Absolutely Continuous Functions of Several Variables and Quasiconformal Mappings

S. Hencl

Abstract. We prove that functions with bounded n-variation and n-absolutely continuous functions of *n*-variables in the sense of $[4]$ are stable under quasiconformal mappings. The class of quasiconformal mappings is the best possible since every homeomorphism which induces a bounded operator between $BVⁿ$ spaces is a quasiconformal mapping.

Keywords: Absolute continuity in several variables, quasiconformal maps AMS subject classification: 26B30

1. Introduction

Absolutely continuous functions of one variable are admissible transformations for the change of variables in Lebesgue integral. Recently J. Malý $[6]$ introduced a class of *n*-absolutely continuous functions giving an *n*-dimensional analogue of the notion of absolute continuity from this point of view. We study a modified class of *n*-absolutely continuous functions suggested by Zajíček which was introduced in [4]. Our aim is to find the largest class of transformations which preserves n -absolute continuity.

Suppose that $\Omega \subset \mathbb{R}^n$ is an open set and $0 < \lambda < 1$. We say that a function $f: \Omega \to \mathbb{R}^m$ is n, λ -absolutely continuous if for each $\varepsilon > 0$ there is a $\delta > 0$ such that, for each disjoint finite family $\{B_i(x_i, r_i)\}\$ of balls in Ω ,

$$
\sum_{i} \mathcal{L}_n(B_i) < \delta \quad \Longrightarrow \quad \sum_{i} \left(\text{osc}_{B_i(x_i, \lambda r_i)} f \right)^n < \varepsilon.
$$

S. Hencl: Dept. Math. $&$ Stat., P.O. Box 35 (MaD), FIN-40014 Univ. of Jyväskylä; hencl@karlin.mff.cuni.cz

This research has been supported in part by the Research Project MSM 113200007 from the Czech Ministry of Education, Grant No. 201/00/0767 from the Grant Agency of the Czech republic $(GA \ \dot{C}R)$

Absolute continuity from [6] coincides with n , 1-absolute continuity. It is proved in [4, 6] that n, λ -absolute continuity implies continuity, weak differentiability with gradient in $Lⁿ$, differentiability almost everywhere and a formula on change of variables.

It was shown by Csörnyei $[1]$ that there exists a 2, 1-absolutely continuous function with respect to balls, which is not a function of this type with respect to cubes, where the concept in question is defined by an obvious modification to the definition given above. On the contrary, n, λ -absolute continuity does not depend on the shape of the "ball" in the definition for $0 < \lambda < 1$ (see [4]) for details). The class of absolutely continuous functions also does not depend on the precise value of λ if $0 < \lambda < 1$ (see Theorem 3.5 below). From this point of view it is more natural to work with the new definition (i.e. with $0 < \lambda < 1$).

Given a measurable set $A \subset \mathbb{R}^n$ and a function $f : A \to \mathbb{R}^m$, we define the n, λ -variation of f on A by

$$
V_{\lambda}^{n}(f, A) = \sup \left\{ \sum_{i} \left(\operatorname{osc}_{B(x_i, \lambda r_i)} f \right)^{n} : \begin{cases} B(x_i, r_i) \} \text{ is a disjoint} \\ \text{finite family of balls in } A \end{cases} \right\}.
$$

We denote by $BV_\lambda^n(\Omega)$ the class of all functions such that $V_\lambda^n(f, \Omega) < \infty$, define the space $AC_{\lambda}^{n}(\Omega)$ as the family of all n, λ -absolutely continuous functions in $BV_{\lambda}^n(\Omega)$ and write $AC_{\lambda,\text{loc}}^n$ for the class of all functions f such that $f \in AC_{\lambda}^{n}(K)$ for every compact set $K \subset \Omega$.

We prove in Section 3 that if $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$ is an open set, $0 < \lambda < 1$ and $F: \Omega \to \mathbb{R}^n$ is a quasiconformal mapping, then

(i) $f \in BV_{\lambda}^{n}(\Omega) \iff f \circ F^{-1} \in BV_{\lambda}^{n}(F(\Omega))$ (ii) $f \in AC_{\lambda}^{n}(\Omega) \iff f \circ F^{-1} \in AC_{\lambda}^{n}(F(\Omega)).$

This extends the result from [4] where F was a bi-Lipschitz mapping. Note that the class AC_1^n is not stable even under bi-Lipschitz mappings (see [5] for details).

