case (8.1) and it has the only

zero x1 = 0 on R which by (8.3) is a simple one in case (8.2).
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For (8.1) we have the regular case of equations (2.1) - (2.2) with κ = 0.
Then the homogeneous equations (2.1) - (2.2) possess the trivial solution p0 =
0 only and the solution to the inhomogeneous equations (2.1) - (2.2) is given
by its Fourier transform F in (3.12).

For (8.2) we have the singular case of equations (2.1) - (2.2) with N =
1, κ = 0 and n0 = 1. Therefore, the homogeneous equations (2.1) - (2.2) have
the solution p0 with the Fourier transform given by (4.3) as

F0(z) =
K1(z)

z
iC = iC

∫ T

0

k(t)
1− eizt

z
dt

= C

∫ T

0

∫ T

t

k(τ) dτ eiztdt

(C ∈ R)

observing (8.2), which yields the solution

p0(t) = C

∫ T

t

k(τ) dτ (C ∈ R). (8.4)

If p0 should be a density function as k, from
∫ T

0
p0(t) dt = 1 we obtain C = 1

c
in view of (8.3), i.e.

p0(t) =
1
c

∫ T

t

k(τ) dτ. (8.5)

This, for T = ∞, is Feller’s solution [3: Chapter 6/Section 11] as derived by
Berkovič [2]. The inhomogeneous equation (2.1) is solvable if G(0) = 0 by
(4.5), i.e.

∫ T

0
g(t) dt = 0.

A particular solution p1 is given by its Fourier transform (cp. (4.7))

F1(x) =
G(x)
K1(x)

+
K1(x)

x

1
πi

∫ ∞

−∞
Q(x, ξ)

ξG(ξ)
|K1(ξ)|2

dξ

ξ − x

where G(x) =
∫ T

0
g(t) cos xt dt and Q(x, ξ) = xξ+1

ξ2+1 and for T = ∞ additionally

t g ∈ L1(R+) is assumed. (The last assumption can be weakened to G(x)
x ∈

L2(R+) ensured if G(x) = O(xγ) with γ > 1
2 as x → 0.) We remark that also

in the case T = ∞ the solution (8.5) belongs to L2(R+) ∩ L1(R+) due to the
assumption t k ∈ L1(R+).

Example 2 (Generalized Arabadzhyan’s system). In the corresponding
system of equations (6.1) - (6.2) for non-negative real-valued kernels kα ∈
L1(0, T ) (α = 1, 2) with

∫ T

0
kα(t) dt ≤ 1 we have the three different cases

kα(t) ≥ 0 on (0, T ),
∫ T

0

kα(t) dt < 1 (8.6)
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kα(t) ≥ 0 on (0, T ),
∫ T

0

k1(t) dt = 1,

∫ T

0

k2(t) dt < 1 (8.7)

kα(t) ≥ 0 on (0, T ),
∫ T

0

kα(t) dt = 1 (8.8)

where for T = ∞ we additionally assume t gα, t kα ∈ L1(R+) if
∫∞
0

kα(t) dt =
1 (α = 1, 2).

For (8.6) we have the regular case of system (6.1) - (6.2) with κ = 0. The
homogeneous system (6.1) - (6.2) has only the trivial solution p = (p1, p2) = 0,
and the solution of the inhomogeneous system (6.1) - (6.2) follows by its
Fourier transforms Fα (α = 1, 2) in (6.12).

The cases (8.7) - (8.8) are singular. For (8.7) we have N1 = N1,0 =
1, N2 = N2,0 = 0 and κ = 0 such that λ = 1, λ0 = 0 and κ0 = 0. Therefore,
the homogeneous system (6.1) - (6.2) has only the trivial solution p = 0 and
the solution of the inhomogeneous system (6.1) - (6.2) is given by its Fourier
transforms Fα (α = 1, 2) in (7.12) where Π1(x) = Π1,0(x) = x, Π2(x) =
Π2,0(x) = 1, Pκ+λ−1 = 0, and N̂ = 1.

