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Bounds for the Best Constant
in an

Improved Hardy-Sobolev Inequality

N. Chaudhuri

Abstract. In this note we show that the best constant C in the improved Hardy-
Sobolev inequality of Adimurthi, Chaudhuri and Ramaswamy [1] for 2 ≤ p < n is

bounded by p−1
p2

�
n−p

p

�p−2 ≤ C ≤ p−1
2

�
n−p

p

�p−2
.
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1. Introduction

Let Ω be a bounded domain in Rn (n ≥ 2) with 0 ∈ Ω. Adimurthi, Chaudhuri
and Ramaswamy in [1] have obtained the following improved Hardy-Sobolev
inequality. Let 1 < p < n and let R ≥ e

2
p supΩ |x|. Then there exists a

constant C > 0 such that
∫

Ω

|∇u|pdx ≥
(n− p

p

)p
∫

Ω

|u|p
|x|p dx + C

∫

Ω

|u|p
|x|p

(
log

R

|x|
)−2

dx (1.1)

holds for all u ∈ W 1,p
0 (Ω). In his book on Sobolev Spaces [14: Section 2.1.6]

Maz’ja discovered that the classical multi-dimensional Hardy-type inequalities
with sharp constant can be improved by adding different additional positive in-
tegrals. However, the above inequality have applications in proving existence,
non-existence and regularity of solutions for differential equations involving
the potential 1

|x|p (see [1, 3, 10 - 12, 15]). Adimurthi and Esteban [2] extended
the above inequality for W 1,p functions and found interesting applications to
the Schrödinger operator. However, finding the best constant in inequality
(1.1) remains open. In this article we find interesting bounds for the best
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constant C(n, p,R, Ω), defined in (1.4) below. In [1: Theorem 1.2] it has been
shown that for 0 < µ <

(
n−p

p

)p the eigenvalue problem

−
(
div(|∇u|p−2∇u) +

µ

|x|p |u|
p−2u

)
= λ

|u|p−2

|x|p( log R
|x|

)2 u in Ω

u = 0 on ∂Ω





(1.2)

admits a positive weak solution u ∈ W 1,p
0 (Ω) corresponding to the eigenvalue

λ = λ1
µ > 0. Moreover, λ1

µ → C(n, p, R, Ω) as µ → (
n−p

p

)p. Thus the bounds
on the best constant in inequality (1.1) gives bounds on the limiting behaviour
of the first eigenvalue for the eigenvalue problem (1.2).

In [1], the following n-dimensional version of the Hardy-Sobolev inequality
also has been established. For any bounded domain Ω ⊂ Rn (n ≥ 2) with
0 ∈ Ω, ∫

Ω

|∇u|ndx ≥
(n− 1

n

)n
∫

Ω

|u|n
|x|n

(
log

R

|x|
)−n

dx (1.3)

holds for every u ∈ W 1,n
0 (Ω). Adimurthi and Sandeep [3] proved that the best

constant herein is indeed
(

n−1
n

)n. For some interesting improvements of the
classical Hardy-Sobolev inequality and their applications see [5 - 9, 13].

Before stating our theorem we define the best constant C(n, p, R, Ω) in
inequality (1.1) by

C(n, p, R, Ω) = inf
0 6=u∈W 1,p

0 (Ω)
QΩ,R(u) (1.4)

where

QΩ,R(u) =

∫
Ω
|∇u|pdx− (n−p

p )p
∫
Ω
|u|p
|x|p dx

∫
Ω
|u(x)|p
|x|p

(
log R

|x|
)−2

dx
.

It is also known (see [1]) that the best constant in C(n, p,R, Ω) is not achieved.

2. Result

In this article we prove the following

Theorem. The constant C(n, p, R, Ω) defined by (1.4) is independent of
the domain Ω and the choice of the constant R ≥ e

2
p supΩ |x|. For 2 ≤ p < n,

p− 1
p2

(n− p

p

)p−2

≤ C(n, p) ≤ p− 1
2

(n− p

p

)p−2

.

It appears to the author that, for the case 2 ≤ p < n, the constant C(n, p)
herein is indeed p−1

p2

(
n−p

p

)p−2.
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Proof of the theorem. We prove the independence and the bounds for
the best constant through the following steps.

