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On a Quaternionic Reformulation of
Maxwell’s Equations

for Chiral Media and its Applications

V.V. Kravchenko and H. Oviedo

Abstract. A quaternionic reformulation of the Maxwell equations for chiral media
is proposed. Integral representations for solutions are constructed. A complete
solution of the extendability problem for the electromagnetic fields in chiral media
is obtained. Maxwell’s equations for inhomogeneous chiral media are studied also
and some classes of solutions for slowly changing media are obtained.
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1. Introduction

Chiral media represent a class of media responding with both magnetic and
electric polarization to electric or magnetic excitation and are frequently en-
countered in nature. A multitude of organic molecules such as the DNA
molecule exhibit chiral properties at different frequencies, the pupil of the eye
is a chiral medium, and for many other examples we refer the reader to [5,
13 - 16]. At present chiral materials are manufactured in several laboratories
(see, e.g., [3, 15]) and are used in different branches of engineering.

In this work we apply the technique of quaternionic analysis for the study
of Maxwell’s equations for chiral media. Considering homogeneous chiral me-
dia we obtain the complete solution of the extendability problem for the elec-
tromagnetic field, we show how from the quaternionic Stokes formula the
electromagnetic energy-balance equation for chiral media is obtained, and us-
ing the quaternionic Cauchy integral theorem we arrive at a new integral form
of Maxwell’s equations for chiral media.
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For slowly changing inhomogeneous chiral media we show that the cor-
responding Maxwell equations can be diagonalized precisely as in the ho-
mogeneous case, and this diagonalization is used for obtaining solutions for
stratified chiral media.

2. Preliminaries

We denote the algebra of complex quaternions by H(C). The elements of
H(C) are represented in the form q =

∑3
k=0 qkik where qk ∈ C, i0 = 1 and

ik (k = 1, 2, 3) are standard quaternionic imaginary units: i2k = −1, i1i2 =
−i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2. The complex imaginary unit
i commutes with ik (k = 0, 1, 2, 3). We will use also the vector representation
of complex quaternions. Namely, any q ∈ H(C) can be represented in the
form q = Sc(q) + Vec(q), where Sc(q) = q0 and Vec(q) =

∑3
k=1 qkik. The

complex quaternions of the form q = Vec(q) are called purely vectorial, and we
identify them with the vectors from C3 : ~q = Vec(q). The complex quaternion
q = Sc(q)−Vec(q) = q0−~q is called conjugate to q. Note that p · q = q ·p. We
will need also the usual complex conjugation q∗ =

∑3
k=0 q∗kik =

∑3
k=0(Re qk−

iIm qk)ik.
It is convenient to use the notations pMq = p · q and Mpq = q · p for the

operators of multiplication from the left- and right-hand sides, respectively.
Note that the scalar product 〈~p, ~q〉 of ~p and ~q can be represented as 〈~p, ~q〉 =
− 1

2 (~pM + M~p)~q.

We will consider H(C)-valued functions defined in some domain Ω ⊂ R3.
On the space C1(Ω;H(C)) the well known Moisil-Theodoresco operator D [12]
is defined by the expression

D = i1
∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3
.

For f ∈ C1(Ω;H(C)) the expression Df can be rewritten in the form

Df = −div ~f + gradf0 + rot~f (1)

where the differential operators are defined in the usual way (for instance,
gradf0 =

(
i1

∂
∂x1

+i2
∂

∂x2
+i3

∂
∂x3

)
f0). Equality (1) means that Sc(Df) = −div ~f

and Vec(Df) = gradf0+rot~f . An important property of D is the factorization
D2 = −∆, where ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3
.

Let us consider the operators

D±α = D ± α
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where α ∈ C. Purely vectorial solutions of the equation

(D + α)f = 0 (2)

are known as Beltrami fields (see, e.g., [13]) as well as force-free fields (see,
e.g., [4, 18]). In general, we consider quaternionic solutions of (2), and the
reduction of our results to the case of purely vectorial solutions allows us to
analyze these important classes of physical fields by methods of quaternionic
analysis.

Let Ω ⊂ R3 be an open bounded domain with closed piecewise smooth
boundary Γ = ∂Ω. We will need the following well known facts (see, e.g., [12:
pp. 66 - 67]).

Theorem 1 (Quaternionic Stokes formula). If f, g ∈ C1(Ω;H(C)) ∩
C(Ω;H(C)), then

∫
Γ

g · ~n · f dΓ =
∫
Ω
(Dr[g] · f + g · D[f ]) dx where Dr is

defined as Drg =
∑3

k=1 ∂kgik.

Theorem 2 (Quaternionic Cauchy’s integral theorem). If the function
f ∈ C1(Ω;H(C))∩C(Ω;H(C)) satisfies (2) in Ω, then

∫
Γ

~nf dΓ = −α
∫
Ω

f dx.

