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Multiobjective Duality
for

Convex Semidefinite Programming Problems

G. Wanka, R. I. Boţ and S. M. Grad

Abstract. We treat some duality assertions regarding multiobjective convex semi-
definite programming problems. Having a vector minimization problem with convex
entries in the objective vector function, we establish a dual for it using the so-called
conjugacy approach. In order to deal with the duality assertions between these
problems we need to study the duality properties and the optimality conditions of
the scalarized problem associated to the initial one. Using these results we present
the weak, strong and converse duality assertions regarding the primal problem and
the dual we obtained for it.
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1. Introduction

This paper presents some duality assertions regarding the multiobjective semi-
definite programming problems. The duality model we are considering here
has been introduced by W. Fenchel and R.T. Rockafellar and it consists in
attaching to an optimization problem another problem, called its dual, by
means of perturbation functions. This dual problem is important, because
its solutions may reveal us in certain conditions the solutions of the initial
problem. More on this subject may be found in [2, 6, 10, 11].

We deal further with semidefinite programming problems, namely, opti-
mization problems with positive semidefinite constraints. The duality for the
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single objective linear case has already been presented in many papers, such
as [1, 4, 5, 8, 9].

The word ”multiobjective” appears in the title because we consider multi-
ple vector valued objective functions. We treat the duality properties of these
multiobjective functions considering the so-called Pareto efficiency. The ap-
proach we use to treat the multiobjective dual problems has been introduced
in the articles [10, 11].

We begin with a problem of minimizing a vector function with convex
entries subject to positive semidefinite inequality constraints. This vector
minimization is considered using the so-called Pareto efficiency and proper
efficiency, whose definitions are reminded here. Then we take the scalarized
problem associated to it and we calculate its dual. From the duality asser-
tions and optimality conditions, obtained further, we are able to extract du-
ality properties regarding the primal multiobjective semidefinite optimization
problem and its dual. Next we present the weak, strong and converse duality
assertions regarding these problems. Finally, we derive as special cases the
dual problems of the multiobjective semidefinite programming problem with
linear objective function and of the multiobjective fractional programming
problem with linear inequality constraints. The last one is presented also as
a special case of the problem treated in [12].

2. Problem formulation

Let us consider the following multiobjective semidefinite programming prob-
lem with convex objective functions and convex constraints

(P) v-minx∈X f(x)

where
f = (f1, ..., fk)T

X =
{
x = (x1, ..., xm) ∈ Rm : F (x) ≥Sn

+
0
}

F (x) = F0 +
∑m

i=1 xi · Fi.
For each j, fj : Rm → R is a real-valued convex function and also, for each i,
Fi ∈ Sn. Here we have denoted by Sn the linear subspace of the symmetric
n× n matrices with real entries, i.e.

Sn =
{
A ∈ Rn×n | A = AT

}
,

and by Sn
+ the cone of the symmetric positive semidefinite n×n matrices with

real entries, i.e.

Sn
+ =

{
A ∈ Sn | xT ·A · x ≥ 0 (x ∈ Rn)

}
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which introduces the so-called Löwner partial order A ≥Sn
+

B if and only if
A−B ∈ Sn

+ on Sn. So our constraint F (x) ≥Sn
+

0 means actually that F (x) is
a symmetric positive semidefinite matrix. Also, on Sn

+ we consider the scalar
product from Sn

〈A,B〉 =
n∑

i,j=1

Aij ·Bij = Tr
(
AT ·B)

where Tr(A) denotes the trace of the matrix A and ”· ” is the well-known
product of matrices.

To deal with the dual properties of problem (P), using the method intro-
duced in [10], we need to reformulate the feasible set by introducing a new
function

g : Rm → Sn, g(x) = −F0 +
m∑

i=1

xi · (−Fi).

In this circumstance, the feasible set of problem (P) may be written as X ={
x ∈ Rm : g(x) ≤Sn

+
0
}
.

There are several notions of solutions for this type of problems, but we use
here so-called Pareto efficient and properly efficient solutions. Let us remind
these notions.

Definition 1. With respect to problem (P), an element x̄ ∈ X is said to
be

- Pareto efficient if f(x) ≤Rk
+

f(x̄) for x ∈ X implies f(x) = f(x̄)

- properly efficient if there exists λ = (λ1, . . . , λk)T ∈ int(Rk
+) such that∑k

i=1 λifi(x̄) ≤ ∑k
i=1 λifi(x) for all x ∈ X .