For (8.8) it holds N1 = N2 = 1, N1,0 = N2,0 = 0 and κ = 0 such that
λ = λ0 = 1 and κ0 = 0. Hence the homogeneous system (6.1) - (6.2) has
the solution p0 with the Fourier transforms F 0

α (α = 1, 2) given by (7.9) as
F 0

1 (x) = K2(x)
x iC and F 0

2 (x) = K1(x)
x iC (C ∈ R) leading to

p0
1(t) = C

∫ T

t
k2(τ) dτ

p0
2(t) = C

∫ T

t
k1(τ) dτ

(8.9)

(cp. (8.4)). In view of (7.10) the inhomogeneous system (6.1) - (6.2) is solvable
if the condition G(0) = 0, i.e.

∫ T

0
[g1(t) + g2(t)] dt = 0 is fulfilled, and the

general solution of the inhomogeneous system (6.1) - (6.2) is given by its
Fourier transforms Fα (α = 1, 2) in (7.12) again, where Π1(x) = Π2(x) =
x, Π1,0(x) = Π2,0(x) = 1, Pκ+λ−1(x) = iC (C ∈ R) and N̂ = 1.

System (6.1) - (6.2) for T = ∞ under the above conditions has been
studied by Arabadzhyan [1] who gives solution (8.9) for the homogeneous
system and, via successive approximations, the solutions pα ∈ L1(R+) or
pα ∈ L1

loc(R+) for the inhomogeneous system with gα ∈ L1(R+) (α = 1, 2) in
the cases (8.6) - (8.7) without solvability condition.

Example 3 (Exponential kernel). We deal with equations (2.1) - (2.2)
for the kernel k(t) = Aeρt where A, ρ ∈ R, A > 0, and ρ < 0 in the case of
(2.2). There holds

K1(z) =

{
ρ+iz+A[1−e(ρ+iz)T ]

ρ+iz if T < ∞
ρ+iz+A

ρ+iz if T = ∞.
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For T = ∞ we have the simple zero z1 = i(ρ + A) of K1 which is in Im z ≥ 0
for −A ≤ ρ < 0. For T < ∞ we put ζ = ρ + iz and study the zeros of the
function ϕ(ζ) = eζT − 1 − ζ

A in Re ζ ≤ ρ corresponding to Im z ≥ 0. Under
the assumption ATeρT ≤ 1 only real zeros of ϕ in Re ζ ≤ ρ can occur. But ϕ

has the real zeros ξ2 = 0 and ξ1 T 0 if AT S 1. That means, the function K1

has the simple zero z1 = i(ρ − ξ1) with this real ξ1. Therefore, we have the
three cases ρ S ξ1 corresponding to

∫ T

0
k(t) dt T 1 where

∫ T

0
k(t)e−y1tdt = 1

with y1 = ρ− ξ1 > 0 in the third case.

The Cases 1 - 2: ρ ≤ ξ1 are particular cases of Example 1. In the Case
3: ρ > ξ1 for equation (2.1) we have the regular case with κ = 1 and κ0 = 0
so that the homogeneous equation (2.1) has only the trivial solution. The
Fourier transform of the solution to the inhomogeneous equation (2.1) is given
by formula (3.19) with P2κ−1 = Cz, where C ∈ R is determined by condition
(3.29) as −Cy1 = 2G(iy1)d1 with d1 = 2iy1

K2(iy1)K′
1(iy1)

, i.e. C = 4G(iy1)
iK1(−iy1)K′

1(iy1)

where G(iy) =
∫ T

0
g(t) cosh yt dt. For equation (2.2) with ξ1 = −A and y1 =

A + ρ > 0 we also have the regular case with κ = 1 and by (3.31) the solution
to the homogeneous equation

p0(t) =

{
ρ+A
2ρ+A e−(ρ+A)t + ρ

2ρ+A eρt if ρ 6= −A
2

(1 + ρt)eρt if ρ = −A
2 .