The equality

∆ + α2 = −(D + α)(D − α) = −DαD−α (3)

holds. Suppose that Θα is a fundamental solution of the Helmholtz operator,
i.e. (∆ + α2)Θα = δ. Using (3) we construct the distributions

K±α = −(D ∓ α)Θα (4)

which are fundamental solutions of D±α, i.e. D±αK±α = δ.
Let us assume that Imα ≥ 0. Then the fundamental solution of the

Helmholtz operator is chosen as Θα(x) = − eiα|x|
4π|x| . From (4) we obtain

K±α(x) = −gradΘα(x)± αΘα(x) =
(
± α +

x

|x|2 − iα
x

|x|
)
Θα(x)

where x =
∑3

k=1 xkik. Let us introduce the operators

Tαf(x) =
∫

Ω

Kα(x− y)f(y) dΩy (x ∈ R3)

Kαf(x) = −
∫

Γ

Kα(x− y)~n(y)f(y) dΓy (x ∈ R3\Γ)

Sαf(x) = −2
∫

Γ

Kα(x− y)~n(y)f(y) dΓy (x ∈ Γ),
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but also
Pα = 1

2 (I + Sα)

Qα = I − Pα

where Γ = ∂Ω is a closed Liapunov surface in R3, the boundary of a bounded
domain Ω, ~n =

∑3
k=1 nkik is the outward unit normal on Γ and I is the identity

operator. In the following theorem we summarize important properties of the
above integral operators which show that Tα,Kα and Sα can be considered
as natural spatial generalizations of the complex T -operator, the Cauchy-type
operator and the operator of singular integration, respectively.

Theorem 3 (see [12]).

1) Borel-Pompeiu formula: If f ∈ C1(Ω;H(C))∩C(Ω;H(C)), then K±αf
+T±αD±αf = f in Ω.

2) Cauchy integral formula: If f ∈ C1(Ω;H(C))∩C(Ω;H(C))∩kerD±α(Ω),
then f = K±αf in Ω.

3) Plemelj-Sokhotski formulas: If f ∈ C0,ε(Γ) for 0 < ε ≤ 1, then
limΩ3x→y∈Γ K±αf(x) = P±αf(y) and limΩ 63x→y∈Γ K±αf(x) = −Q±αf(y)
for any y ∈ Γ.

4) Involutiveness of the operator of singular integration: If f ∈ C0,ε(Γ)
for 0 < ε ≤ 1, then S2

±αf = f .

Remark 4. The Cauchy integral formula is also valid for unbounded
domains. In this case f must also fulfill the radiation condition

(
1 ± i x

|x|
) ·

f(x) = o
(

1
|x|

)
(|x| → ∞) uniformly for all directions (see [11, 17]). Then

f(x) = −K±αf(x) for all x ∈ R3\Ω.

Now let us consider the boundary value problem discussed in [10].

Problem 5. Given two complex quaternionic functions v ∈ C0,ε(Γ;H(C))
and g ∈ C(Ω;H(C)), find a function f ∈ C1(Ω;H(C)) ∩ C0,ε(Ω;H(C)) (0 <
ε < 1) such that

Dαf = g in Ω

f |Γ = v

}
. (5)

We introduce a new function u = f − Tαg. Note that Tαg ∈ W 1
p (Ω) for

any p > 1 (see [20]) and that, due to Sobolev’s embedding theorem (see, e.g.,
[21: p. 287]), Tαg ∈ C0,ε(Ω). If f solves problem (5), then u is a solution of
the boundary value problem

Dαu = 0 in Ω

u|Γ = w

}
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where w(x) = v(x)− Tαg(x) for x ∈ Γ. The solution of this problem exists if
and only if (see [12: p. 113]) the function w fulfills the condition w = Sαw on
Γ. In other words,

v − Tαg = Sαv − SαTαg on Γ. (6)

If this condition is fulfilled, then the solution is u = Kαw = Kα(v − Tαg).

Consider the expression KαTαg. From Borel-Pompeiu’s formula,

KαTαg = (I − TαDα)Tαg = 0. (7)

Thus u = Kαv. Moreover, (7) gives us that PαTαg = 0 on Γ, that is Tαg =
−SαTαg, and condition (6) can be rewritten as v − Sαv = 2Tαg on Γ or

Qαv = Tαg on Γ. (8)

Now, returning to boundary value Problem 5, we obtain its solution in the
form

f = Kαv + Tαg (9)

under the necessary and sufficient condition (8). In fact, such a function
obviously satisfies (5)1, and due to the Plemelj-Sokhotski formulas and (8),
we obtain on the boundary the required equality (5)2: f |Γ = Pαv +(Tαg)|Γ =
Pαv + Qαv = v. Thus the following fact is true.

