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Absolutely Continuous Functions
of Several Variables

and Quasiconformal Mappings

S. Hencl

Abstract. We prove that functions with bounded n-variation and n-absolutely con-
tinuous functions of n-variables in the sense of [4] are stable under quasiconformal
mappings. The class of quasiconformal mappings is the best possible since every
homeomorphism which induces a bounded operator between BV n spaces is a qua-
siconformal mapping.
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1. Introduction

Absolutely continuous functions of one variable are admissible transforma-
tions for the change of variables in Lebesgue integral. Recently J. Malý [6] in-
troduced a class of n-absolutely continuous functions giving an n-dimensional
analogue of the notion of absolute continuity from this point of view. We study
a modified class of n-absolutely continuous functions suggested by Zaj́ıček
which was introduced in [4]. Our aim is to find the largest class of transfor-
mations which preserves n-absolute continuity.

Suppose that Ω ⊂ Rn is an open set and 0 < λ < 1. We say that a
function f : Ω → Rm is n, λ-absolutely continuous if for each ε > 0 there is a
δ > 0 such that, for each disjoint finite family {Bi(xi, ri)} of balls in Ω,

∑

i

Ln(Bi) < δ =⇒
∑

i

(
oscBi(xi,λri)f

)n
< ε.
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ISSN 0232-2064 / $ 2.50 c© Heldermann Verlag Berlin



768 S. Hencl

Absolute continuity from [6] coincides with n, 1-absolute continuity. It is
proved in [4, 6] that n, λ-absolute continuity implies continuity, weak dif-
ferentiability with gradient in Ln, differentiability almost everywhere and a
formula on change of variables.

It was shown by Csörnyei [1] that there exists a 2, 1-absolutely continuous
function with respect to balls, which is not a function of this type with respect
to cubes, where the concept in question is defined by an obvious modification
to the definition given above. On the contrary, n, λ-absolute continuity does
not depend on the shape of the ”ball” in the definition for 0 < λ < 1 (see [4]
for details). The class of absolutely continuous functions also does not depend
on the precise value of λ if 0 < λ < 1 (see Theorem 3.5 below). From this
point of view it is more natural to work with the new definition (i.e. with
0 < λ < 1).

Given a measurable set A ⊂ Rn and a function f : A → Rm, we define
the n, λ-variation of f on A by

V n
λ (f,A) = sup

{ ∑

i

(
oscB(xi,λri)f

)n :
{B(xi, ri)} is a disjoint

finite family of balls in A

}
.

We denote by BV n
λ (Ω) the class of all functions such that V n

λ (f, Ω) < ∞,
define the space ACn

λ (Ω) as the family of all n, λ-absolutely continuous func-
tions in BV n

λ (Ω) and write ACn
λ,loc for the class of all functions f such that

f ∈ ACn
λ (K) for every compact set K ⊂ Ω.

We prove in Section 3 that if Ω ⊂ Rn (n ≥ 2) is an open set, 0 < λ < 1
and F : Ω → Rn is a quasiconformal mapping, then

(i) f ∈ BV n
λ (Ω) ⇐⇒ f ◦ F−1 ∈ BV n

λ (F (Ω))

(ii) f ∈ ACn
λ (Ω) ⇐⇒ f ◦ F−1 ∈ ACn

λ (F (Ω)).

This extends the result from [4] where F was a bi-Lipschitz mapping. Note
that the class ACn

1 is not stable even under bi-Lipschitz mappings (see [5] for
details).

Using ideas from [2] we prove the following result in Section 4:

Let 0 < λ ≤ 1 and n ≥ 2. If a homeomorphism F : Ω → Rn induces a
bounded operator from BV n

λ (F (Ω)) to BV n
λ (Ω), then F is a quasiconformal

mapping.

It follows that the results in Section 3 are sharp.