Step 1. We first prove that if Bi (i = 1, 2) are concentric balls centered
at origin of radii Ti, then C(n, p, R1, B1) = C(n, p, R2, B2), where Ri = αTi

with α ≥ e
2
p . For this take u ∈ W 1,p

0 (B2) and define v(x) = u
(

T2
T1

x
)

for
|x| < T1. Then

QB1,R1(v) =

∫
B1
|∇v|pdx− (n−p

p )p
∫

B1

|v|p
|x|p dx

∫
B1

|v|p
|x|p

(
log αT1

|x|
)−2

dx

=

∫
B2
|∇u|pdx− (n−p

p )p
∫

B2

|u|p
|x|p dx

∫
B2

|u|p
|x|p

(
log αT2

|x|
)−2

dx

= QB2,R2(u)

and hence C(n, p, R1, B1) = C(n, p, R2, B2).

Step 2. Now we prove that C(n, p, R, Ω) = C(n, p,R, Ω∗), where Ω∗ =
B(0, T ) is the ball of radius T =

( |Ω|
|B(0,1)|

)1/n, | · |n denoting the n-dimensional

Lebesgue measure. Indeed, for any u ∈ W 1,p
0 (Ω), |u|∗ ∈ W 1,p

0 (Ω∗), where
|u|∗ is the symmetric decreasing rearrangement of |u|. By standard sym-
metrization arguments (see [4]) we conclude that, for any u ∈ W 1,p

0 (Ω),
QΩ,R(u) ≥ QΩ∗,R(u∗) and hence

C(n, p, R, Ω) ≥ C(n, p, R, Ω∗).

To prove the other inequality, take s > 0 such that Bs = B(0, s) ⊆ Ω. Then,
clearly, C(n, p, R, Ω) ≤ C(n, p,R, Bs) and hence, by Step 1, C(n, p, R, Ω) =
C(n, p,R, Ω∗).

Now if Ωi (i = 1, 2) are two bounded domains with Ri ≥ e
2
p supΩi

|x|,
by Steps 1 and 2, C(n, p, R1, Ω1) = C(n, p, R2, Ω2) and hence the constant is
independent of the domain and the choice of R. We shall denote this constant
simply by C(n, p).

Step 3. Lower Bound: The lower bound for the best constant C(n, p)
essentially follows from [1: Proof of Theorem 1.1], but for sake of completeness
we include a proof. Since C(n, p) is independent of the domain, without loss
of generality we assume Ω to be the unit ball B = B(0, 1). Let R ≥ e

2
p . For

0 < u ∈ C2
0 (B) radially non-increasing we define

v(r) = u(r) r
n−p

p (r = |x|). (2.1)
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Here without loss of generality we as well assume u′(r) < 0 (replacing u by
u + ε(1− r) for ε > 0 sufficiently small). Now we observe that

∫

B

|∇u|pdx−
(n− p

p

)p
∫

B

|u(x)|p
|x|p dx

= ωn

∫ 1

0

∣∣∣n− p

p
r−

n
p v(r)− r1−n

p v′(r)
∣∣∣
p

rn−1dr

−
(n− p

p

)p

ωn

∫ 1

0

vp(r)
r

dr

= ωn

(n− p

p

)p
∫ 1

0

vp(r)
{∣∣∣1− pv′(r)r

(n− p)v(r)

∣∣∣
p

− 1
}dr

r

where ωn is the volume of the (n − 1)-dimensional sphere. Since u is a de-
creasing function, from (2.1) we have v′(r) − (n−p)v(r)

pr < 0. We set x(r) =

− pv′(r)r
(n−p)v(r) so that x(r) > −1. By using the inequality (1 + x)p ≥ 1 + px +

(p− 1)x2 for all x ≥ −1 and for all p ≥ 2 we obtain
∫

B

|∇u|p −
(n− p

p

)p
∫

B

|u(x)|p
|x|p

≥ ωn(p− 1)
(n− p

p

)p−2
∫ 1

0

vp−2(r)|v′(r)|2rdr

− ωnp
(n− p

p

)p−1
∫ 1

0

vp−1(r)v′(r)dr

=
4ωn(p− 1)

p2

(n− p

p

)p−2
∫ 1

0

∣∣(vp/2(r))′
∣∣2r dr

since v ∈ C1
0 (0, T ). By applying the n-dimensional Hardy inequality (1.3)

with n = 2 for the function v
p
2 , we obtain

∫ 1

0

∣∣(vp/2(r))′
∣∣2r dr ≥ 1

4

∫ 1

0

(vp/2(r)
r log R

r

)2

r dr

=
1
4

∫ 1

0

up(r)
rp

(
log

R

r

)−2

rn−1dr

=
1

4ωn

∫

B

|u(x)|p
|x|p

(
log

R

|x|
)−2

dx.