Theorem 6. The solution of Problem 5 exists and has form (9) if and
only if condition (8) is fulfilled.

3. Electromagnetic fields in chiral media

The complex amplitudes Ẽ and H̃ of a time-harmonic electromagnetic field in
a homogeneous isotropic chiral medium satisfy the usual system of Maxwell
equations

divẼ(x) = ρ(x)
ε

rotẼ(x) = iωB̃(x)

rotH̃(x) = −iωD̃(x) + j̃(x)

divH̃(x) = 0





(10)

where ω is the frequency, ε is the permittivity of the medium, ρ and j̃ are
the charge density and the current density, respectively. The particularity
of chiral media is reflected in the corresponding constitutive relations. The
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vectors D̃ and B̃ are related to Ẽ and H̃ via the Drude-Born-Fedorov relations
(see, e.g., [13, 15, 16])

D̃(x) = ε
[
Ẽ(x) + βrotẼ(x)

]

B̃(x) = µ
[
H̃(x) + βrotH̃(x)

]
}

(11)

where µ is the permeability and β is the chirality measure of the medium.
Using these constitutive relations, the Maxwell equations (10) can be written
as

rotẼ(x) = iωµ
[
H̃(x) + βrotH̃(x)

]

rotH̃(x) = −iωε
[
Ẽ(x) + βrotẼ(x)

]
+ j̃(x)

}
.

Introducing the notations

~E = 1√
µ · Ẽ, ~H = 1√

ε
· H̃, ~j = 1√

ε
· j̃

we obtain the equations

rot ~E(x) = ik
[
~H(x) + βrot ~H(x)

]

rot ~H(x) = −ik
[
~E(x) + βrot ~E(x)

]
+~j(x)

}
(12)

where k = ω
√

εµ in electromagnetic theory is known as the wave number. As
the chiral medium distinguishes waves of opposing circular polarization and
even their respective propagation speeds in general are different, it is natural
to consider two wave numbers corresponding to propagation of left-handed
and right-handed waves. This pair of wave numbers is introduced in Section
4 (see Remark 8). Note that from (10)1 and (12)2 the continuity equation

ρ√
µε = − i

kdiv~j (13)

follows.

4. Maxwell’s equations for chiral media
in quaternionic form

Following [6], let us consider the purely vectorial biquaternionic functions

Φ = ~E + i ~H

Ψ = ~E − i ~H.
(14)

We have
DΦ = − ρ√

µε + rot ~E + irot ~H.
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Using (12) we obtain

DΦ = − ρ√
µε + ik( ~H + βrot ~H) + i

[− ik( ~E + βrot ~E) +~j
]

= − ρ√
µε (1− kβ) + k( ~E + i ~H) + kβ(D ~E + iD ~H) + i~j.

That is,
DΦ = − ρ√

µε (1− kβ) + kΦ + kβDΦ + i~j.

Thus the complex quaternionic function Φ satisfies the equation

(
D − k

1− kβ

)
Φ = − ρ√

µε
+ i

~j

1− kβ
. (15)

By analogy we obtain for Ψ the equation

(
D +

k

1 + kβ

)
Ψ = − ρ√

µε
− i

~j

1 + kβ
. (16)

Introducing the notations
α1 = k

1+kβ

α2 = k
1−kβ

(17)

and using (13) we rewrite equations (15) - (16) as

(D − α2)Φ =
i

k
(α2

~j + div~j)

(D + α1)Ψ = − i

k
(α1

~j − div~j).
(18)

In this way we proved the following

Proposition 7. Let ~E and ~H be solutions of the Maxwell equations (12).
Then the pair of purely vectorial biquaternionic functions Φ and Ψ defined
by (14) are solutions of equations (18), and vice versa, if two purely vectorial
biquaternionic functions Φ and Ψ are solutions of equations (18), then the
vectors

~E = 1
2 (Φ + Ψ)

~H = 1
2i (Φ−Ψ)

(19)

are solutions of equations (12).

Note that in a sourceless situation equations (18) take the form

(D + α1)Ψ = 0

(D − α2)Φ = 0.
(20)
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Remark 8. Introducing functions (14) we diagonalize the Maxwell equa-
tions (12) and in this way there follows the Bohren transformation procedure
(see, e.g., [16]). Nevertheless, the interpretation of Φ and Ψ not as solutions
of the equations

rotΨ + α1Ψ = 0

rotΦ− α2Φ = 0

but of quaternionic equations (20) which possess much better properties allows
us to obtain some results given below which were not obtained with traditional
methods of vector analysis. The numbers α1 and α2 play the role of two
different wave numbers corresponding to the propagation of electromagnetic
waves of opposing circular polarizations. From (17) it can be observed that
when the chirality measure of a medium β is equal to zero, then the numbers
α1 and α2 coincide with the usual wave number k.