The solution to the inhomogeneous equation (2.2) is given by (3.19) with
P2κ−1 = Cz and arbitrary C ∈ R.

Example 4 (Linear kernel). Finally, we consider an example for the
regular case of equation (2.1) with a non-trivial solution to the homogeneous
equation (eigenvalue case), namely equation (2.1) with T = 1 and the linear
function k(t) = A + Bt (A = 2

(3−e)(e−1) , B = e−1
e−3 ). The function K1(z) =

z2+B−Aiz−Beiz+(A+B)izeiz

z2 has the simple zeros z1,2 = ±i. We have the regular
case of equation (2.1) with κ = κ0 = 1. The Fourier transform of the solution
p0 to the homogeneous equation given by (3.16), (3.20) is F0(z) = K1(z)

R(z) iCz

with C ∈ R and R(z) = z2 + 1, i.e., choosing C = 1, F0(z) = 1
z2+1

[
iz + A −

(A + B)eiz −B 1−eiz

iz

]
. From this the solution

p0(t) = B +
1
2
(1 + A−B)e−t −

(A

2
+ B

)
e−(1−t)

results. The corresponding solvability condition (3.36) for the inhomogeneous
equation is G(i) = 0 or

∫ 1

0
g(t) cosh t dt = 0.
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9. Appendix

1. Analytic continuation of F0 and F1 in the general case. Let
ζk (k = 1, ..., r) be the different zeros of K1 in Im z > 0 with multiplicities νk

where κ =
∑r

k=1 νk. Then

R(z) =
∏r

k=1(z − ζk)νk(z − ζk)νk (A.1)

and by (3.20) - (3.21) the conditions for the regularity of F0 and F in the
points ζk are

[
K1(z)P 0

2κ−1(z)
](l)(ζk) = 0 (l = 0, ..., νk − 1) (A.2)

[
K1(z)i P2κ−1(z) + R(z)

K2(z) G(z)
](l)(ζk) = 0 (l = 0, ..., νk − 1), (A.3)

respectively, for k = 1, . . . , r.
Now let ζk (k = 1, . . . , r) be zeros of order µk of K1, i.e.

K
(l)
1 (ζk) = 0 (l = 0, ..., µk − 1)

and K1(ζk)(µk) 6= 0. Then for µk ≥ νk condition (A.2) is fulfilled for any
P 0

2κ−1 whereas for µk < νk there remain νk − µk complex conditions (A.2)
for l = µk, ..., νk − 1 which in view of K1(ζk)(µk) 6= 0 are equivalent to the
conditions

[P 0
2κ−1(z)](l) = 0 (l = 0, ..., νk − µk − 1) (A.5)

for all k. Taking the two cases together we obtain conditions (A.5) where l
runs from 0 to max(νk − µk, 0)− 1 and there are

2
∑r

k=1 max(νk − µk, 0) = 2(κ− κ0), κ0 =
∑r

k=1 min(νk, µk) (A.6)

linearly independent real conditions. I.e., if κ0 ≥ 1, then we have n = 2κ0

linearly independent solutions to the homogeneous problem (3.1) given by
(3.31) with (3.26).

Conditions (A.3) for the inhomogeneous problem (3.1) split up into the
conditions

[ R(z)
K2(z) G(z)

](l)(ζk) = 0 (l = 0, ..., min(νk, µk) − 1) which in view

of ck = limz→ζk
[ R(z)
K2(z) ] 6= 0 are equivalent to the min(νk, µk) conditions

G(l)(ζk) = 0 (l = 0, ..., min(νk, µk)− 1) (A.7)

and the νk−min(νk, µk) = max(νk−µk, 0) conditions (A.3) for l = min(νk, µk),
..., νk − 1. Hence we have the n = 2κ0 real solvability conditions (A.7)
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for the inhomogeneous problem (3.1). The remaining 2(κ − κ0) real con-
ditions (A.3) for the 2κ real coefficients of the polynomial P2κ−1 leave free
n = 2κ0 real parameters in P2κ−1 and we again have the decomposition
P2κ−1 = P 0