Remark 1. We denote by ”≤Rk
+
” the partial ordering induced by the

non-negative orthant Rk
+ =

{
x = (x1, . . . , xk)T : x1, . . . , xk ≥ 0

}
on Rk. Hence

int(Rk
+) =

{
λ = (λ1, ..., λk)T ∈ Rk

+: λ1, . . . , λk > 0
}
.

Remark 2. A properly efficient element is also a Pareto efficient one,
with respect to optimization problem (P).
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3. The scalarized problem

In order to deal with the properly efficient solutions of problem (P) we consider
the scalarized problem attached to it

(Pλ) infx∈X
∑k

i=1 λifi(x)

where λ = (λ1, . . . , λk)T ∈ int(Rk
+) and then study its duality properties

according to the mentioned approach. For this, let us consider first the general
semidefinite optimization problem

(Pg) infx∈X f̃(x)

where f̃ : Rm → R is a convex function. To obtain the desired dual for
problem (Pg) we use the method described in [10]. So let us consider the
perturbation function

Φ : Rm × Rm × Sn → R, Φ(x, p, Q) =
{

f̃(x + p) if g(x) ≤Sn
+

Q

+∞ otherwise.
Its conjugate function Φ∗ is given by

Φ∗(x∗, p∗, Q∗) = sup
x,p∈Rm

g(x)−Q≤Sn
+

0

{
〈x∗, x〉+ 〈p∗, p〉+ 〈Q∗, Q〉 − Φ(x, p, Q)

}

= sup
x,p∈Rm

g(x)−Q≤Sn
+

0

{
〈x∗, x〉+ 〈p∗, p〉+ 〈Q∗, Q〉 − f̃(x + p)

}
.

It is well-known that the space Sn is self-dual, i.e. (Sn)∗ = Sn. In [13] there
is proved that the cone Sn

+ is also self-dual, i.e.
(Sn

+

)∗ = Sn
+, a property will

be used later.
The dual of problem (Pg) is obtained (cf. [2]) calculating the expression

(P∗g) sup p∗∈Rm

Q∗∈Sn

{− Φ∗(0, p∗, Q∗)
}
.

To ease our calculation we introduce the new variables

r = x + p

S = Q− g(x)

}
.

The expression of the conjugate function Φ∗ of Φ becomes

Φ∗(x∗, p∗, Q∗) = sup
x,r∈Rm

S≥Sn
+

0

{
〈x∗, x〉+ 〈p∗, r − x〉+ 〈Q∗, S + g(x)〉 − f̃(r)

}

= sup
S≥Sn

+
0
〈Q∗, S〉+ sup

r∈Rm

{〈p∗, r〉 − f̃(r)
}

(3.1)

+ sup
x∈Rm

{〈x∗, x〉 − 〈p∗, x〉+ 〈Q∗, g(x)〉}.
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As required above, taking x∗ = 0 we get

Φ∗(0, p∗, Q∗) = sup
S≥Sn

+
0
〈Q∗, S〉+ f̃∗ (p∗) + sup

x∈Rm

{〈Q∗, g(x)〉 − 〈p∗, x〉}

where f̃∗ (p∗) = supr∈Rm{〈p∗, r〉 − f̃(r)} is the conjugate function of f̃ at p∗.
It follows

Φ∗(0, p∗, Q∗) = sup
S≥Sn

+
0
〈Q∗, S〉+ f̃∗ (p∗)

+ sup
x∈Rm

{
−

m∑

i=1

xi〈Q∗, Fi〉 − 〈Q∗, F0〉 −
m∑

i=1

xip
∗
i

}

= sup
S≥Sn

+
0
〈Q∗, S〉+ f̃∗ (p∗)

+ sup
x∈Rm

{
− 〈Q∗, F0〉 −

m∑

i=1

xi (〈Q∗, Fi〉+ p∗i )
}

= sup
S≥Sn

+
0
〈Q∗, S〉+ f̃∗ (p∗)− 〈Q∗, F0〉

+ sup
x∈Rm

{
−

m∑

i=1

xi(〈Q∗, Fi〉+ p∗i )
}

.