5. Integral representations for solutions
of Maxwell’s equations in chiral media

After having established in the preceding section a simple relation between
solutions of Maxwell’s equations for chiral media and solutions of quaternionic
equations (18) we can use the statements of Section 2 in order to obtain
corresponding results for the vectors of the electromagnetic field.

Let Ω ⊂ R3 be a bounded domain with a Liapunov boundary Γ. Then
using the Borel-Pompeiu formula in Theorem 3/item 1) we obtain for Φ and
Ψ the equations

Ψ(x) = − i

k
Tα1

[
α1

~j(x)− div~j(x)
]
+ Kα1Ψ(x)

Φ(x) =
i

k
T−α2

[
α2

~j(x) + div~j(x)
]
+ K−α2Φ(x)

(x ∈ Ω).

Taking into account (19) and denoting T1 = Tα1 , T2 = T−α2 ,K1 = Kα1 ,K2 =
K−α2 ,Θ1 = Θα1 and Θ2 = Θ−α2 we obtain for the vectors of the electromag-
netic field in Ω the integral representations

~E = − i

2k
T1(α1

~j − div~j) +
1
2
K1( ~E − i ~H)

+
i

2k
T2(α2

~j + div~j) +
1
2
K2( ~E + i ~H)

~H =
1
2k

T1(α1
~j − div~j)− 1

2i
K1( ~E − i ~H)

+
1
2k

T2(α2
~j + div~j) +

1
2i

K2( ~E + i ~H)





(21)
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or, in a more explicit form,

~E(x) = − i

2k

∫

Ω

[
Kα1(x− y)

(
α1

~j(y)− div~j(y)
)

−K−α2(x− y)
(
α2

~j(y) + div~j(y)
)]

dy

− 1
2

∫

Γ

(
Kα1(x− y)~n(y)

[
~E(y)− i ~H(y)

]

+K−α2(x− y)~n(y)
[
~E(y) + i ~H(y)

])
dΓy

~H(x) =
1
2k

∫

Ω

(
Kα1(x− y)

[
α1

~j(y)− div~j(y)
]

+K−α2(x− y)
[
α2

~j(y) + div~j(y)
])

dy

+
1
2i

∫

Γ

(
Kα1(x− y)~n(y)

[
~E(y)− i ~H(y)

]

−K−α2(x− y)~n(y)
[
~E(y) + i ~H(y)

])
dΓy





(x ∈ Ω) (22)

The vector parts herein are the Stratton-Chu formulas for chiral media which
for a sourceless situation can be found, for example, in [1]; the scalar parts
represent a certain kind of the Gauss formula (see the explanation in [12: p.
120]), and are identities if the vectors ~E and ~H satisfy the Maxwell equations
(12). Thus (21) represent a quaternionic form of the Stratton-Chu formulas
and give us the possibility to reconstruct the solutions ~E and ~H of equations
(12) inside the domain by their values on the boundary.

Now let us consider the following question. When do we know that a pair
of vectors ~e and ~h defined on the boundary are boundary values of a pair of
vectors ~E and ~H, solutions of equations (12)? In other words, how can we
guarantee that a pair of vectors ~e and ~h are extendable from Γ into Ω in such
a way that their extensions ~E and ~H satisfy equations (12) and coincide with
~e and ~h on Γ? We formulate this question as the following

Problem 9. Let Γ = ∂Ω be a closed Liapunov surface on which the
vectors ~e and ~h satisfying the Hölder condition are given. Find two vectors
~E and ~H satisfying the Maxwell equations (12) in Ω and on the boundary Γ
coinciding with ~e and ~h: ~E|Γ = ~e and ~H|Γ = ~h.

Taking into account (14), we obtain that Problem 9 is equivalent to the
following two problems:

(18)1 in Ω with boundary condition ~Φ|Γ = ~e + i~h

and
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(18)2 in Ω with boundary condition ~Ψ|Γ = ~e− i~h.

Applying Theorem 6 to each of these two problems and using (19) we arrive
at the following result.

