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A Necessary and Sufficient Condition

for the Existence of Positive Solutions
to the Singular p-Laplacian

R. P. Agarwal, Haishen Lii and D. O’Regan

Abstract. This paper studies the boundary value problem

(o) +a(t)(f(u) +g(w) =0 (0<t<1) ?
u(0) =u(l) =0

in the case p > 1. A necessary and sufficient condition for the existence of C'[0, 1]
positive solutions and a sufficient condition for the existence of C[0,1] positive so-
lutions are presented.
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1. Introduction

The boundary value problem

(ep(u)) + f(t,u) =0 (0<t<1) "
u(0) =u(l) =0 :
where ¢,(s) = [s|P7%s (p > 1) has been studied extensively in the litera-

ture (see [3 - 5, 7 - 10, 12, 17] and the references therein). In this paper,
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we establish a necessary and sufficient condition for the existence of C*[0,1]
positive solutions and a sufficient condition for the existence of C[0, 1] positive
solutions to the two-point boundary value problem

(p(u)) + al0)(F(w) + g(u)) =0 <o<t<1>} )
u(0) = u(1) =0 '
with ¢, (s) = [s|P72s,p > 1, € C((0,1),[0,00)) and f, g € C([0,0),[0,00)).

We next state a fixed point theorem due to Krasnosel’skii (see, e.g., [2])
which will be needed in Sections 2 and 3.

Theorem 1.1. Let X be a Banach space, and let K (C X) be a cone.
Assume 1,y are open subsets of X with 0 € Qy and Q1 C Qa, and let

T: KN(Q\Q) — K

be a continuous, compact operator such that, either

(@) ||Tul] < JJul]] (ve KNOQ) and ||Tul| > [|ul| (ve K NoQy)
or

(b) || Tul| > ||u|| (v€ KNOQ) and ||Tul| < [|ul| (uve KNoQy).
Then T has a fived point in K N (Q2\Q1).

In this paper X = (C[0,1],] - ||) with usual maximum norm will be our
Banach space and

u non-negative concave and, for some M, > 0,
K =1ueC[0,1]

u(t) < Myt(1—t) forall t€[0,1]

will be the cone. Also, for R > 0 we set
Kr={yeK: |y| <R}

We first state two known lemmas which will be needed in the following.

Lemma 1.1 [17]. Assume that 0 < p € L'(0,1), p £ 0 in (0,1). Suppose
ue Ci0,1] = {v: v,v" € X,v(0) = v(1) =0}
18 the unique positive solution of the problem

—(pp(u)) = p(t) (0<t<1) }
u(0) =u(1) =0 .
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Then there exist constants k > 1 > 0 such that
Ip(t) <wu(t) < kp(t) 0<t<1)

where p(t) = min{t, 1 — t}.
Lemma 1.2 [1]. Let uw € K. Then u(t) > t(1 — t)||u|| fort € [0,1].

In what follows we shall assume that
(H1) ¢(t) > 0 for t € (0,1) and

/O%%?1(/5%Q(r)dr>ds+/;g0;1(/;q(r)dr)d8<OO_

[

2. A necessary and sufficient condition for the
existence of positive solutions

In this section we write

. f@) L g(x)
fo= mli%l+ p—1 go = g;lg(rﬁ xp—1
@ (2)
L x g
foo = man;O o Joo = mhiilo g

We begin with a result which requires either
(i) f and g sublinear at zero and superlinear at infinity
or
(ii) f and g superlinear at zero and sublinear at infinity.
Theorem 2.1. Suppose condition (H1) holds. In addition, assume the
following:
(H2) f,g are non-decreasing and there exist constants A\, > 1 such that
flex) < APV f(2) and g(cx) < *P~Dg(x) for all ¢ > 1.
(H3) One of the following conditions hold:
(h1) fo =0, foo =00, go =0, goo =0
(h2) fo =00, foo =0, go =00, goo = 0.
Then a necessary and sufficient condition for problem (1.2) to have a C'[0,1]
positive solution s that

0< /01 q(s) (f(e(s) + g(e(s))))ds < 00 (2.1)
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where e(s) = s(1 — s).