For the two suprema encountered above, we have

sup
S≥Sn

+
0
〈Q∗, S〉 =

{
0 if Q∗ ≤Sn

+
0

+∞ otherwise

and

sup
x∈Rm

{
−

m∑

i=1

xi

(〈Q∗, Fi〉+ p∗i
)
}

=
{

0 if 〈Q∗, Fi〉+ p∗i = 0
+∞ otherwise.

As the above infinite values are not relevant for our supremum problem (P ∗g ),
the dual problem becomes

(P∗g) sup
Q∗≤Sn

+
0,p∗=(p∗

1
,...,p∗m)∈Rm

p∗
i
=−T r(Q∗·Fi) (1≤i≤m)

{− f̃∗(p∗) + 〈Q∗, F0〉
}

which, denoting Q = −Q∗, may be written after some transformations also as

(P∗g) sup
Q≥Sn

+
0

{
− f̃∗

(
Tr(Q · F1), ..., T r(Q · Fm)

)− Tr(Q · F0)
}

.
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Remark 3. (P∗g) is the dual problem obtained using the conjugacy ap-
proach to our semidefinite optimization problem with general convex objective
function (Pg). For f̃(x) = 〈c, x〉 (x ∈ Rm) it becomes

(P∗c) sup
Q≥Sn

+
0

T r(Q·Fi)=ci (1≤i≤m)

{− Tr(Q · F0)
}
.

This is exactly the dual problem already obtained for the linear case in the
literature (see [1, 8, 9, 13]).

So the dual to problem (Pλ) looks like

(P∗λ) sup
Q≥Sn

+
0,p∗∈Rm

p∗=(T r(Q·F1),...,T r(Q·Fm))

{
− (∑k

i=1λifi

)∗(p∗)− Tr(Q · F0)
}

which may be turned, using the formula (cf. [6])
(

k∑

i=1

λifi

)∗

(p∗) = inf

{
k∑

i=1

(λifi)∗(p̃i) :
k∑

i=1

p̃i = p∗
}

,

into the problem

(P∗λ) sup
Q≥Sn

+
0,p̃i∈Rm

∑k

i=1
p̃i=(T r(Q·F1),...,T r(Q·Fm))

{
−∑k

i=1(λifi)∗(p̃i)− Tr(Q · F0)
}

.

Knowing that (λifi)∗(p̃i) = λif
∗
i

(
1
λi

p̃i

)
and denoting pi = 1

λi
p̃i, the dual

problem may be simplified to

(P∗λ) sup
Q≥Sn

+
0,pi∈Rm

∑k

i=1
λipi=(T r(Q·F1),...,T r(Q·Fm))

{
−∑k

i=1λif
∗
i (pi)− Tr(Q · F0)

}
.

4. Duality for the scalarized problem

The weak and strong duality assertions hold for the linear problem as it is
proved in [9]. The scalarized problem we are currently treating is a natural
extension of the linear problem, so similar duality properties are to be for-
mulated for it. As the proof of the weak duality theorem is trivial we do not
mention it here.

Theorem 1. There holds weak duality between problems (Pλ) and (P ∗λ ),
i.e. inf(Pλ) ≥ sup(P ∗λ ).

In order to prove the strong duality theorem we have to introduce the
Slater Constraint Qualification
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(SCQ) There exists x′ ∈ Rm such that F (x′) >Sn
+

0.

By ” >Sn
+

” we have denoted the partial ordering on Sn introduced by the set
of symmetric positive definite n × n matrices, which actually coincides with
int(Sn

+) (cf. [8]). We formulate the strong duality theorem for problem (Pg)
from which we obtain the one regarding problem (Pλ).

Theorem 2. Let be inf(Pg) > −∞ and condition (SCQ) be fulfilled.
Then the dual problem (P ∗g ) has an optimal solution and there is strong duality
between problems (Pg) and (P ∗g ), i.e. inf(Pg) = max(P ∗g ).

Proof. The convexity of f and g ensures the convexity of Φ. The con-
straint qualification (SCQ) being fulfilled, there exists x′ ∈ Rm such that
F (x′) ∈ int(Sn

+).
Next we prove that the function Φ(x′, ·, ·) is continuous at (0, 0). Proposi-

tion 2.3 and Theorem 4.1 in [2] imply in this case the existence of an optimal
solution of problem (P∗g) and state the equality of the optimal objective values
of problems (Pg) and (P∗g). Therefore let be ε > 0. The function f̃ being con-
tinuous over Rm, there exists an open neighborhood V1 of 0 in Rm such that,
for all p ∈ V1, |f̃(x′ + p) − f̃(x′)| < ε. Because g(x′) = −F (x′) ∈ −int(Sn

+),
there exists an open neighborhood V2 ⊆ Sn of 0 such that, for all Q ∈ V2,

g(x′) ∈ Q− Sn
+ ⇐⇒ g(x′) ≤Sn

+
Q.

