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A Note on the Poincaré Inequality
for Convex Domains

M. Bebendorf

Abstract. In this article a proof for the Poincaré inequality with explicit constant
for convex domains is given. This proof is a modification of the original proof [5],
which is valid only for the two-dimensional case.
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1. Introduction

The classical proof for the Poincaré inequality

‖u‖L2(Ω) ≤ cΩ‖∇u‖L2(Ω),

where Ω ⊂ Rn is a bounded domain and u ∈ H1(Ω) with vanishing mean
value over Ω, is based on the compact embedding of H1(Ω) in L2(Ω) which is
valid under quite general assumptions on Ω (cf. [6]). However, the constant
cΩ depends on the domain Ω, and the proof based on compactness does not
provide insight into this dependency.

For practical purposes it is important to know an explicit expression for
this constant (see, for example, [2, 7]). Therefore, the special case of convex
domains is interesting, since in [5] this constant is proved to be d

π , where d
is the diameter of Ω. Though this proof is elegant, it contains a mistake in
the case n ≥ 3. The same mistake can also be found in [1], in which the
L1-estimate is considered.

The goal of this article is to fix this gap (see Remark 3.3). Luckily, the
constant d

π in the Poincaré inequality remains valid.
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2. The one-dimensional case

We first prove the Poincaré inequality for the one-dimensional case. In fact we
will prove a generalization which the multi-dimensional case can be reduced
to.

Lemma 2.1. Let m ∈ N and ρ be a non-negative concave function on the
interval [0, L]. Then, for all u ∈ H1(0, L) satisfying

∫ L

0

ρm(x)u(x) dx = 0, (2.1)

there holds
∫ L

0

ρm(x)|u(x)|2dx ≤ L2

π2

∫ L

0

ρm(x)|u′(x)|2dx. (2.2)

Furthermore, the constant L2

π2 is optimal.

Proof.
(a) Let us first assume that ρ is strictly positive and twice differentiable.

Then each non-zero function v minimizing the quotient

∫ L

0
ρm(x)|u′(x)|2dx

∫ L

0
ρm(x)|u(x)|2dx

(2.3)

and satisfying (2.1) must satisfy the Sturm-Liouville system (cf. [3])

[ρmv′]′ + λρmv = 0

v′(0) = v′(L) = 0

}
(2.4)

where λ is the minimum of quotient (2.3). After dividing (2.4) by ρm and
differentiating, we introduce the new variable w = ρm/2v′ and obtain

w′′ +
m

2

[
ρ′′

ρ
−

(
1 +

m

2

) (ρ′)2

ρ2

]
w + λw = 0

w(0) = w(L) = 0





.

Since ρ is concave, ρ′′ ≤ 0. Hence, w′′+(λ−a)w = 0, where a is a non-negative
function. Integration by parts leads to

λ ≥
∫ L

0
|w′(x)|2dx

∫ L

0
|w(x)|2dx

.
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The last quotient is bounded by the first eigenvalue of the vibrating string
with fixed ends, which gives λ ≥ π2

L2 .
(b) If ρ is a non-negative concave function, we may represent it as the

L∞-limit of strictly positive concave C2-functions ρk (cf. [4]). From Part (a)
one has ∫ L

0

ρm
k (x)|û(x)|2dx ≤ L2

π2

∫ L

0

ρm
k (x)|u′(x)|2dx

where û(x) = u(x)− u and

u =

∫ L

0
ρm

k (x)u(x)dx
∫ L

0
ρm

k (x) dx
.

Hence,

∫ L

0

ρm
k (x)|u(x)|2dx ≤ L2

π2

∫ L

0

ρm
k (x)|u′(x)|2dx + u

∫ L

0

ρm
k (x)u(x) dx.

In the limit k →∞ we obtain (2.2).

(c) To see that the constant L2

π2 is optimal, choose ρm ≡ 1, L = 1 and
u(x) = cos(πx). Then

∫ 1

0
ρm(x)u(x) dx = 0 and

∫ 1

0
ρm(x)|u(x)|2dx∫ 1

0
ρm(x)|u′(x)|2dx

=
1
π2

∫ 1

0
cos2(πx) dx∫ 1

0
sin2(πx) dx

=
1
π2

.

Thus the lemma is proved

3. The n-dimensional case

In the rest of this article we will consider the case n ≥ 2. By the following
lemma we are able to reduce the n-dimensional problem to the one-dimensional
case.

Lemma 3.1. Let Ω ⊂ Rn be a convex domain with diameter d. Assume
that u ∈ L1(Ω) satisfies

∫
Ω

u(x) dx = 0. Then for any δ > 0 there are disjoint
convex domains Ωi (i = 1, . . . , k) such that

Ω =
k⋃

i=1

Ωi,

∫

Ωi

u(x) dx = 0
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and for each Ωi there is rectangular coordinate system such that

Ωi ⊂
{

(x, y) ∈ Rn : 0 ≤ x ≤ d and |yj | ≤ δ, j = 1, . . . , n− 1
}

.

Proof. For each α ∈ [0, 2π] there is a unique hyperplane Hα ⊂ Rn with
normal

(
0, . . . , 0, cos(α), sin(α)

)
that divides Ω into two convex sets Ω′α and

Ω′′α of equal volume. Since I(α) = −I(α + π), where I(α) =
∫
Ω′α

u(x) dx, by
continuity there is α0 such that I(α0) = 0. Applying this procedure recursively
to each of the parts Ω′α0

and Ω′′α0
, we are able to subdivide Ω into convex sets

Ωi such that each of the sets is contained between two parallel hyperplanes
with normal of the form

(
0, . . . , 0, cos(β), sin(β)

)
at distance at most δ, and

the average of u vanishes on each of them.