Proof. Necessity. Assume that u is a C'[0, 1] positive solution of prob-
lem (1.2). Then «/(0) and «/(1) are finite with (¢, ("))’ <0 and u(t) > 0 for
t € (0,1). This implies that ¢,(u’) is non-increasing, so v’ is non-increasing.
Thus u is a concave function. This implies that there is a constant m > 0
such that

u(t) > me(t) (0<t<1). (2.2)

Let ¢ = min{1, m}. Now condition (H2) implies that

/0 a(s) (F(e(s)) + gle(s))) ds

=2 [ () as

= E(gop(u'(())) - @p(“l(l)))
< 00
where ¢ = max{c~P~DA ~(P=1r,

On the other hand, assume that u is a C1]0, 1] positive solution of problem
(1.2). Then q(t)(f(u) 4+ g(u)) # 0 for (t,u) € (0,1) x (0,00), since otherwise
problem (1.2) has only the zero solution. Without loss of generality, suppose

q(to) (f(u(to)) + g(u(to))) > 0
for some ¢y € (0,1). By [16: Lemma 2|, there exist a constant M > 0 such that
u(s) < Me(s) for s € [0,1]. Let M7 = max{1l, M}. Then u(tg) < Me(ty) <
Mie(ty). Consequently,
0 < g(to) (f(ulto)) + glu(to)))

< q(to) (f(Mie(to)) + g(Me(to)))

< qto) (M ™ fe(to)) + MYV g(e(to))

< max (M7 M{PT D q(to) (£ (elto) + g(elto)).

As a result, 0 < g(to)(f(e(to)) + g(e(to))). Now, since f,g,q are continuous,
there exists an interval [a;,b1] C (0,1) with

b1
/ 4(3) (f(e(s)) + gle(s)))ds > 0.
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Thus (2.1) holds.

Sufficiency. We will consider two cases.
Case 1: Suppose conditions (H1), (H2), (hl) and (2.1) hold. For all u € K
and ¢t € (0,1) define

z(t) = /Ot o, (/: q(r)(f(u(r) + Q(U(T)))dr) ds
_ /tl 0, (/: a(r)(f(u(r)) + g(U('r’)))dr) ds.

Clearly, z is continuous and non-decreasing in (0, 1) and z(0+) < 0 < z(1—).
Thus, x has zeros in (0, 1).

Let € be such a zero of x in (0,1). Then

/05 2 </E q(r) (f(u(r)) + g(U(r)))dr) ds

S

Define the operator
T: K— C[0,1]

by

(Tu)(t) =
Jy et (JEa) (Fun) + glu(r))dr)ds iE0<t<¢  (25)
5ot (J a) () + glu(r))dr)ds if€<t<1.
We first prove that, for all u € K, y = Tu € K and y(§) is the maximum
value of y on [0, 1] where £ is the above fixed zero of x in (0,1). Fix u € K

and let the constant M, be such that u(t) < M,t(1 —t) on [0,1]. From the
definition of T,

o) = { e (S a) (F(u(r) + g(u(r))dr)ds =0 0 <<

et (e () + glutr))dr)ds <0 ifE<t <1

is continuous and non-increasing in (0, 1) and y'(§) = 0. Thus T'u is a concave
function. Moreover,

q(t) (f (u(t)) + g(u(t)) < a(r)(f(Mue(t)) + g(Mue(t))) (2.6)
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for t € (0,1). Set

Ho(t) = f(f 901;1<fsC q(r) (f (Mue(r)) + Q(Mue(r)))dr>ds ifo<t<(¢
’ I: %71(]; q(r) (f (Mue(r)) + g(Mue(r)))dr) ds if¢<t<1

where ( is a zero of the function

o) = | P (/ () (FOMaelr) + g(Moe(r)dr ) ds

_/tl ¢;1(/tsq(r)(f(Mue(r))+(M“e(r)))dr>ds

defined for ¢ € (0,1). Thus

(
)

(ep(H})) = —q(t) (f(Mye(t)) + g(Mye(t))) (0<t<1) 27)
H,(0) = Hy(1) =0 '
and
(ep(¥)) = —a(t)(f(u(t) + g(u(t))) (0<t<1) } (28)
y(0) =y(1) =0 ' '