Consider V = V1 × V2, that is a neighborhood of (0, 0) in Rm × Sn. For all
(p,Q) ∈ V we have

∣∣Φ(x′, p, Q)− Φ(x′, 0, 0)
∣∣ =

∣∣f̃(x′ + p)− f̃(x′)
∣∣ < ε

which actually means that Φ(x′, ·, ·) is continuous at (0, 0)

Considering f̃ =
∑k

i=1 λifi, we obtain the strong duality assertion for the
scalarized problem.

Corollary 1. If inf(Pλ) > −∞ and condition (SCQ) holds, then the
dual problem (P ∗λ ) has an optimal solution and there is strong duality between
problems (Pλ) and (P ∗λ ), i.e. inf(Pλ) = max(P ∗λ ).

Further we need also optimality conditions regarding problem (Pλ) and
its dual problem (P ∗λ ). So we formulate and prove the following

Theorem 3.

(a) Let condition (SCQ) be fulfilled and let x̄ ∈ X be a solution to problem
(Pλ). Then there exists an optimal solution (p̄1, ..., p̄k, Q̄) to problem (P ∗λ )
satisfying the optimality conditions
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(i) fi (x̄) + f∗i (p̄i) = 〈p̄i, x̄〉 (i = 1, ..., k).
(ii) Tr(Q̄ · F (x̄)) = 0.
(b) Let x̄ ∈ X and

(
p̄1, ..., p̄k, Q̄

)
feasible to problem (P ∗λ ) satisfying con-

ditions (i) - (ii). Then x̄ turns out to be an optimal solution to problem (Pλ),(
p̄1, ..., p̄k, Q̄

)
an optimal solution to problem (P ∗λ ) and the strong duality be-

tween problems (Pλ) and (P ∗λ ) is true,

k∑

i=1

λifi(x̄) = −
k∑

i=1

λif
∗
i (p̄i)− Tr(Q̄ · F0).

Proof. (a) As condition (SCQ) is fulfilled, there exists an optimal solution
(p̄1, ..., p̄k, Q̄) to problem (P ∗λ ) such that the equality above holds. It may be
also written as

k∑

i=1

λi

(
f∗i (p̄i) + fi(x̄)

)
+ Tr(Q̄ · F0) = 0.

Adding and subtracting in the left-hand side the term 〈∑k
i=1 λip̄i, x̄〉 we get

k∑

i=1

λi

(
f∗i (p̄i) + fi(x̄)− 〈p̄i, x̄〉

)
+

〈 k∑

i=1

λip̄i, x̄

〉
+ Tr(Q̄ · F0) = 0.

As

〈 k∑

i=1

λip̄i, x̄

〉
=

〈
(Tr(Q̄ · F1), ..., T r(Q̄ · Fm)), x̄

〉
=

m∑

i=1

x̄iTr(Q̄ · Fi)

the previous relation becomes

k∑

i=1

λi

(
f∗i (p̄i) + fi(x̄)− 〈p̄i, x̄〉

)
+

m∑

i=1

x̄iTr(Q̄ · Fi) + Tr(Q̄ · F0) = 0

which is equivalent to

k∑

i=1

λi

(
f∗i (p̄i) + fi(x̄)− 〈p̄i, x̄〉

)
+ 〈Q̄, F (x̄)〉 = 0. (4.1)

As x̄ ∈ X , there follows F (x̄) ≥Sn
+

0. Also, knowing that Q̄ ≥Sn
+

0, we have

〈Q̄, F (x̄)〉 ≥ 0. (4.2)
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From Young’s inequality it stands

f∗i (p̄i) + fi(x̄)− 〈pi, x̄〉 ≥ 0 (i = 1, ..., k) (4.3)

and, as λi > 0,
k∑

i=1

λi

(
f∗i (p̄i) + fi(x̄)− 〈p̄i, x̄〉

) ≥ 0.