Theorem 10. The solution of Problem 9 exists and has the form

~E = − i

2k
T1(α1

~j − div~j) +
1
2
K1(~e− i~h)

+
i

2k
T2(α2

~j + div~j) +
1
2
K2(~e + i~h)

~H =
1
2k

T1(α1
~j − div~j)− 1

2i
K1(~e− i~h)

+
1
2k

T2(α2
~j + div~j) +

1
2i

K2(~e + i~h)





if and only if the two equalities

~e(x) = − i

2k

∫

Ω

{
Kα1(x− y)

[
α1

~j(y)− div~j(y)
]

−K−α2(x− y)
[
α2

~j(y) + div~j(y)
]}

dy

− 1
2

∫

Γ

(
Kα1(x− y)~n(y)

[
~e(y)− i~h(y)

]

+K−α2(x− y)~n(y)
[
~e(y) + i~h(y)

])
dΓy

~h(x) =
1
2k

∫

Ω

(
Kα1(x− y)

[
α1

~j(y)− div~j(y)
]

+K−α2(x− y)
[
α2

~j(y) + div~j(y)
])

dy

+
1
2i

∫

Γ

(Kα1(x− y)~n(y)
[
~e(y)− i~h(y)

]

−K−α2(x− y)~n(y)
[
~e(y) + i~h(y)

])
dΓy





(23)

for any x ∈ Γ are fulfilled.

Remark 11. The vector parts of equalities (23) reflect the quite well
known (for the non-chiral media see, e.g., [19]) necessary condition that ~e

and ~h must be boundary values of the corresponding Stratton-Chu integrals,
but this is not a sufficient condition. The scalar parts give us the lacking
information. Remaining in the framework of three-dimensional vector calculus
it is not easy to find the reason for the necessity of the scalar parts from (23),
but it becomes obvious in quaternionic terms.
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Note that a similar result can be obtained for unbounded domains also.
In this case the radiation conditions

(
1 ± i x

|x|
) · f(x) = o

(
1
|x|

)
(|x| → ∞) in

Remark 4 turn to be the Silver-Müller conditions for the electromagnetic field
(see [7, 10]).

6. Electromagnetic energy balance in chiral media

We show that the electromagnetic energy balance equation is a simple corol-
lary of the quaternionic Stokes theorem. In addition, a useful vector identity
for the electromagnetic field in a chiral medium is obtained as vector part of
the Stokes theorem.

Theorem 12 (Energy balance in chiral media). Let { ~E, ~H} ⊂ C1(Ω) ∩
C(Ω) be a solution of equations (12) and let Γ = ∂Ω be a closed piecewise
smooth surface. Then the equality

−
∫

Γ

〈
[ ~E × ~H∗], ~n

〉
dΓ

=
ik∗

1− k∗2β∗2

∫

Ω

〈 ~E, ~E∗〉 dx− ik

1− k2β2

∫

Ω

〈 ~H, ~H∗〉 dx

+
1

1− k∗2β∗2

∫

Ω

〈 ~E,~j∗〉 dx− ikβ

1− k2β2

∫

Ω

〈 ~H∗,~j〉 dx

(24)

is valid. Besides, the vector equality
∫

Γ

~E〈~n, ~H∗〉 dΓ +
∫

Γ

~H∗〈 ~E,~n〉 dΓ−
∫

Γ

~n〈 ~E, ~H∗〉 dΓ

= 2iIm
( k2β

1− k2β2

) ∫

Ω

[ ~E × ~H∗] dx +
ikβ

1− k2β2

∫

Ω

[~j × ~H∗] dx

− 1
1− k∗2β∗2

∫

Ω

[ ~E ×~j∗] dx− 1√
µε

∫

Ω

ρ ~H∗dx

(25)

holds.

Proof. Using (1), (10)1 and (10)4 we obtain the equalities

D ~E = − ρ√
µε + rot ~E

D ~H = rot ~H.

From (12) we have

D ~E = − ρ√
µε

+ rot ~E = − ρ√
µε

+ ik( ~H + β rot ~H)

D ~H = −ik( ~E + β rot ~E) +~j.
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Then

D ~E = − ρ√
µε

+ ik ~H + ikβD ~H

= − ρ√
µε

+ ik ~H + k2β ~E + k2β2rot ~E + ikβ~j

= − ρ√
µε

+ ik ~H + k2β ~E + k2β2
(
D ~E +

ρ√
µε

)
+ ikβ~j.

We can write the last equality in the more convenient form

D ~E = − ρ√
µε

+
1

1− k2β2

(
k2β ~E + ik ~H + ikβ~j

)
. (26)

Analogously we have

D ~H = −ik( ~E + βrot ~E) +~j

= −ik ~E + k2β ~H + k2β2D ~H +~j.

Taking the complex conjugation of the last equality yields

D ~H∗ =
1

1− k∗2β∗2
(
ik∗ ~E∗ + k∗2β∗ ~H∗ +~j∗

)
. (27)

From Theorem 1 we have
∫

Γ

~E~n ~H∗dΓ =
∫

Ω

(
D ~E · ~H∗ + ~E ·D ~H∗)dx.