We claim that y(t) < H,(t) for t € (0,1). If not, there would exist 0 < ¢ty < 1
with y(tg) > Hy(to), and so there would exist an interval (a,b) such that
y(t) > Hy(t) for t € (a,b) and

y(a) — Hy(a) = y(b) — Hy(b) = 0. (2.9)

Let m = y(B) — H,(B) be the positive maximum of y(t) — H,(t) on [a,b)].
Then B € (a,b) and
y/(B) = HL(B). (2.10)

Integrating both sides of equalities (2.7) and (2.8) over [s,B] (a < s < B)
yields

HL(s) = 03! (%(H{,,(B)) [ rtetr) + g(Muem))dr)

/=67 (2o ) + [ a) () +otu))ar )

Integrating both equalities on [a, B] yields
B
15 - 0 = [ e (H(B)
"B
# [ (L) + gt ) s

B B
oB) -st0) = [ (s B+ [ a)(7(u) + g(utr)ar ) s
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Using inequality (2.6) we have

/q(?“)(f(U(T)Hg(U(?“)))dTS/ q(r) (f (Mue(r)) + g(Muye(r)))dr

for s € (a,B). Also, (2.10) implies ¢,(H/ (B)) = ¢,(y'(B)). Thus, for s €
(a, B) we have

o, (sop(y’(BD + / a(r) (f(u(r)) + g(u(r)))dr)
S@?(@AHL(B)H/ Q(T)(f(Mue(r))+g(Mue(r)))dr>.

Consequently, y(B) — y(a) < H,(B) — H,(a). This together with (2.9) yields
y(B) — H,(B) < 0. We got a contraction since y(B) — H,,(B) = m > 0. Thus
y(t) < H,(t) for t € [0,1].

Note that, because (2.1) holds,

p(r) = a(r)(f(Mue(r)) + g(Mue(r)))

satisfies the conditions of Lemma 1.1. Thus there exists a constant £ > 0 such
that y(t) < H,(t) < kp(t) for t € [0,1]. Consequently, there exist a constant
M, > 0 such that y(t) < Mye(t) on [0,1]. This shows T'(K) C K. Of course,
each fixed point of T" in K is a solution of problem (1.2).

We now claim that, for all R > 0, the operator T : K — K is continuous
and compact. We first show that T K i is bounded. For this put

Y(t) =, (f(R) +g(R))

{foso Y(J] a(r)dr)d
et (S alr)dr)d

where 7 is a zero of the function

:C(t):/ot@gl(/:q(r)dr>ds—/tlgogl(/:q(r)dr)ds

defined for ¢t € (0,1). Let u € Kg. It is clear that

ifo<t<r

s
s ifr<t<l1

(ep(Y") + (F(R) + g(R))q(t) =0 (2.11)
(ep((Tw)")) + a(t) (f(u(t) + g(u(t))) =0 (2.12)
q@) (f(u(t)) + g(u(®))) < (f(R)+g(R))q(t) (2.13)
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for t € [0, 1]. Essentially the same reasoning as above yields 0 < Tu(t) < Y (t)
for u € K and t € [0,1]. Thus the image TK r is bounded.

We next show the equicontinuity of the image TK g on [0,1]. Indeed, for
any € > 0, from the continuity of ¥ on [0, 1] it follows that there is a 61 € (0, 1)
such that

0<Tu(t) <Y(t)<e

for every u € K and t € [0,28,]U[1— 281, 1]. Thus |Tu(t;) — Tu(ts)| < 2¢ for
t1,to € [0,281) or t1,t € (1 — 201, 1]. Next, we consider t1,ts € [2d1,1 — 261].
If 0 < Tu(§) < e, then

|Tu(tr) — Tu(ta)] < [Tu(ty)| + |Tu(ta)] < 2e
for any t1,ta € [0,1]. If Tu(§) > ¢, then £ € [261,1 — 26;] and hence for
t € [01,1 — d1] we have

|(Tw)'(1)] < = L.

oy (/611_61 (f(R) + g(R))q(r)dr)

Put d; = £. Then for ¢1,t5 € [01,1 — d1] and [t; — t2| < 2 we have

[ Tu(tr) — Tu(ta)| < [(Tw)' ()] [t1 — t2| < Lé2 = ¢

where 7 lies between t; and t5. Let § = min{d;,d2}. Then for ¢1,t2 € [0,1]
with |t; — ta] < 0 we have

|Tu(ty) — Tu(te)| < 3e (ue Kg).