Absolute Continuity and Quasiconformal Mappings 769

2. Preliminaries

Throughout the paper we consider an open set Ω ⊂ Rn (n > 1). We denote
- by Ln(A) or |A| the n-dimensional Lebesgue measure of a set A ⊂ Rn

- by λ a real number 0 < λ < 1
- by B(x, r) the n-dimensional Euclidean open ball with center x and di-

ameter r (throughout the paper we use the letter B for balls only)
- by B(x, r) the corresponding closed ball
- λB = B(x, λr) for a given ball B = B(x, r)
- by S(x, r) = {y ∈ Rn : |x− y| = r} a sphere
- by oscAf the oscillation of f : Ω → Rm over the set A ⊂ Ω, which is the

diameter of f(A)
- by F

′
(x) for a mapping F : Ω → Rn the Jacobi matrix of all partial

derivatives of F at x
- by ∇F the weak (distributional) derivative
- by JF (x) the determinant of the Jacobi matrix of F (x)
- by W 1,p(Ω) and W 1,p

loc (Ω) the Sobolev spaces.
A mapping F : Ω → Rn is called a homeomorphism if there exists its inverse
F−1 and both F and F−1 are continuous. We write f ◦ F or F ?f for the
composition of the functions F : Ω → Rn and f : F (Ω) → Rm; that is (f ◦
F )(x) = (F ?f)(x) = f(F (x)) for every x ∈ Ω. We say that a homeomorphism
F : Ω → Rn induces a bounded operator F ? : BV n

λ (F (Ω)) → BV n
λ (Ω) if

there is a constant C > 0 such that V n
λ (F ?f, Ω) ≤ C V n

λ (f, F (Ω)) for every
f ∈ BV n

λ (F (Ω)).
We use the convention that C denotes a generic positive constant which

may change from expression to expression.

3. Stability of ACn
λ under quasiconformal mappings

In this section we will prove that classes of functions ACn
λ and BV n

λ are stable
with respect to quasiconformal change of variables.

Definition 3.1. Let 1 ≤ K < ∞. A mapping F : Ω → Rn is called
K-quasiconformal, if it satisfies the following properties:

(i) F is a homeomorphism
(ii) F ∈ W 1,n

loc (Ω,Rn)
(iii) |∇F (x)|n ≤ K|JF (x)| for almost every x ∈ Ω.

We say that a mapping F is quasiconformal, if there is K < ∞ such that f is
K-quasiconformal.

For the history and basic properties of quasiconformal mappings we refer
the reader to [8].



770 S. Hencl

Definition 3.2. A function F : Ω → Rn is η-quasisymmetric if there is
a homeomorphism η : [0,∞) → [0,∞) such that, for every a, b, x ∈ Ω and
ρ ≥ 0,

|a− x| ≤ ρ|b− x| =⇒ |F (a)− F (x)| ≤ η(ρ)|F (b)− F (x)|.
The following theorem [6: Theorem 2.4] states that quasiconformal map-

pings are locally quasisymmetric.

Theorem 3.3. Suppose n ≥ 2, F : Ω → Rn is a K-quasiconformal
mapping and x0 ∈ Ω, α > 1, r > 0 and B(x0, αr) ⊂ Ω. Then F |B(x0,r) is
η-quasisymmetric where η depends only on n,K and α.

Using this theorem for α = 2 and a quasiconformal mapping F : Ω → Rn,
there is 0 < ρ0 < 1 such that, for a fixed x ∈ Ω and r < ρ0

2 dist(x, ∂Ω),

sup
{a:|x−a|≤r}

|F (x)− F (a)| ≤ 1
4

inf
{b:|x−b|= r

ρ0
}
|F (x)− F (b)|. (3.1)

Lemma 3.4. Let 0 < λ ≤ 1, f ∈ BV n
λ (Ω) and f ∈ ACn

λ,loc(Ω). Then
f ∈ ACn

λ (Ω).

Proof. Fix ε > 0. It is not difficult to see from the definition of n, λ-
variation that we can find a finite collection of pairwise disjoint balls B(xi, ri)
such that B(xi, ri) ⊂ Ω and

∑

i

(
oscB(xi,λri)f

)n
> V n

λ (f, Ω)− ε.

Since Ω is open and B(xi, ri) ⊂ Ω, we can find k ∈ N such that for

Ωk =
{

x ∈ Ω : |x| < k and dist (x, ∂Ω) >
1
k

}
(3.2)

we have B(xi, ri) ⊂ Ωk for each i and therefore V n
λ (f, Ωk) > V n

λ (f, Ω) − ε.
From this fact and V n

λ (Ωk)+V n
λ (Ω \Ωk) ≤ V n

λ (Ω) we obtain V n
λ (Ω \Ωk) < ε.