2κ−1 + P 1
2κ−1 with the polynomial P 0

2κ−1 of form (3.26) and a
polynomial P 1

2κ−1 with determined coefficients.
In the case of real functions k and g with real solutions p we have

R(z) =
∏ρ0

k=1(z
2 + y2

k)νk
∏N0+ρ

k=N0+1

[
(z2 − ζ2

k)(z2 − ζ
2

k)
]νk (A.8)

where ζk = iyk (yk > 0; k = 1, ..., ρ0) and ζk = ±xk + iyk (xk, yk >
0; k = N0 + 1, ..., N0 + ρ) with κ = N0 + 2N1, were N0 =

∑ρ0
k=1 νk and

N1 =
∑N0+ρ

k=N0+1 νk. Conditions (A.5) for the real polynomial P 0
2κ−1 with odd

powers yield

κ0 =
∑ρ0

k=1 min(νk, µk) + 2
∑N0+ρ

k=N0+1 min(νk, µk) (A.9)

linearly independent real solutions of the homogeneous problem (3.1). The
solvability conditions (A.7) for the inhomogeneous problem (3.1) are equiva-
lent to the κ0 real conditions

∫ T

0
g(t)tlqk,l(t) dt = 0

{
l = 0, ..., min(νk, µk)− 1
k = 1, ..., ρ0

(A.10)

where qk,l(t) =
{

cosh ykt for even l
sinh ykt for odd l

and

∫ T

0

g(t)tlq+,−
k,l (t) dt = 0

{
l = 0, ..., min(νk, µk)− 1
k = N0 + 1, ..., N0 + ρ

(A.11)

where (+ refers to the two upper lines and - to the lower ones)

q+,−
k,l (t) =





cosxkt · cosh ykt for even l
sinxkt · cosh ykt for odd l
sinxkt · sinh ykt for even l
cosxkt · sinh ykt for odd l.

2. Resolvent form of the solution. The solution of equation (2.1) can be
represented (formally) by means of a resolvent. We confine ourselves to the
regular case with κ = 0. From (3.12) and (3.30) the solution p is given by

p(t) =
1
2π

∫ ∞

−∞

G(x)
K2(x)

e−ixtdx +
1

2π2i

∫ ∞

−∞
e−ixtK1(x)

∫ ∞

−∞

G(ξ)
B(ξ)

dξ

ξ − x
dx

=
1
2π

∫ ∞

−∞
G(x)e−ixtdx +

1
2π

∫ ∞

−∞
G(x)

K(x)
K2(x)

e−ixtdx

+
1

2π2i

∫ ∞

−∞

G(ξ)
B(ξ)

∫ ∞

−∞

e−ixtK1(x)
ξ − x

dxdξ
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where we have used the relation 1
K2(x) = 1 + K(x)

K2(x) and changed the order

of integration. Using the decompositions K1(x) = B(x) + K1(x)K(x) and
B(x) = B(ξ) + [B(x) − B(ξ)] and the relations 1

πi

∫∞
−∞

e−ixt

ξ−x dx = e−iξt and
g(t) = 1

π

∫∞
−∞G(x)e−ixtdx – the first following from [12: Chapter 5.1] and the

second one from (2.6) and (3.2) – we further get

p(t) = g(t) +
1
2π

∫ ∞

−∞
G(x)

K(x)
K2(x)

e−ixtdx

+
1

2π2i

∫ ∞

−∞

G(ξ)
B(ξ)

∫ ∞

−∞

e−ixtK1(x)K(x)
ξ − x

dxdξ

+
1

2π2i

∫ ∞

−∞

G(ξ)
B(ξ)

∫ ∞

−∞

e−ixt[B(x)−B(ξ)]
ξ − x

dxdξ

= g(t) +
1
2π

∫ ∞

−∞

G(x)
B(x)

[
K1(x)K(x)e−ixt

− 1
πi

∫ ∞

−∞

e−iξt{K1(ξ)K(ξ) + B(ξ)−B(x)}dξ

ξ − x

]
dx.