Therefore
k∑

i=1

λi

(
f∗i (p̄i) + fi(x̄)− 〈p̄i, x̄〉

)
+ 〈Q̄, F (x̄)〉 ≥ 0. (4.4)

By (4.1) there follows that the inequalities encountered in (4.2) - (4.3) must
be fulfilled as equalities. So optimality conditions (i) and (ii) are verified.

(b) All the calculations from part (a) may be carried out in the reverse
direction

5. The multiobjective dual problem

Now we are ready to introduce the multiobjective dual problem (D) to the
primal problem (P)

(D) v-max(p,Q,λ,t)∈Y



−f∗1 (p1)− 1

kλ1
Tr(Q · F0) + t1
...

−f∗k (pk)− 1
kλk

Tr(Q · F0) + tk




where

p = (p1, ..., pk), p1, . . . , pk ∈ Rm, Q ∈ Sn

λ = (λ1, ..., λk)T , t = (t1, ..., tk)T ∈ Rk

and

Y =

{
(p,Q, λ, t)

∣∣∣∣∣
λ ∈ int(Rk

+),
∑k

i=1λiti = 0, Q ≥Sn
+

0
∑k

i=1λipi =
(
Tr(Q · F1), ..., T r(Q · Fm)

)
}

.

As (D) is a maximum vector optimization problem, we have to specify that
we consider here the so-called Pareto efficiency in the sense of maximum to
distinguish its solutions. We recall its definition.
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Definition 2. An element (p̄, Q̄, λ̄, t̄) ∈ Y is said to be Pareto efficient
for problem (D) if, for each j = 1, ..., k and (p,Q, λ, t) ∈ Y, from

−f∗j (p̄j)− 1
kλ̄j

Tr(Q̄ · F0) + t̄j ≤ −f∗j (pj)− 1
kλj

Tr(Q · F0) + tj

there follows equality therein.

Further, we formulate and prove the weak duality assertion for multiob-
jective problems (P) and (D).

Theorem 4. There is no x ∈ X and no (p,Q, λ, t) ∈ Y such that

fi(x) ≤ −f∗i (pi)− 1
kλi

Tr(Q · F0) + ti (i = 1, ..., k)

and, for at least one j ∈ {1, ..., k}, we have therein strong inequality.

Proof. Let us assume the contrary, i.e. that there exist some x and
(p,Q, λ, t) feasible to our problems fulfilling the conditions mentioned above.
Then assembling the relations given in the hypothesis we obtain

k∑

i=1

λifi(x) <

k∑

i=1

λi

(
− f∗i (pi)− 1

kλi
Tr(Q · F0) + ti

)
. (5.1)

On the other hand,

k∑

i=1

λi

(
− f∗i (pi)− 1

kλi
Tr(Q · F0) + ti

)

= −
k∑

i=1

λif
∗
i (pi)−

k∑

i=1

λi

kλi
Tr(Q · F0) +

k∑

i=1

λiti

= −
k∑

i=1

λif
∗
i (pi)− k

1
k

Tr(Q · F0)

= −
k∑

i=1

λif
∗
i (pi)− Tr(Q · F0).

By Theorem 1 we know that

−
k∑

i=1

λif
∗
i (pi)− Tr(Q · F0) ≤

k∑

i=1

λifi(x)

which implies the reverse inequality ≥ in (5.1) and our presumption is false
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Now we are ready to deal with strong duality between problems (P) and
(D).

Theorem 5. Let there exists an element x′ ∈ Rm such that F (x′) >Sn
+

0.
If x̄ is properly efficient to problem (P), then there exists a Pareto-efficient
solution (p̄, Q̄, λ̄, t̄) ∈ Y to problem (D) and strong duality between problems
(P) and (D) is fulfilled, i.e.

fi(x̄) = −f∗i (p̄i)− 1
kλ̄i

Tr(Q̄ · F0) + t̄i (i = 1, ..., k).

Proof. The element x̄ being properly efficient to problem (P) implies the
existence of a λ̄ ∈ int(Rm

+ ) such that x̄ solves problem (Pλ̄), i.e.

k∑

i=1

λ̄ifi(x̄) = min
x∈X

k∑

i=1

λ̄ifi(x).

Condition (SCQ) is fulfilled, so there exists an optimal solution to problem
(P∗̄

λ
) satisfying the optimality conditions in Theorem 3. Let us denote it by

(p̄1, ..., p̄k, Q̄) and define

t̄j = p̄T
j x̄ +

1
kλ̄j

Tr(Q̄ · F0) ∈ R (j = 1, ..., k).