For a given ε we can find δ1 from the definition of ACn
λ (Ωk+1) for f . Put

δ = min
{

δ1,Ln

(
B

(
0,

1
2k(k + 1)

))}
. (3.3)

Fix pairwise disjoint balls B1, . . . , Bl in Ω such that
∑l

i=1 Ln(Bi) < δ. From
(3.3) we obtain diam(Bi) < 1

k − 1
k+1 (i ∈ {1, . . . , l}). Thus (3.2) gives that
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either Bi ⊂ Ωk+1 or Bi ⊂ Ω \ Ωk for every i. Hence we obtain from the
definition of δ1 and k that

∑

i

oscn
λBi

f ≤
∑

i:Bi⊂Ωk+1

oscn
λBi

f +
∑

i:Bi⊂Ω\Ωk

oscn
λBi

f

≤
∑

i:Bi⊂Ωk+1

oscn
λBi

f + V n
λ (Ω \ Ωk)

≤ ε + ε

= 2ε

and the proof is finished

The following theorem [3: Theorem 3.1] gives us the opportunity to use
any λ ∈ (0, 1) in the definition of the classes ACn

λ and BV n
λ . We will use this

fact in the proof of Theorem 3.6.

Theorem 3.5. Let 0 < λ1 < λ2 < 1 and f : Ω → Rm. Then BV n
λ1

(Ω) =
BV n

λ2
(Ω) and ACn

λ1
(Ω) = ACn

λ2
(Ω).

Now we can prove the main result of this section.

Theorem 3.6. Let n ≥ 2 and 0 < λ < 1. Suppose that the mapping
F : Ω → Rn is K-quasiconformal and f : Ω → R. Then:

(i) f ◦ F−1 ∈ BV n
λ (F (Ω)) =⇒ f ∈ BV n

λ (Ω)
(ii) f ◦ F−1 ∈ ACn

λ (F (Ω)) =⇒ f ∈ ACn
λ (Ω).

Proof. Let us first suppose that f ◦ F−1 ∈ BV n
λ (F (Ω)). Thanks to

Theorem 3.5 we can suppose that λ = 1
2 . We will prove that f ∈ BV n

ρ0
2

(Ω).
Recall that the constant 0 < ρ0 < 1 comes from (3.1).

Suppose that Bi = B(xi, ri) ⊂ Ω are pairwise disjoint balls. Clearly,

F
(
B

(
xi,

ρ0

2
ri

))
⊂ B

(
F (xi), oscB(xi,

ρ0
2 ri)

F
)

. (3.4)

Thanks to (3.1), for r = ρ0
2 ri and x = xi we have

B
(
F (xi), 2oscB(xi,

ρ0
2 ri)

F
)

⊂ B

(
F (xi), 4 sup

{a:|xi−a|≤ ρ0
2 ri}

|F (xi)− F (a)|
)

⊂ B

(
F (xi), inf

{b:|xi−b|= 1
ρ0

ρ0
2 ri}

|F (xi)− F (b)|
)

⊂ F
(
B

(
xi,

1
2
ri

))
.

(3.5)
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Hence the balls B̃i = B
(
F (xi), 2oscB(xi,

ρ0
2 ri)

F
)

are pairwise disjoint in F (Ω).
Thus (3.4) gives us

∑

i

oscn
B(xi,

ρ0
2 ri)

f =
∑

i

oscn
F (B(xi,

ρ0
2 ri))

f ◦ F−1

≤
∑

i

oscn
B(F (xi),oscB(xi,

ρ0
2 ri)

F )f ◦ F−1

=
∑

i

oscn
1
2 B̃i

f ◦ F−1

≤ V n
1
2

(
f ◦ F−1, F (Ω)

)
.

(3.6)

It follows that V n
ρ0
2

(f, Ω) ≤ V n
1
2
(f ◦ F−1, F (Ω)) < ∞.

Now let us suppose that f ◦F−1 ∈ ACn
λ (F (Ω)). As before we can assume

that λ = 1
2 . From the conclusions above we obtain f ∈ BV n

ρ0
2

(Ω). Thanks to
Lemma 3.4 and Theorem 3.5 it is enough to prove that f ∈ ACn

ρ0
2 ,loc

(Ω).