Consider one of these sets. By rotating the coordinate system we can
assume that the normal of the enclosing hyperplanes is (0, . . . , 0, 1). In these
coordinates we apply the above arguments using hyperplanes with normals
of the form

(
0, . . . , 0, cos(α), sin(α), 0

)
. Continuing this procedure we end up

with the desired decomposition of Ω

Theorem 3.2. Let Ω ⊂ Rn be a convex domain with diameter d. Then

‖u‖L2(Ω) ≤
d

π
‖∇u‖L2(Ω)

for all u ∈ H1(Ω) satisfying
∫
Ω

u(x) dx = 0.

Proof. Let us first assume that u is twice continuously differentiable.
According to the previous Lemma 3.1 we are able to decompose Ω into convex
subsets Ωi such that for each Ωi there is a rectangular coordinate system in
which Ωi is contained in

{
(x, y) ∈ Rn : 0 ≤ x ≤ di and |yj | ≤ δ, j = 1, . . . , n− 1

}
.

We may assume that the interval [0, di] on the x-axis is contained in Ωi. Let
R(t) be the (n−1)-volume of the intersection of Ωi with the hyperplane x = t.
In polar coordinates R(t) can be written in the form

R(t) =
∫

Sn−2

∫ ρ(t,ω)

0

rn−2drdω =
1

n− 1

∫

Sn−2
ρn−1(t, ω) dω

where ρ(t, ω) is the distance of the boundary point of Ωi at (t, ω) to the x-axis.
Since Ωi is convex, ρ is a concave function with respect to t.



A Note on the Poincaré Inequality 755

From the smoothness of u it can be seen that there are constants c1, c2

and c3 such that
∣∣∣∣∣
∫

Ωi

u(x, y) dxdy −
∫ di

0

u(x, 0)R(x) dx

∣∣∣∣∣ ≤ c1|Ωi|δ (3.2)

∣∣∣∣∣
∫

Ωi

∣∣∣∂u

∂x
(x, y)

∣∣∣
2

−
∫ di

0

∣∣∣∂u

∂x
(x, 0)

∣∣∣
2

R(x) dx

∣∣∣∣∣ ≤ c2|Ωi|δ (3.3)

∣∣∣∣∣
∫

Ωi

|u(x, y)|2dxdy −
∫ di

0

|u(x, 0)|2R(x) dx

∣∣∣∣∣ ≤ c3|Ωi|δ. (3.4)

Let ω ∈ Sn−2. Since u(·, 0) ∈ H1(0, di), we can apply Lemma 2.1 to ûω(x) :=
u(x, 0)− uω, where

uω :=

∫ di

0
u(x, 0)ρn−1(x, ω) dx
∫ di

0
ρn−1(x, ω) dx

.

Hence,
∫ di

0

|ûω(x)|2ρn−1(x, ω) dx ≤ d2
i

π2

∫ di

0

∣∣∣∂u

∂x
(x, 0)

∣∣∣
2

ρn−1(x, ω) dx.

Applying Fubini’s theorem we obtain

d2
i

π2

∫ di

0

∣∣∣∂u

∂x
(x, 0)

∣∣∣
2

R(x) dx

=
1

n− 1

∫

Sn−2

d2
i

π2

∫ di

0

∣∣∣∂u

∂x
(x, 0)

∣∣∣
2

ρn−1(x, ω) dxdω

≥ 1
n− 1

∫

Sn−2

∫ di

0

|ûω(x)|2ρn−1(x, ω) dxdω

=
1

n− 1

∫

Sn−2

∫ di

0

ûω(x)u(x, 0)ρn−1(x, ω) dxdω

≥
∫ di

0

|u(x, 0)|2R(x) dx−M

∣∣∣∣∣
∫ di

0

u(x, 0)R(x) dx

∣∣∣∣∣

where M = maxω∈Sn−2 |uω|. By
∫
Ωi

u(x, y) dxdy = 0, (3.2) and (3.3) we are
lead to

∫ di

0

|u(x, 0)|2R(x) dx ≤ d2
i

π2

∫ di

0

∣∣∣∂u

∂x
(x, 0)

∣∣∣
2

R(x) dx + c1|Ωi|Mδ

≤ d2
i

π2

∫

Ωi

|∇u(x, y)|2dxdy +
(
c1M + c2

d2
i

π2

)
|Ωi|δ.
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From (3.4) and the summation over i we obtain

∫

Ω

|u(x, y)|2dxdy ≤ d2

π2

∫

Ω

|∇u(x, y)|2dxdy +
(
c1M + c2

d2

π2
+ c3

)
|Ω|δ

and, since δ > 0 is arbitrary, the desired estimate is proven. The assertion
follows from the density of C∞(Ω) in H1(Ω)

Remark 3.3. In [5] it is claimed that R from (3.1) is a concave function,
which is not true for n ≥ 3 as can be seen from the following example. Let

Ω =
{

(x1, x2, x3) ∈ R3 :
√

x2
2 + x2

3 ≤
1
2
(x1 + 1), 0 ≤ x1 ≤ 1

}
.

Then Ω is convex, volR(0) = π
4 and volR(1) = π. But

volR
(1

2

)
=

9
16

π <
5
8
π =

1
2
volR(0) +

1
2
volR(1).

Hence, R is not concave.

Acknowledgement. Thanks go to C. Carstensen for pointing out the
mistake in [5].
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