It follows
k∑

j=1

λ̄j t̄j =
k∑

j=1

λ̄j p̄
T
j x̄ +

k∑

j=1

λ̄j
1

kλ̄j
Tr(Q̄ · F0)

=
〈 k∑

j=1

λ̄j p̄j , x̄

〉
+ Tr(Q̄ · F0)

=
k∑

j=1

〈Q̄, Fj〉x̄j + 〈Q̄, F0〉

= 〈Q̄, F (x̄)〉
= 0.

So far we have proved that the element (p̄, Q̄, λ̄, t̄) belongs to the set Y. Let
us show the remaining requirement, namely that, for all i = 1, ..., k,

fi(x̄) = −f∗i (p̄i)− 1
kλ̄i

Tr(Q̄ · F0) + t̄i.
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According to Theorem 3/(i) we have

− f∗i (p̄i)− 1
kλ̄i

Tr(Q̄ · F0) + t̄i

= −f∗i (p̄
i
)− 1

kλ̄i
Tr(Q̄ · F0)p̄T

i x̄ +
1

kλ̄i
Tr(Q̄ · F0)

= −f∗i (p̄
i
) + p̄T

i x̄

= fi(x̄).

With the weak duality (cf. Theorem 4) there follows that (p̄, Q̄, λ̄, t̄) is Pareto
efficient to problem (D)

We can also formulate the converse duality theorem, whose proof is not
mentioned here (cf. [10]).

Theorem 6. Assume that condition (SCQ) is fulfilled and that for each
λ ∈ int(Rn

+) the property

(C) inf
x∈X

k∑

i=1

λifi(x) > −∞ =⇒ inf
x∈X

k∑

i=1

λifi(x) =
k∑

i=1

λifi(xλ)

for some xλ ∈ X
holds. Then:

(a) For any Pareto-efficient solution (p̄, Q̄, λ̄, t̄) of problem (D) we have



−f∗1 (p̄1)− 1

kλ̄1
Tr(Q̄ · F0) + t̄1
...

−f∗k (p̄k)− 1
kλ̄k

Tr(Q̄ · F0) + t̄k


 ∈ cl

(
f(X ) + Rk

+

)

and there exists a properly efficient solution x̄λ̄ ∈ X to problem (P) such that

k∑

i=1

λ̄i

[
fi(x̄λ̄) + f∗i (p̄i) +

1
kλ̄i

Tr(Q̄ · F0)− t̄i

]
= 0.

(b) If, additionally, f(X ) is Rk
+-closed (i.e. f(X ) + Rk

+ is closed), then
there exists an x̄ ∈ X properly efficient to problem (P) such that

k∑

i=1

λ̄ifi(x̄λ̄) =
k∑

i=1

λ̄ifi(x̄)

fi(x̄) = −f∗i (p̄i)− 1
kλ̄i

Tr(Q̄ · F0) + t̄i.
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6. Special cases

6.1 Special case I. Let us consider the initial vector minimization problem
with the linear objective function f =

(〈c1, x〉, ..., 〈ck, x〉)T . We have

(Pl) v-minx∈X
(〈c1, x〉, . . . , 〈ck, x〉)T .

To be able to calculate the problem dual to problem (P) using the method
presented before, we have to determine the conjugate function f∗i of each of
the linear functions fi(·) = 〈ci, ·〉,

f∗i (pi) = sup
x∈Rm

{〈pi, x〉 − 〈ci, x〉
}

= sup
x∈Rm

{〈pi − ci, x〉
}

=
{ 0 if pi = ci

+∞ otherwise.

By this, the dual of problem (Pl) looks like

(Dl) v-max(Q,λ,t)∈Yl



− 1

kλ1
Tr(Q · F0) + t1

...
− 1

kλk
Tr(Q · F0) + tk




where

Yl =

{
(Q, λ, t)

∣∣∣∣∣
λ ∈ int(Rk

+),
∑k

i=1λiti = 0, Q ≥Sn
+

0
∑k

i=1λici =
(
Tr(Q · F1), ..., T r(Q · Fm)

)
}

.