Fix ε > 0 and Ω′ ⊂ Ω such that Ω′ ⊂ Ω. Choose δ1 from the definition of
ACn

1
2
(Ω) for function f ◦F−1. By [4: Theorem 4.3], quasiconformal mappings

are locally absolutely continuous and therefore F ∈ ACn
λ (Ω′). Hence for a

given ε1 = δ1
2n we can choose δ2 from the definition of ACn

ρ0
2

(Ω′) for the
function F .

Suppose that the balls Bi = B(xi, ri) ⊂ Ω′ are pairwise disjoint and∑
i Ln(Bi) < δ2. As before we obtain (3.4) and (3.5). Therefore the balls

B̃i = B
(
F (xi), 2oscB(xi,

ρ0
2 ri)F

)

are pairwise disjoint in F (Ω′). Further,
∑

i Ln(Bi) < δ2 and the definition of
δ2 give us

∑

i

Ln(B̃i) = 2n
∑

i

oscn
B(xi,

ρ0
2 ri)F ≤ 2nε1 = 2n δ1

2n
= δ1.

Analogously to (3.6) we obtain from the definition of δ1 that

∑

i

oscn
B(xi,

ρ0
2 ri)

f ≤
∑

i

oscn
1
2 B̃i

f ◦ F−1 < ε

and the proof is finished

The inverse mapping to a quasiconformal mapping is also quasiconformal
[7: Corollary 13.3] and hence we have the following
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Corollary 3.7. Let 0 < λ < 1, n ≥ 2 and let f : Ω → Rm. Suppose that
F : Ω → Rn is a quasiconformal mapping. Then:

(i) f ∈ BV n
λ (Ω) ⇐⇒ f ◦ F−1 ∈ BV n

λ (F (Ω))
(ii) f ∈ ACn

λ (Ω) ⇐⇒ f ◦ F−1 ∈ ACn
λ (F (Ω)).

The following elementary example shows that the assumption f ∈ BV n
λ

from the definition of the class ACn
λ is important in Theorem 3.6.

Example 3.8. Let 0 < λ < 1. There exists a domain Ω ⊂ R2 and a
1-quasiconformal mapping F : Ω → R2 such that f ◦ F−1 is 2, λ-absolutely
continuous on F (Ω) but f is not 2, λ-absolutely continuous on Ω.

Indeed, set Ω =
{
[x, y] : x > 0

}
and F (x, y) =

[
x

x2+y2 , −y
x2+y2

]
. In other

words, for z ∈ C we define F (z) = 1
z (thus also F−1(z) = 1

z ). It is well known
that the mapping 1

z is conformal and hence also 1-quasiconformal [7: Theorem
8.1]. Plainly, F (Ω) = {[x, y] : x > 0}. Put

f̃(x) =
∞∑

k=1

max
{
0, 1− dist(x, [2k, 0])

}
.

Clearly, f̃ is a Lipschitz function with Lipschitz constant 1 on F (Ω) and hence
also 2, λ-absolutely continuous.

Set f = f̃ ◦ F (hence f̃ = f ◦ F−1) and Bk = B([2k, 0], 1). Properties of
inversion and easy computation gives us

B̃k := F−1(Bk) = B

([
1

2k+1 + 1
2k−1

2
, 0

]
,

1
2k−1 − 1

2k+1

2

)

for every k ∈ N. From osc
B̃k

f ≥ 1 and diam B̃k → 0 we obtain that f is not
2, λ-absolutely continuous.

It is not difficult to prove that the condition Ln(Ω) < ∞ guarantees that
any n, λ-absolutely continuous function f on Ω satisfies f ∈ BV n

λ (Ω). Hence
such an example can exist only if Ln(F (Ω)) = ∞ in view of Theorem 3.6.

4. Continuous homeomorphisms F : BV n
λ → BV n

λ

In this section we will use ideas of Gold’stein, Gurov and Romanov [2]. They
proved that a homeomorphism F : Ω → Rn which induces a bounded operator
from W 1,n(F (Ω)) to W 1,n(Ω) is a quasiconformal mapping (see [2] for details
and [3] for the history of similar problems).