This shows that TK g is equicontinuous on [0, 1].

We next claim that T': Kr — K is continuous. Assume that {u,}5°, C
Kgr and u,, — ug uniformly on [0, 1]. The Arzela-Ascoli theorem guarantees
that there exist a subsequences of {T'u,, }52 ; (without loss of generality assume
it is the whole sequence) and a v € C|0,1] with T'w,, — v uniformly on [0, 1]
as n — oo. We can also assume without loss of generality that &, converges,
and we suppose &, — & as n — oo. We will now prove that v(t) = (T'ug)(t)
for ¢ € [0, 1].

Without loss of generality, we may choose a sequence {§,;} such that
{&n, } is monotonically increasing (the proof is similar if it is monotonically
decreasing) and §,,;, — &y as j — oo. Then,

0, < / " q(r) (f (un, (r)) + glun, (r)))dr)
<ot + sy ([ ) e
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for s € [0,&,,]. The Lebesgue’s Dominated Convergence Theorem guarantees

v(t) = lim Tu,(t)

n—oo

:/Ot gopl(/;“ q(r)(f(uo(r))+g(uO(T)))dr)d8 (2.14)

for t € [0,&]. Notice that, for any integers j > J,

sﬁpl(f(R)+g(R))/1 gopl(/s q(r)dr)ds<oo

gnJ EnJ

and

oo ([ ), 0) 4t () s
< ¢, (f(R) +9(R)p," (/&u q(r) dr) ds

for s € [§,,;,1]. The Lebesgue’s Dominated Convergence Theorem guarantees
that

1

o=t [ | 007) (i, () + 9, (7)) ) s

)= Jt

1 . -
:/t %1(/5 Q(T)(f(w)(r))+g(u0(r)))dr)ds 2.15

0

for s € [€p, 1]. From (2.14) and (2.15) we get

v(éo) = /050 o, (/j” q(r) (f(uo(r)) + g(?Lo(T)))dr) ds
= /ﬁ: sogl(/s a(r)(f(uo(r)) + Q(UO(T)))dT> ds.

o

Clearly, v(t) = (Tup)(t) for all ¢t € [0, 1].

The above shows that there exists a subsequence S of N with Tu,, — Tug
uniformly on [0,1] as n — oo in S. We now show T'u,, — Tugp uniformly on
[0,1] as n — oo in N. Suppose this is false. Then there exist &g > 0 and
a subsequence S7 of N with |Tu,, — Tuglo > €0 (n € S1). Since u,, — ug
uniformly on [0, 1] as n — oo in S1, then as above there exists a subsequence
Sy of S; with Tw,, — Tug uniformly on [0,1] as n — oo in Sp. This is a
contradiction. As a result, T: K — K is a continuous, compact operator.
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We now show that problem (1.2) has a positive C[0, 1] solution. Since
fo = go = 0, there exist a constant [ > 0 such that

flu) <P tuP™!

-1, p—1

o(w) < P—tu (0<u<l

where 7 satisfies

2p_11nmax{/0%(,0;1(/fq(r)dr)ds, /; gp;l(/;q(r)dr)ds} <1.

If w € K and |ju|| = [, then for 0 <t < 1 we have (with £ and T defined in

(2.4) and (2.5))
S a(r)(F(u(r) + ) )dr)ds ifo<t<¢
_|_

(u(r
; q(r) (f(u(r)) r

)
(u( )))dr>ds if¢<t<1

(
(
/jq(r)(f(u(r) g(u(r dr)ds
[ atr (e + gtatrn)ar ) ds

9
g

<[ o )+ g(ulr)
:/;90;1( ;q(T) fu(r)) + ()))dr)d

| /j“’l(/fq(ﬂ(f(u( )+ g(u( )))dr)d
< max

\ /1 ‘*”pl(/; q(r) (f(u(r)) + g(u( )))dr)d

, / 5

< max

) )+ ) ) s |

(]
o 1 ( /;q(ﬂ (7 Hu(r)) = (u(r))p_l)dr) ds

/1
(o :
[t ([ ol aar Y as
< max 0 °
S

< lull.
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That is,
Tu)®) <l (0<t<1), (2.16)
Let Q1 = {ue X : |lu| <}. Now by (2.16) we have ||[Tu|| < ||u|| for all