Let us denote di = ti − 1
kλi

Tr(Q · F0). The condition
∑k

i=1 λiti = 0 becomes∑k
i=1 λi

(
di + 1

kλi
Tr(Q · F0)

)
= 0, which implies

k∑

i=1

λidi = −k
1
k

Tr(Q · F0) = −Tr(Q · F0).

So the dual of problem (Pl) is

(Dl) v-max(Q,λ,d)∈Yl

(
d1, . . . , dk

)T

where

Yl =

{
(Q,λ, d)

∣∣∣∣∣
λ ∈ int(Rk

+),
∑k

i=1λidi = −Tr(Q · F0), Q ≥Sn
+

0
∑k

i=1λici =
(
Tr(Q · F1), ..., T r(Q · Fm)

)
}

.
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6.2 Special case II. The next optimization problem we treat is known as
multiobjective fractional program with linear inequality constraints. A gen-
eralized case is presented in [12], while its single objective scalar case is men-
tioned in [9], where it is treated by means of semidefinite programming. For

(Pf) v-minA·x≤Rp
+

b

(
〈c1,x〉2
〈d1,x〉 , . . . , 〈c

k,x〉2
〈dk,x〉

)T

with A = (aij) ∈ Rp×m, b ∈ Rp and cj , dj ∈ Rm (j = 1, ..., k) we assume that,
for each feasible x, 〈dj , x〉 > 0.

To be able to deal with problem (Pf ) within the framework of the present
paper we reformulate it as a semidefinite programming problem. First, it is
obvious that (Pf ) may be written also as

(Pf) v- min
A·x≤Rp

+
b

〈cj,x〉2
〈dj,x〉 ≤yj (1≤j≤k)

(
y1, . . . , yk

)T .

The system of constraints above is equivalent (cf. [3, 9, 13]) to the semidefi-
niteness of the matrix

F (x, y) =




diag(b−A · x) 0 0 0

0 H1 0 0

0 0
. . . 0

0 0 0 Hk




with Hj =
( yj 〈cj , x〉
〈cj , x〉 〈dj , x〉

)
(j = 1, ..., k). As A · x =

(∑p
i=1 a1ixi, . . . ,

∑p
i=1 amixi

)T , cj = (cj
1, ..., c

j
m) and dj = (dj

1, ..., d
j
m), F (x, y) may be written

as sum of symmetric matrices

F (x, y) =
m∑

i=1

xi




diag(−a1i, ...,−api) 0 0 0 0 0

0 0 c1
i 0 0 0

0 c1
i d1

i 0 0 0

0 0 0
. . . 0 0

0 0 0 0 0 ck
i

0 0 0 0 ck
i dk

i
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+
k∑

j=1

yj




0
. . .

1
. . .

0




+
( diag(b) 0

0 0

)
≥Sp+2k

+
0.

Let us denote

- by Fi the matrix multiplied above by xi (i = 1, ..., m)

- by Fm+j (1 ≤ j ≤ k) the one multiplied above by yj , namely, the (p +
2k)×(p+2k) matrix with all entries equal to 0, but the one in the position
(p + 2j − 1, p + 2j − 1) whose value is 1, and

- by F0 the last matrix.

One may notice that all the matrices encountered above are symmetric and
problem (Pf ) has been written in the same form as primal problem (P). In
order to determine the dual of problem (Pf ) we need to calculate the con-
jugates of the entries of the vectorial objective function. For the functions
fj(x, y) = yj (j = 1, ..., k) the conjugates are

f∗j (u, v) = sup
x∈Rm,y∈Rk

{〈u, x〉+ 〈v, y〉 − fj(x, y)
}

= sup
x∈Rm,y∈Rk

{ m∑

i=1

uixi +
k∑

l=1

vlyl − yj

}

=
{ 0 if u = 0, vj = 1, vl = 0, l 6= j

+∞ otherwise.

The previous results lead us to the dual to problem (Pf )

(Df) v-max(Q,λ,t)∈Yf



− 1

kλ1
Tr(Q · F0) + t1

...
− 1

kλk
Tr(Q · F0) + tk




where

Yf =

{
(Q,λ, t)

∣∣∣∣∣
λ ∈ int(Rk

+),
∑k

i=1λiti = 0, Q ≥Sp+2k
+

0, T r(Q · Fi) = 0

(1 ≤ i ≤ m), T r(Q · Fm+j) = λj (1 ≤ j ≤ k)

}
.