Let us denote F ′v(x) = limr→0
|F (B(x,r))|
|B(x,r)| . We shall need the following

connection between F ′v and the Jacobian of F [7: Theorems 24.2 and 24.4].
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Theorem 4.1. Let F : Ω → Rn be a homeomorphism. Then:

(i) F ′v < ∞ almost everywhere.

(ii) F ′v is a measurable function.

(iii) For each measurable set A ⊂ Ω, |F (A)| ≥ ∫
A

F ′v(x) dx.

(iv) If F is differentiable at x and JF (x) is the Jacobi matrix of F at x,
then F ′v = |JF (x)|.

Lemma 4.2. If a homeomorphism F : Ω → Rn induces the bounded oper-
ator F ? : BV n

λ (F (Ω)) → BV n
λ (Ω), then F is differentiable almost everywhere

on Ω.

Proof. Fix R > 0. The mapping F is a homeomorphism and therefore
the set

AR =
{
x ∈ Ω : F (x) ∈ B(0, R)

}
= F−1(B(0, R))

is open. Fix 1 ≤ i ≤ n. Plainly, there is a Lipschitz function f : F (Ω) → R
such that

f(x) =
{

xi for x ∈ F (Ω), |x| < R
0 for x ∈ F (Ω), |x| > R + 1.

Hence f ∈ BV n
λ (F (Ω)) implies F ?f = f ◦ F ∈ BV n

λ (Ω). If |F (x)| < R, then
f ◦F = Fi(x). Thus Fi(x) ∈ BV n

λ (AR). Functions from BV n
λ (A) are differen-

tiable almost everywhere on A for every open set A (see [6: Theorem 3.3] and
[4: Theorem 3.4] for details) and hence Fi is differentiable almost everywhere
on AR. Since AR → Ω as R → ∞ we obtain that Fi is differentiable almost
everywhere on Ω

In the proof of Theorem 4.4 below we will need the following elementary
lemma [2: Lemma 3.5]:

Lemma 4.3. Let F : Ω → Rn be a continuous mapping and G ⊂ Rk.
Suppose that {Ky}y∈G is a family of pairwise disjoint compact sets such that
Ky ⊂ F (Ω). Then Ln(F−1(Ky)) = 0 for all y ∈ G except possibly a countable
subset of G.

Theorem 4.4. Let 0 < λ ≤ 1 and n ≥ 2. If a homeomorphism F :
Ω → Rn induces the bounded operator F ? : BV n

λ (F (Ω)) → BV n
λ (Ω), then

F ∈ W 1,n
loc (Ω) and there is a number K such that

|∇Fi|n ≤ KF ′v(x)

for almost all x ∈ Ω and for all i = 1, 2, . . . , n.

Proof. In this proof we will follow the ideas from [2: Theorem 3.6]. By
Theorem 4.1, F ′v(x) < ∞ a.e. Fix ε > 0 and a point x0 ∈ Ω such that
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F ′v(x0) < ∞. There is r0 such that for all r ∈ (0, r0) we have

|F (B(x0, 2r))| ≤ (F ′v(x0) + ε)|B(x0, 2r)|
= (F ′v(x0) + ε)2n|B(x0, r)|.

(4.1)

Set M = (F ′v(x0) + ε)2n. Let us call a cube Q h-regular if all its edges are
parallel to the coordinate axes, the length of the edge is h and every vertex has
the form [k1h, . . . , knh] where k1, . . . , kn are integers. Fix r < r0 and choose
h > 0 such that

h <
1

2
√

n
dist

(
F (S(x0, 2r)), F (S(x0, r))

)
.

Let A be the union of all h-regular cubes Q such that Q∩F (B(x0, r)) 6= ∅. It
is evident that

F (B(x0, r)) ⊂ A ⊂ F (B(x0, 2r)).

Fix j ∈ {1, . . . , n} and let us focus on the j-th coordinate. Denote the hy-
perplanes xj = th by Lt. The hyperplanes Lm (m an integer) divide Rn into
layers

Zm =
{
x ∈ Rn : mh < xj < (m + 1)h

}
.