Hence for all radially non-increasing functions 0 < u ∈ C2
0 (B) we have

∫

B

|∇u|p −
(n− p

p

)p
∫

B

|u(x)|p
|x|p

≥ p− 1
p2

(n− p

p

)p−2
∫

B

|u(x)|p
|x|p

(
log

R

|x|
)−2

dx.
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Now by standard approximation and symmetrization this inequality holds for

all u ∈ W 1,p
0 (B) and hence C(n, p) ≥ p−1

p2

(
n−p

p

)p−2

.

Step 3. Upper Bound: Here our idea is to construct a family of func-
tions {uε,k}0<ε<1 in W 1,p

0 (B), where B = B(0, 1) is the unit ball, and then
to estimate QB,R for this family. Similar to the family found in [1], for any
0 < ε < 1 and for 2 ≤ k ∈ N we define

uε,k(r) =





0 for r ≤ εk

log r
εk

(k − 1)r
n−p

p log 1
ε

for εk ≤ r ≤ ε

log 1
r

r
n−p

p log 1
ε

for ε ≤ r ≤ 1.

Clearly, uε,k ∈ W 1,p
0 (B) is continuous and differentiable a.e., and its derivative

is given by

u′ε,k(r) =





0 for 0 ≤ r ≤ εk

1
(k − 1)r

n
p log 1

ε

[
1− n− p

p
log

r

εk

]
for εk ≤ r ≤ ε

− 1
r

n
p log 1

ε

[
1 +

n− p

p
log

1
r

]
for ε ≤ r ≤ 1.

Since ε > 0 is sufficiently small, after a change of variables and the use of
Neumann series we have the estimates

∫

B

|∇uε,k|pdx =
ωn(

log 1
ε

)p

[
1

(k − 1)p

∫ ε

εk

∣∣∣n− p

p
log

r

εk
− 1

∣∣∣
p dr

r

+
∫ 1

ε

∣∣∣1 +
n− p

p
log

1
r

∣∣∣
p dr

r

]

=
λn,pωn

p + 1
log

1
ε

[
(k − 1)

(
1− p

(k − 1)(n− p) log 1
ε

)p+1

+
(
1 +

p

(n− p) log 1
ε

)p+1
]

=
λn,pωn

p + 1
log

1
ε

[
(k − 1)− p(p + 1)

(n− p) log 1
ε

+
p(p + 1)
2(k − 1)

( p

(n− p) log 1
ε

)2



762 N. Chaudhuri

+ O
( 1

(k − 1)2
(
log 1

ε

)3

)
+ 1 +

p(p + 1)
(n− p) log 1

ε

+
p(p + 1)

2

( p

(n− p) log 1
ε

)2

+ O
( 1

log 1
ε

)3
]

=
kλn,pωn

p + 1
log

1
ε

+
kpωn

2(k − 1)

(n− p

p

)p−2(
log

1
ε

)−1

+ O
( 1

(k − 1) log 1
ε

)2

+ O
( 1

log 1
ε

)2

.

(2.2)

Then we have
∫

B

|uε,k|p
|x|p dx =

ωn(
log 1

ε

)p

[
1

(k − 1)p

∫ ε

εk

(
log

r

εk

)p dr

r
+

∫ 1

ε

(
log

1
r

)p dr

r

]

=
ωn

(p + 1)
(
log 1

ε

)p

[
1

(k − 1)p

∫ ε

εk

d

dr

(
log

r

εk

)p+1

dr

−
∫ 1

ε

d

dr

(
log

1
r

)p+1

dr

]
(2.3)

=
kωn

(p + 1)
log

1
ε
.

Thus (2.2) - (2.3) yield
∫

B

|∇uε,k|p −
(n− p

p

)p
∫

B

|uε,k|p
|x|p

=
kpωn

2(k − 1)

(n− p

p

)p−2(
log

1
ε

)−1

+ O
( 1

log 1
ε

)2

.