As the matrices Fi (i = 0, ..., m + k) are known and Q’s entries may be
denoted by (qij) (i, j = 1, ..., p + 2k), we can develop a simpler shape of the
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dual problem. So let us calculate the values of the scalar products between Q
and Fi (i = 0, ..., m + k):

Tr(Q · F0) =
p∑

i=1

qiibi

Tr(Q · Fi) =
p∑

i=1

−aliqll + 2
k∑

j=1

qp+2j−1,p+2jc
j
i +

p∑

i=1

qp+2j,p+2jd
j
i

(i = 1, . . . , m)

Tr(Q · Fm+j) = qp+2j−1,p+2j−1 (j = 1, ..., k).

Because Tr(Q ·Fm+j) = λj , one has λj = qp+2j−1,p+2j−1 (j = 1, ..., k). So the
variables λj may be eliminated from the dual problem whose form becomes

(Df) v-max(Q,t)∈Yf

(
h1(Q, t), . . . , hk(Q, t)

)T

where

hj(Q, t) = − 1
kqp+2j−1,p+2j−1

p∑

i=1

qiibi + tj (j = 1, ..., k)

and

Yf =





(Q, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q = (qij) ≥Sp+2k
+

0,

k∑

j=1

qp+2j−1,p+2j−1tj = 0

qp+2j−1,p+2j−1 > 0 (j = 1, ..., k)

AT · (q11, ..., qpp)T =

2
k∑

j=1

qp+2j−1,p+2jc
j +

k∑

i=1

qp+2j,p+2jd
j





.

In [12] there is obtained the dual to problem (Pf )

(D′
f) v-max(λ,δ,qs,qt)∈Y′

f
h′(λ, δ, qs, qt)

where h′(λ, δ, qs, qt) =
(− 〈δ1, b〉, . . . ,−〈δk, b〉)T and

Y ′f =





(λ, δ, qs, qt)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ ∈ int(R+
k ), qs, qt ∈ Rk

+, δ = (δ1, ..., δk), δj ∈ Rk

(qs
j )

2 ≤ 4qt
j (j = 1, ..., k),

k∑

j=1

λjδj ≥Rp
+

0

AT ·
( k∑

j=1

λjδj

)
+

k∑

j=1

λj(qs
j c

j − qt
jd

j) = 0





.
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In order to find some connections between these two multiobjective dual prob-
lems we study the relation of inclusion between the image sets of their objective
functions over the corresponding feasible sets. Therefore, let be d ∈ h′(Y ′f ).
So there exists a tuple (λ, δ, qs, qt) ∈ Y ′f such that d = h′(λ, δ, qs, qt). Let us
consider

quv =





(
∑k

j=1 λjδj)u if u = v = 1, ..., p
λj if u = v = p + 2j − 1
λjq

t
j if u = v = p + 2j

−λjqs
j

2 if (u, v) =





(p + 2j, p + 2j − 1)
or
(p + 2j − 1, p + 2j)

0 otherwise

where by (a)u we have denoted the u-th entry of the vector a. Also, let us
introduce tj = −〈δj , b〉+ 1

kλj

〈∑k
j=1 λjδj , b

〉
.

Using properties of positive semidefinite matrices (cf. [3, 9, 13]) one may
notice that Q = (quv)p+2k

u,v=1 ∈ Sp+2k
+ . On the other hand, for each j = 1, ..., k

we have qp+2j−1,p+2j−1 > 0. Simple calculations give the relations

k∑

j=1

qp+2j−1,p+2j−1tj = 0

AT · (q11, ..., qpp)T − 2
k∑

j=1

qp+2j−1,p+2jc
j −

k∑

i=1

qp+2j,p+2jd
j = 0.

By these, (Q, t) ∈ Yf . For each component of the objective function h(Q, t),
we have

hj(Q, t) = − 1
kqp+2j−1,p+2j−1

〈
(q11, ..., qpp)T , b

〉
+ tj

= − 1
kλj

〈 k∑

j=1

λjδj , b

〉
− 〈δj , b〉+

1
kλj

〈 k∑

j=1

λjδj , b

〉

= −〈δj , b〉.
Hence d = h(Q, t) ∈ h(Yf ), which means that h′(Y ′f ) ⊆ hf (Yf ). One may
notice that the reverse inclusion does not hold.

A detailed analysis of the relations between different duals introduced in
the literature to a general convex multiobjective problem will be given in a
forthcoming paper.
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