u € KNoQy. Also, since foo = goo = 00, there exist Ly > [ > 0 such that, for
all u > Ly, f(u) > vP~uP~1 and g(u) > vP~tuP~! where v satisfies

1 1
a3 . 2 -1 2 -1 3
L > 1.
2 16me{/% ©p </S Q(T)dT)dS,/l ©p (/% Q(T)dr)ds} 1

2
Let L = 181 and Qy = {u € K : |u|| < L}. If u € K N 9Qs, then by
Lemma 1.2 we have min1 . <z u(s) = 2 ||ull and so (with £ and T defined in
(2.4) and (2.5))

N[)

|7l = ( ) + gtulr))dr ) s
o /£ it >>+g<u<r>>)dr)ds
. / o' ( / A (F00) + o)) Yo
'/, lso;l< a7 + ot i )as |
/ o' ( [ at () (7(ul)) + g(utr))ar ) s
" / &' (] 1w ge)ar)as |
([t ([ (s () + o) o )
o / sogl(/ o) (¢ (g5l + o (gl ) ) s
/ so;l( / 2Q(7”)Vp_1(%HUH)p_ldr)ds
" / et / 2q(r) (g ul) )
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/j %;1(/8% q(r) dr)ds
/1% gozjl(/:q(r)dr)ds

2 2

3
> 2571 1—6yHuH min

2 |-
Thus [|[Tul| > ||u|| for all u € KNOSY,. Consequently, problem (1.2) has at least
one solution u € C[0,1] N C'(0,1) with ¢,(u') € C*(0,1) and I < |jul| < L.

We next prove that «/(0+) and «/(1—) are finite. Indeed, since u € K,
there exists a constant A > 1 with u(s) < Ae(s) for s € [0, 1]. Notice that

t)
/ — 1 u(
w(04) t_1>I(I)1+ t

= lim 90;1(/t£Q(7")(f(U(7°)) +9(U(T’>))dr)

t—0+

— ( / ) () + g<u<r>>)dr)
< oy ( / " g (F(Aelr)) + g(Ae(r»)dr)

< Ap,*! (/0£ q(r)(f(e(r) + 9(6(7")))6“‘)

< 00

where A = max{A*, A#}. A similar argument guarantees that u/(1—) is finite.
This implies that u is a C! positive solution of problem (1.2).

Case 2: Suppose conditions (H1), (H2) and (h2) hold. Then a slight mod-
ification of the argument in Case 1 establishes the result B

In comparison to Theorem 2.1 our next result only requires one of the
following conditions:

(i) f is superlinear at infinity
(ii) ¢ is superlinear at infinity
(iii) f is superlinear at zero
(iv) g is superlinear at zero.

However, to achieve this a price has to be paid, i.e. we need to assume that
f(1) 4+ g(1) is sufficiently small (see condition (H4) below).

Theorem 2.2. Suppose conditions (H1) - (H2) hold. In addition, assume
the following:
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1 1 1 1 _ s
(H4) M7 max{ﬁf e, ([2q(r) dr)ds,f% ©p 1(f% q(r) dr)ds} < 1 where
M = f(1) +g(1).
(H5) One of the following conditions hold:

(h5> Jo =00
(h6) go = 0.

Then a necessary and sufficient condition for problem (1.2) to have a C[0,1]
positive solution s that

0< /O a() (f (e(s) + g(e(s))))ds < o

where e(s) = s(1 — s).

Proof. Necessity. Essentially the same reasoning as in Theorem 2.1
establishes the result.

Sufficiency. We will consider 4 different cases.