Using (26) - (27) we obtain

∫

Γ

~E~n ~H∗dΓ = − 1
1− k2β2

∫

Ω

(
k2β ~E + ik ~H + ikβ~j) ~H∗dx

+
1

1− k∗2β∗2

∫

Ω

~E(ik∗ ~E∗ + k∗2β∗ ~H∗ +~j∗
)
dx

−
∫

Ω

ρ√
µε

~H∗dx.

Now the scalar part of this equality gives us (24) and the vector part corre-
sponds to (25)

The following fact is an analogue of Theorem 2 for the electromagnetic
field in a chiral medium.
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Theorem 13 (Quaternionic Cauchy’s integral theorem for chiral media).
Let { ~E, ~H} ⊂ C1(Ω;H(C)) ∩ C(Ω;H(C)) satisfy the Maxwell equations

rot ~E = ik( ~H + βrot ~H)

rot ~H = −ik( ~E + βrot ~E)

in Ω. Then the equalities

∫

Γ

[~n× ~E] dΓ =
(α2 − α1)

2

∫

Ω

~Edx +
(α2 + α1)i

2

∫

Ω

~Hdx

∫

Γ

[~n× ~H] dΓ = − (α2 + α1)i
2

∫

Ω

~Edx +
(α2 − α1)

2

∫

Ω

~Hdx

and ∫

Γ

〈~n, ~E〉 dΓ = 0
∫

Γ

〈~n, ~H〉 dΓ = 0

hold.

Proof. Consider the functions ~Ψ and ~Φ defined by (14). Applying The-
orem 2 we get ∫

Γ

~n~ΨdΓ = −α1

∫

Ω

~Ψdx

∫

Γ

~n~ΦdΓ = α2

∫

Ω

~Φdx.

That is, the pair of equalities
∫

Γ

~n( ~E − i ~H)dΓ = −α1

∫

Ω

( ~E − i ~H) dx

∫

Γ

~n( ~E + i ~H)dΓ = α2

∫

Ω

( ~E + i ~H)dx





(28)

are valid. Adding and substracting them we obtain

∫

Γ

~n~EdΓ =
(α2 − α1)

2

∫

Ω

~Edx +
(α2 + α1)i

2

∫

Ω

~Hdx

∫

Γ

~n ~HdΓ =
(α2 + α1)

2i

∫

Ω

~Edx +
(α2 − α1)

2

∫

Ω

~Hdx.

Rewriting this pair of equalities in a vector form finishes the proof
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7. Maxwell’s equations in inhomogeneous chiral media

In this section we consider all the electromagnetic characteristics of the me-
dium being continuously differentiable functions of spatial coordinates: ε =
ε(x), µ = µ(x) and β = β(x). Then the Maxwell equations for a time-
harmonic electromagnetic field in an inhomogeneous chiral medium have the
form

rot ~H(x) = −iωε(x)
(
~E(x) + β(x)rot ~E(x)

)
+~j(x)

rot ~E(x) = iωµ(x)
(
~H(x) + β(x)rot ~H(x)

)
}

. (29)

Introducing the notations

~ε =
grad

√
ε√

ε
, ~µ =

grad
√

µ√
µ

, ~E =
√

ε ~E, ~H =
√

µ ~H

and following arguments from [9] we obtain the pair of equations equivalent
to the system above:

(D + M~ε)~E − i

kβ
(D + M~µ) ~H = − 1

β
~E − ρ√

ε
− i

√
µ

kβ
~j

(D + M~ε)~E − ikβ(D + M~µ) ~H = ik ~H− ρ√
ε

where as before k = ω
√

εµ. This pair of equations can be rewritten as

(D + M~ε)~E =
k2β~E

1− k2β2
+

ikβ
√

µ

1− k2β2
~j +

ik ~H
1− k2β2

− ρ√
ε

(D + M~µ) ~H =
k2β

1− k2β2
~H− ik

1− k2β2
~E +

√
µ

1− k2β2
~j.

Denote α = k2β
k2β2−1 . Introducing the functions

~Φ = ~E + i ~H
~Ψ = ~E − i ~H

(30)

we obtain the equalities

(
Dα +

α

kβ

)
~Φ = −k

(
M

~ε
k ~E + iM

~µ
k ~H+ α

i
√

µ

k3β
(kβ + 1)~j +

ρ

k
√

ε

)

(
Dα − α

kβ

)
~Ψ = −k

(
M

~ε
k ~E − iM

~µ
k ~H− α

i
√

µ

k3β
(1− kβ)~j +

ρ

k
√

ε

)
.