(2.4)

Finally, let us try to find a “good” estimate of the integral

Ip =
∫

B

|uε,k|p
|x|p

(
log

R

|x|
)−2

dx

=
ωn(

log 1
ε

)p

[
1

(k − 1)p

∫ ε

εk

(
log r

εk

)p

r
(
log R

r

)2 dr +
∫ 1

ε

(
log 1

r

)p

r
(
log R

r

)2 dr

]
.

By change of variable r 7→ log R
r and denoting aε = log R

ε , bε = log R
εk and

c = log R we get

Ip =
ωn(

(k − 1) log 1
ε

)p

∫ bε

aε

(
log Re−r

εk

)p

r2
dr

+
ωn(

log 1
ε

)p

∫ aε

c

(
log er

R

)p

r2
dr

=: I1
p + I2

p .
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For the integrals I1
p and I2

p we get the estimations

I1
p =

∫ bε

aε

(
log

R

εk
− r

)p dr

r2

= bp
ε

∫ bε

aε

(
1− r

bε

)p dr

r2

≥ bp
ε

∫ bε

aε

(
1− pr

bε
+

(p− 1)r2

b2
ε

)dr

r2

=
bp
ε

aε

[(
1− aε

bε

)(
1 + (p− 1)

aε

bε

)
− paε

bε
log

bε

aε

]

and

I2
p =

∫ aε

c

(r − log R)p dr

r2

=
∫ aε

c

rp−2
(
1− c

r

)p

dr

≥
∫ aε

c

rp−2
(
1− pc

r
+

(p− 1)c2

r2

)
dr

=





aε

[(
1− c

aε

)
− 2

c

aε
log

aε

c
+ o(1)

]
for p = 2

a2
ε

[1
2

(
1−

( c

aε

)2)
+ 2

( c

aε

)2

log
aε

c
+ o(1)

]
for p = 3

ap−1
ε

[ 1
p− 1

(
1−

( c

aε

)p−1)
+ o(1)

]
for p 6= 2, p 6= 3

= ap−1
ε

[ 1
p− 1

+ o(1)
]

where o(1) → 0 as ε → 0. From these estimations for I1
p and I2

p we obtain

Ip ≥ Jk,ε

: =
ωn(

(k − 1) log 1
ε

)p
bp
ε

aε

[(
1− aε

bε

)(
1 + (p− 1)

aε

bε

)
− paε

bε
log

bε

aε

]

+
ωn(

log 1
ε

)p ap−1
ε

[ 1
p− 1

+ o(1)
]
.

Hence from (2.4) we obtain

QB,R(uε,k) ≤ pk

2(k − 1)

(n− p

p

)p−2(
log

1
ε

)p−1

×
[

bp
ε

(k − 1)paε

{(
1− aε

bε

)(
1 + (p− 1)

aε

bε

)}
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+ ap−1
ε

{ 1
p− 1

+ o(1)
}]−1

+ J−1
k,ε

[
O

( 1
log 1

ε

)2]

=
pk

2(k − 1)

(n− p

p

)p−2

×
[

(k − 1)−pbp
ε

aε

(
log 1

ε

)p−1

{(
1− aε

bε

)(
1 + (1− p)

aε

bε

)}

+
( aε

log 1
ε

)p−1{ 1
p− 1

+ o(1)
}]−1

+ J−1
k,ε

[
O

( 1
log 1

ε

)2]
.

Here we note that bp
ε

aε

(
log 1

ε

)p−1 → kp as ε → 0 and hence J−1
k,ε

[
O

(
1

log 1
ε

)2] → 0
as either ε → 0 or k →∞. Thus

QB,R(uε,k) → pk

2(k − 1)

(n− p

p

)p−2

×
[( k

k − 1

)p{(
1− 1

k

)(
1 +

p− 1
k

)

+
p

k
log

1
k

}
+

1
p− 1

]−1

(ε → 0)

→ p

2

(n− p

p

)p−2[
1 +

1
p− 1

]−1

(k →∞)

=
p− 1

2

(n− p

p

)p−2

.

Since C(n, p) ≤ QB,R(uε,k) for all k ≥ 2 and for any sufficiently small ε > 0, by
passing through the limits as ε → 0 and k →∞ we get C(n, p) ≤ p−1

2

(
n−p

p

)p−2

and hence the theorem is proved
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