Put Am = Zm ∩A.
For every Am we construct three functions

ψm,1 = xj −mh

ψm,2 = (m + 1)h− xj

ψm,3 =
h

2
− dist

(
Pj(x), Pj(Am)

)
.

Here Pj : Rn → Rn−1
j is the orthogonal projection of Rn onto Rn−1

j . Consider
the functions

ψm = max
{
0, min{ψm,1, ψm,2, ψm,3}

}
and ψ =

∑
m

ψm.

Put
E =

{
x ∈ G : ψ(x) is not differentiable at x

}
.

It follows from the definition of ψ that:
(1) supp(ψ) ⊂ F (B(x0, 2r))
(2) ψ is Lipschitz with constant 1
(3) ψ ∈ BV n

λ (F (Ω))
(4) ψ is differentiable almost everywhere
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(5) ψ(x) = ±xj + const in all components of the set F (B(x0, r)) \ E.
The set E ∩ F (B(x0, r)) belongs to a finite union of hyperplanes Lt1 , . . . , Lts

where 2ti is an integer. By Lemma 4.3, for almost all small translations τy

parallel to the axis xj we have

∣∣∣∣∣F
−1

(
τy

( ∞⋃

i=−∞
L i

2

)
∩ F (B(x0, r))

)∣∣∣∣∣ = 0.

Thus we can assume without loss of generality that

∣∣F−1
(
E ∩ F (B(x0, r))

)∣∣ = 0. (4.2)

Otherwise it is possible to change the j-th coordinate of the point [0, . . . , 0]
at the beginning of the construction of ψ.

By the assumption of the theorem, F ?ψ = ψ◦F ∈ BV n
λ (Ω). It follows from

(5) and (4.2) that (ψ ◦F )(x) = ±Fj(x) + const for almost all x ∈ B(x0, r). It
is easy to see from the proof of [5: Theorem 3.2] that BV n

λ (Ω) is continuously
embedded into W 1,n(Ω). These two facts give us

∫

B(x0,r)

|∇(Fj(x))|ndx ≤
∫

Ω

|∇(ψ ◦ F )|ndx

≤ CV n
λ (ψ ◦ F, Ω)

= CV n
λ (F ?(ψ),Ω).

(4.3)

Since F ? is continuous we have

V n
λ (F ?(ψ), Ω) ≤ CV n

λ (ψ, Ω). (4.4)

The function ψ is Lipschitz with constant 1 and hence

oscn
B(x,s)ψ ≤ (2s)n = C|B(x, s)| (4.5)

for each x and every s. Thanks to (4.5), the continuity of ψ and supp(ψ) ⊂
F (B(x0, 2r)) we have

V n
λ (ψ, Ω) ≤ C|F (B(x0, 2r))|. (4.6)

From (4.3), (4.4) and (4.6) it follows that

∫

B(x0,r)

|∇(Fj(x))|ndx ≤ C|F (B(x0, 2r))|.
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By (4.1), ∫

B(x0,r)

|∇(Fj(x))|ndx ≤ CM |B(x0, r)|.

Hence
lim sup

r→0

1
|B(x0, r)|

∫

B(x0,r)

|∇(Fj(x))|ndx ≤ CM.

The Lebesgue Theorem gives us |∇Fj(x0)|n ≤ C(F ′v(x0) + ε) for almost all
x0 ∈ Ω. Letting ε → 0 we obtain

|∇Fj(x0)|n ≤ CF ′v(x0) (4.7)

for almost all x0 ∈ Ω. For every compact set K ⊂ Ω we obtain from Theorem
4.1 and (4.7) that

∫

K

|∇Fj(x)|ndx ≤ C

∫

K

F ′v(x) dx ≤ C|F (K)| < ∞.

Thus F ∈ W 1,n
loc (Ω)

Thanks to Lemma 4.2 and Theorem 4.1/(iv) we obtain the following

Corollary 4.5. Let 0 < λ ≤ 1 and Ω ⊂ Rn (n ≥ 2). Each homeo-
morphism F : Ω → Rn that induces a bounded operator from BV n

λ (F (Ω)) to
BV n

λ (Ω) is quasiconformal.
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References

[1] Csörnyei, M.: Absolutely continuous functions of Rado, Reichelderfer and Malý.
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