Observing G(x) = 1
2

∫ T

0

[
eixsg(s) + e−ixsg(s)

]
ds this yields the formal repre-

sentation

p(t) = g(t) +
∫ T

0

Γ1(t, s)g(s) ds +
∫ T

0

Γ2(t, s)g(s)ds (A.12)

on (0, T ) with the resolvents

Γ1(t, s) =
1
4π

∫ ∞

−∞
eixsγ(t, x) dx

Γ2(t, s) =
1
4π

∫ ∞

−∞
e−ixsγ(t, x) dx

(A.13)

where
γ(t, x) = 1

B(x)

[
K1(x)K(x)e−ixt

− 1
πi

∫∞
−∞

e−iξt{K1(ξ)K(ξ)+B(ξ)−B(x)}
ξ−x dξ

]
.

From representation (A.12) it follows that in the regular case with κ = 0
the solution q of the adjoint equation

q(t)− ∫ t

0
k(t− s)q(s) ds− ∫ T−t

0
k(s + t)q(s) ds = f(t) (A.14)

on (0, T ) is given by

q(t) = f(t) +
∫ T

0
Γ1(s, t)f(s) ds +

∫ T

0
Γ2(s, t)f(s) ds (A.15)
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with Γ1 and Γ2 from (A.13) (cf. [8: Section 111]). In the case n = 0 for κ > 0
and also in the general case n ≥ 0 an additional term in expressions (A.12)
and (A.15) occurs according to formula (3.19) with (3.29). Further, in the case
n > 0, from the solvability conditions (3.28) for equation (2.1) by comparison
with (2.4) the solutions qj of the homogeneous equation (A.14), i.e. (2.3),
follow and the solvability conditions Re

∫ T

0
f(t)pj(t) dt = 0 (j = 1, ..., n) for

equation (A.14) are obtained by solutions (3.16), (3.20) of the homogeneous
problem (3.1). In analogous way the solutions of equations ( 2.1) and (A.14)
in the singular case can be represented. We omit the details.

3. Solutions in L1-space. If g ∈ L1(0, T ) in (2.1) - (2.2) or g1, g2 ∈ L1(0, T )
in (6.1), then the derived solutions p or p1, p2 for equations (2.1) - (2.2) and
system (6.1), respectively, hold now with p ∈ L1(0, T ) or p1, p2 ∈ L1(0, T ). To
prove this statement one has to work in the Wiener algebra A built up by the
transforms of L1-functions and use the known facts that the Cauchy integral
operator (Hilbert transformation) works in A (cf. [15]) and by the Wiener-
Levi theorem [9, 15] corresponding products in formulae (3.12), (3.19) and so
on are lying in A, too. The needed Paley-Wiener theorem for functions from
A immediately follows by the theorem of Phragmen-Lindelöf (cf. [6: Chapter
6] as in the proof for the L2-case there) and the corresponding Paley-Wiener
lemma (cf. [17: Chapter 2/Section 5.1]).

For solutions from the L1-space with weight we refer to [16].
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[2] Berkovič, F. D.: On an integral equation occurring in the theory of general
Markovian processes (in Russian). Scientific papers of the anniversary seminar
on boundary value problems dedicated to the 75-th birthday of Academician
F. D. Gakhov. Minsk: Univ. Press 1985, pp. 146 – 148.

[3] Feller, W.: An Introduction to Probability Theory and its Applications, Vol. 2.
New York: J. Wiley 1966.

[4] Gakhov, F. D.: Boundary Value Problems. Oxford: Pergamon Press 1966.
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