(31)
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It is easy to see that ~ε/k and ~µ/k are dimensionless magnitudes. For a slowly
changing medium the absolute values of these two vectors are much less than
one (see, e.g., [2]), and the first two terms on the right-hand side of (31) are
negligible. Thus for a slowly changing chiral medium in the absence of sources
and currents we obtain the equations

(D − α2)~Φ = 0

(D + α1)~Ψ = 0
(32)

where α1 and α2 are defined by (17).
Let α be a complex-valued scalar function defined in Ω ⊂ R3. We consider

the equation
(D + α(x))u(x) = 0 in Ω (33)

where u is an H(C)-valued function. Following [8] (see also [10]) let us suppose
that the scalar function φ is some solution of the eikonal equation

(∇φ)2 = α2 in Ω. (34)

Then note that the H(C)-valued functions Q± = α ±∇φ are zero divisors in
Ω. Let η = eφ. Then ∇φ = ∇η

η and the operator D + α can be rewritten as

D + α = η(D + Q+)η−1.

Consequently, equation (33) reduces to the equation

(D + Q+(x))v(x) = 0 in Ω (35)

where v = u
η . Note that this equation is equivalent to equation (33).

Let us look for the solution of equation (35) in the form

v = Q−s (36)

where s is an H(C)-valued function. Substituting (36) into (35) we obtain
the equation DQ−s = 0 for s. Assume that α depends only on one variable:
α = α(x1). Then, e.g., the functions φ1 = iΘ and φ2 = −iΘ are solutions of
(34). Here Θ is an antiderivative of α.

Let us consider first the function φ1. We have

η1(x1) = eφ1(x1) = eiΘ(x1)

Q±
1 (x1) = α(x1)± ii1α(x1) = α(x1)(1± ii1).
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The function v is related with u by v = e−φ1u, and we are looking for it in
the form

v(x) = α(x1)(1− ii1)s(x).

For the function s we obtain the equation

D(α(x1)(1− ii1)s(x)) = 0. (37)

Let us denote f = α · s and use the quaternionic representation

f = F1 + F2i2 where
{

F1 = f0 + f1i1
F2 = f2 + f3i1.

We note that F1 and F2 commute with (1− ii1) and (1− ii1)i2 = i2(1 + ii1).
Then equation (37) can be rewritten as

D
(
F1(1− ii1) + F2i2(1 + ii1)

)
= 0. (38)

Note that DM (1±ii1) = M (1±ii1)D. Multiplying (38) from the right-hand side
first by (1−ii1) and then by (1+ii1) we obtain that equation (38) is equivalent
to the system

D(F1)(1− ii1) = 0

D(F2i2)(1 + ii1) = 0

}
. (39)

The last equation herein can be rewritten in the form D(F2)(1−ii1) = 0. Thus,
F1 and F2 must satisfy the same equation. Let us consider the equation (39)1.
Its solution obviously has the form

F1(x) = H1(x) + S1(x)(1 + ii1) (40)

where S1 is an arbitrary two-component function and H1 = h0 +h1i1 satisfies
the equation

DH1 = 0. (41)

We note that the last term in (40) does not contribute in the final solution of
equation (33) because of multiplication by Q− (see (36)).

In order to solve equation (41) we rewrite it in explicit form

(i1∂1 + i2∂2 + i3∂3)(h0 + h1i1) = 0

and obtain that it is equivalent to the system

∂1h0 = ∂1h1 = 0

∂2h0 + ∂3h1 = 0

∂3h0 − ∂2h1 = 0





. (42)
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From here we have that H1 is independent of the variable x1 and is analytic
in the usual complex sense with respect to the complex variable z = x3 +
i1x2 as (42)2−3represent the corresponding Cauchy-Riemann conditions. More
precisely, both ReH1 = Reh0+i1Reh1 and ImH1 = Imh0+i1Imh1 are analytic
with respect to z.

In a similar way, F2 = H2(x2, x3) is an analytic function with respect to
z. Thus,

s(x) =
1

α(x1)
(
H1(x2, x3) + H2(x2, x3)i2

)

and the function

û1(x) = eφ1(x1)α(x1)(1− ii1)s(x)

= eiΘ(x1)
(
H1(x2, x3)(1− ii1) + H2(x2, x3)i2(1 + ii1)

)

is a solution of equation(33). Moreover, due to the right H(C)-linearity of
(33), the function

u1(x) = eiΘ(x1)
(
H1(x2, x3)(1− ii1)A1 + H2(x2, x3)i2(1 + ii1)A2

)
, (43)

where A1 and A2 are arbitrary constant complex quaternions, is also a solu-
tion.

Taking the function φ2 as a solution of the eikonal equation (34) and
repeating the procedure described above we arrive at another solution

u2(x) = e−iΘ(x1)
(
G1(x2, x3)(1 + ii1)B1 + G2(x2, x3)i2(1− ii1)B2

)
(44)

of equation (33) where G1 and G2, similarly to H1 and H2, are analytic func-
tions with respect to z, and B1, B2 are arbitrary constant complex quater-
nions. Thus, the following proposition is valid.