Case (1): Suppose conditions (H1), (H2), (H4) and (h3) hold. As in The-
orem 2.1 we have for all R > 0 that T : Kr — K is a continuous, compact
operator. Since fo, = 00, there exists Ry > 1 such that f(u) > " uP~1 for

u > R; where n; > 0 and

i—%min{/j so;1</fq(r)dr)ds, /_ sogl(/;q<r)dr)ds} > 1.

Let Ry = 8% and Oy = {u € X : |ju| < Ro}. If u € K N 9%y, then by
Lemma 1.2 mini << 3 u(s) = 2 ||u|l and so (with £ and T defined in (2.4) and

(2.5))

lw

[

[Tull = /05 oy (/jq(?“) (f (u(r)) +g(u(r)))d’f)ds
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Thus
|Tull > |lul  (u€ KNoKn).

In addition, if v € K and ||u|| = 1, then u(s) < 1 for s € [0,1]. Thus we have
(with & and T defined in (2.4) and (2.5))

to=1( [ a(r e ulr Nds i
(Tu)(t) _ fO “p (f.s Q( f( ( ))+g( ( )))d d fo Stﬁf
( (r)+g

I )
(ﬁ¢?<fqrﬂﬂur (Mﬂ»m>® ife<t<1

< max




<1 = lull.
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[Fat ([ awar)as
/: %;1(/: a(r) dr)ds

2 2

Let Qo ={u € K : ||u]| < 1}. Then

[Tl < flul

(’LL e KN 892)

703

By Theorem 1.1, T has a fixed point u in K N (Q;\Q). As in Theorem 2.1,
u is a positive C1[0, 1] solution of problem (1.2).

Case (2): Suppose conditions (H1) - (H2), (H4) and (h4) hold. Then a

slight modification of the argument in Case (1) establishes the result.

Case (3): Suppose conditions (H1) - H2), (H4) and (h5) hold. As in The-

N

orem 2.1, we have that, for all R > 0, T : Kr — K is a continuous, compact
operator. Since fy = oo, there exists 0 < Ry < 1 such that f(u) > &' 'yP~1
for 0 < u < R; where & > 0 and

[

i—%min{/: <p;1</fq(r)dr>ds, /13/4s0;1(/:q(7“)dr)ds} > 1.

2 2

Let Q ={ue X : |Jul| < R1}. If u € K N0OQy, then by Lemma 1.2

min_u(s) >
<s<3 16

and so we have (with £ and 7" defined in (2.4) and (2.5))

HTMM=A§%f<lfﬂﬂﬁﬂwﬂ)+gWWD%#>@
:1[¢;(£waﬂwmmmwwmm)m

A%%f(L%ﬂﬂﬁww»+mmm»m>@

/_1 “’51(/5‘1(7“) (f(u(r) +9(U(T)))dr>ds
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> min

> min

> min

Thus
|Tull > |lul  (u€ KNoh).

In addition, as in Case (1), with Qo = {u € K : |Ju|| < 1} we have
Tl < [Jul| (ue KNoQy).

By Theorem 1.1, T has a fixed point u in K N (Q22\Q;). As in Theorem 2.1,
u is a positive C1[0, 1] solutions of problem (1.2).

Case (4) : Suppose conditions (H1) - (H2), (H4) and (h6) hold. A slight
modification of the argument in Case (3) establishes the result i

Remark 2.1. The ideas in this section extend to the boundary value
problems

(p(u)) + f(t,u) =0 (0<t<1) }
0

and
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Minor adjustments are only needed, so we leave the details to the reader.

The conditions in Theorems 2.1 and 2.2 are easy to check in practice as
the following example shows.

Example 2.1. Consider the boundary value problem

(2.17)

(pp(w)) +q(t) [u +u"] =0 (0<t<1) }
u(0) =u(1) =0

with ¢ € C'((0,1),[0,00)) and condition (H1) holding. Also, assume a > p—1
and b >p—1 and

0< /0 q(s) [s7(1 — 5)* + s°(1 — 5)%] ds < oo.

Then problem (2.17) has a C1[0, 1] positive solution.

We will apply Theorem 2.1 with f(z) = 2% and g(z) = 2. Clearly,

condition (H2) holds (with A = % and p = -2-). Also,

p—1 p—

Jo= hr(r)l+ g7l = 0, foo= xlggo g~ = 00, go=0, goo=00.