Proposition 14 [8]. Let Θ(x1) be an antiderivative of the function α(x1),
let H1,H2 and G1, G2 satisfy the Cauchy-Riemann conditions (42)2−3, and
let A1, A2 and B1, B2 be arbitrary constant complex quaternions. Then the
functions (43)− (44) are solutions of the equation

(D + α(x1))u(x) = 0.
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From (43) - (44) we obtain the following expressions for ~Φ and ~Ψ:

~Φ = eiΘ2(x1)
(
H+

1 (x2, x3)(1− ii1)A+
1

+ H+
2 (x2, x3)i2(1 + ii1)A+

2

)

+ e−iΘ2(x1)
(
G+

1 (x2, x3)(1 + ii1)B+
1

+ G+
2 (x2, x3)i2(1− ii1)B+

2

)

~Ψ = e−iΘ1(x1)
(
H−

1 (x2, x3)(1− ii1)A−1

+ H−
2 (x2, x3)i2(1 + ii1)A−2

)

+ eiΘ1(x1)
(
G−1 (x2, x3)(1 + ii1)B−

1

+ G−2 (x2, x3)i2(1− ii1)B−
2

)





(45)

where the functions H±
1 ,H±

2 and G±1 , G±2 satisfy the Cauchy-Riemann con-
ditions (42)2−3, Θ1, Θ2 are antiderivative of α1, α2, respectively, and A±1 , A±2
and B±

1 , B±
2 are arbitrary constant complex quaternions which must be cho-

sen in such a way that the scalar parts of the expressions on the right-hand
sides of (45) be zero.

Let us consider the case A±2 = B±
2 = 0. Then omitting the subindex “1”

we obtain ~Φ and ~Ψ in the form
~Φ = eiΘ2(x1)H+(x2, x3)(1− ii1)A+

+ e−iΘ2(x1)G+(x2, x3)(1 + ii1)B+

~Ψ = e−iΘ1(x1)H−(x2, x3)(1− ii1)A−

+ eiΘ1(x1)G−(x2, x3)(1 + ii1)B−





(46)

where H± = h±0 + h±1 i1 and G± = g±0 + g±1 i1, and the functions h±0 , h±1 and
g±0 , g±1 satisfy (42)2−3. Note that

H± · (1− ii1) = h± · (1− ii1) where h± = h±0 + ih±1
G± · (1 + ii1) = g± · (1 + ii1) where g± = g±0 − ig±1 .

The scalar parts of the expressions on the right-hand sides in (46) are zero
if and only if

Sc((1− ii1)A±) = Sc((1 + ii1)B±) = 0

which is equivalent to the conditions

A±0 = −iA±1
B±

0 = iB±
1

where

{
A± =

∑3
k=0ikA±k

B± =
∑3

k=0ikB±
k .
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Under these conditions we obtain

(1− ii1)A± = a±(i2 − ii3) where a± = A±2 + iA±3
(1 + ii1)B± = b±(i2 + ii3) where b± = B±

2 − iB±
3 .

Then, the functions (46) take the form

~Φ = eiΘ2(x1)h+(x2, x3)a+(i2 − ii3)

+ e−iΘ2(x1)g+(x2, x3)b+(i2 + ii3)

Ψ = e−iΘ1(x1)h−(x2, x3)a−(i2 − ii3)

+ eiΘ1(x1)g−(x2, x3)b−(i2 + ii3)





. (47)

Thus we obtain the following

Proposition 15. Let α1 and α2 be functions of x1 only; h± = h±0 + ih±1
and g± = g±0 − ig±1 where the pairs h±0 , h±1 and g±0 , g±1 satisfy the Cauchy-
Riemann conditions (42)2−3, and let a± and b± be arbitrary constant complex
numbers. Then the functions (47) are solutions of equations (32).

The corresponding vectors of the electromagnetic field are obtained in the
form

~E =
1

2
√

ε

[
ei

∫
α2(x1)dx1h+(x2, x3)a+(i2 − ii3)

+ e−i
∫

α2(x1)dx1g+(x2, x3)b+(i2 + ii3)

+ e
−i

∫
α1(x1)dx1

h−(x2, x3)a−(i2 − ii3)

+ e
i

∫
α1(x1)dx1

g−(x2, x3)b−(i2 + ii3)
]

~H =
1

2i
√

µ

[
ei

∫
α2(x1)dx1h+(x2, x3)a+(i2 − ii3)

+ e−i
∫

α2(x1)dx1g+(x2, x3)b+(i2 + ii3)

− e
−i

∫
α1(x1)dx1

h−(x2, x3)a−(i2 − ii3)

− e
i

∫
α1(x1)dx1

g−(x2, x3)b−(i2 + ii3)
]
.

They give us solution of (29) for a stratified chiral medium.
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