Thus condition (h1) holds.

3. A sufficient condition for the existence
of positive solutions

In certain situations it is possible to replace the sublinear and superlinear
conditions in the previous section by more general conditions. The main
result will be presented in Theorem 3.1.

In this section, we write

C, :max{/jcp;l(/fq(r)dr)ds, /élgogl(/%sq(r)dr)ds}
ngmin{/f gpgl(/fq(r)dr)ds, /__ gogl(/:q(r)dr)ds}.

4 2 2

Theorem 3.1. Suppose condition (Hy) holds. In addition, assume the
following:

(H6) f,g are non-decreasing.
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(H7) There exists a constant r > 0 with f(r) + g(r) < ¢, (rCh).
(H8) One of the following conditions holds:

(h7) For some Ry > 0 with Ry >, f(381) + g(281) > (82 L).
(h8) For some Ry > 0 with Ry <7, f(* 3Rz 4 ( 2) > ( 2).
Then, problem (1.2) has a positive solution u € C[O, 1]nC*(0,1) with ¢p( e

CY(0,1). In addition,
if (b7) holds, then r < ||u|| < Ry with u(t) > rt(1 —t) fort € [0,1]
if (h8) holds, then Ry < ||u|| < r with u(t) > Rat(1 —t) fort € [0,1].

Proof. Let

K = {u € C[0,1] : u non-negative and Concave}.

As in Section 2, for all u € K define

o= [ o5 ([ a7t + oty )
- [ ([ a5t + atutrp)a ) s

for 0 < ¢t < 1. Clearly, = is continuous and non-decreasing in (0,1) and
x(0+) < 0 < x(1—). Thus, x has zeros in (0, 1).
Let € be such a zero of z in (0,1). Then

/06 o </£ a(r)(f(u(r) + g(u(r)))dr) ds

(3.1)

Define the operator

by
(Tw)(t) =
Jy e (JSa) (F(ulr) + glu(r))dr)ds 0 <t <€ (3.2)
{ft LSS atr) (f(u(n) + glu(r))dr)ds i€ <t<1.

Essentially the same reasoning as in Section 2 guarantees that, for all R > 0,
T: Kr — K is a continuous, compact operator. Let

O ={ue X: |ul| <r}.
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We first show
[Tul| < lull  (ue KNIK,;).

To see this let w € K N OK,.. Then |lu| = r and u(t) < r for ¢t € [0,1]. Then

Tu(t) = I %?1(];5 q(r) (f(u(r)) +g(u(r)))dr>ds fo<t<¢
ftl 901;1([; q(r) (f(u(r)) + g(u(’f’)))dr)ds if&<t<1.

<@ Ci=r=]ul.
This implies that || Tu|| < ||ull.

Case (1): Assume condition (h7) holds. Let Qo = {u € X : ||ul]| < R1}.
We show

| Tul|| > ||ull (u e KNoQy).

If u € K N0y, then |lu|| = Ry, and so from Lemma 1.2 we have u(s) > 2 R;

for t € [1,3]. Then
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> min

> min

> 90;1 (f(%}h) + g<13_6R1)> min

1
> — Oy =Ry = |ul.
=0, 2 1= [Juf
Theorem 1.1 guarantees that there exists u € K N (22\£;) being a solution
to problem (1.3). In addition, from Lemma 1.2, we have u(t) > t(1 —t)||u|| >
rt(1 —t) for t € [0,1].

Case (2): Assume that condition (h8) holds. Essentially the same rea-
soning as in Case (1) guarantees that there exists u € K N (2;\Q2) be-

ing a solution to problem (1.3). In addition, from Lemma 1.2, we have
u(t) > t(1 —t)||ul| > Rot(1 —t) for t € [0,1] B

Remark 3.1.

(i) The statement in Theorem 3.1 can easily be adjusted so that assump-
tion (H6) can be removed.

(ii) It is easy to use conditions (H7) and (H8) with different constants to
obtain a multiplicity result for problem (1.2).

(iii) The ideas in Theorem 3.1 extend so that problem (1.1) could be
considered.
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