Using ideas from [2] we prove the following result in Section 4:

Let $0 < \lambda \leq 1$ and $n \geq 2$. If a homeomorphism $F : \Omega \to \mathbb{R}^n$ induces a bounded operator from $BV_{\lambda}^n(F(\Omega))$ to $BV_{\lambda}^n(\Omega)$, then F is a quasiconformal mapping.

It follows that the results in Section 3 are sharp.

2. Preliminaries

Throughout the paper we consider an open set $\Omega \subset \mathbb{R}^n$ $(n > 1)$. We denote

- by $\mathcal{L}_n(A)$ or |A| the *n*-dimensional Lebesgue measure of a set $A \subset \mathbb{R}^n$
- by λ a real number $0 < \lambda < 1$
- by $B(x, r)$ the *n*-dimensional Euclidean open ball with center x and diameter r (throughout the paper we use the letter B for balls only)
- by $B(x, r)$ the corresponding closed ball
- $\lambda B = B(x, \lambda r)$ for a given ball $B = B(x, r)$
- by $S(x,r) = \{y \in \mathbb{R}^n : |x y| = r\}$ a sphere
- by $\operatorname{osc}_A f$ the oscillation of $f: \Omega \to \mathbb{R}^m$ over the set $A \subset \Omega$, which is the diameter of $f(A)$
- by $F'(x)$ for a mapping $F : \Omega \to \mathbb{R}^n$ the Jacobi matrix of all partial derivatives of F at x
- by ∇F the weak (distributional) derivative
- by $J_F(x)$ the determinant of the Jacobi matrix of $F(x)$
- by $W^{1,p}(\Omega)$ and $W^{1,p}_{loc}(\Omega)$ the Sobolev spaces.

A mapping $F: \Omega \to \mathbb{R}^n$ is called a *homeomorphism* if there exists its inverse F^{-1} and both F and F^{-1} are continuous. We write $f \circ F$ or $F^{\star}f$ for the composition of the functions $F: \Omega \to \mathbb{R}^n$ and $f: F(\Omega) \to \mathbb{R}^m$; that is $(f \circ$ $F(x) = (F^*f)(x) = f(F(x))$ for every $x \in \Omega$. We say that a homeomorphism $F: \Omega \to \mathbb{R}^n$ induces a bounded operator $F^* : BV_{\lambda}^n(F(\Omega)) \to BV_{\lambda}^n(\Omega)$ if there is a constant $C > 0$ such that $V_{\lambda}^{n}(F^{\star}f, \Omega) \leq C V_{\lambda}^{n}(f, F(\Omega))$ for every $f \in BV_{\lambda}^{n}(F(\Omega)).$

We use the convention that C denotes a generic positive constant which may change from expression to expression.

3. Stability of AC_λ^n under quasiconformal mappings

In this section we will prove that classes of functions AC_{λ}^{n} and BV_{λ}^{n} are stable with respect to quasiconformal change of variables.

Definition 3.1. Let $1 \leq K < \infty$. A mapping $F : \Omega \to \mathbb{R}^n$ is called K-quasiconformal, if it satisfies the following properties:

(i) F is a homeomorphism

- (ii) $F \in W^{1,n}_{\mathrm{loc}}(\Omega,\mathbb{R}^n)$
- (iii) $|\nabla F(x)|^n \leq K|J_F(x)|$ for almost every $x \in \Omega$.

We say that a mapping F is quasiconformal, if there is $K < \infty$ such that f is K-quasiconformal.

For the history and basic properties of quasiconformal mappings we refer the reader to [8].

Definition 3.2. A function $F: \Omega \to \mathbb{R}^n$ is η -quasisymmetric if there is a homeomorphism $\eta : [0, \infty) \to [0, \infty)$ such that, for every $a, b, x \in \Omega$ and $\rho \geq 0$,

$$
|a-x| \le \rho|b-x| \quad \Longrightarrow \quad |F(a)-F(x)| \le \eta(\rho)|F(b)-F(x)|.
$$

The following theorem [6: Theorem 2.4] states that quasiconformal mappings are locally quasisymmetric.

Theorem 3.3. Suppose $n \geq 2$, $F : \Omega \to \mathbb{R}^n$ is a K-quasiconformal mapping and $x_0 \in \Omega, \alpha > 1, r > 0$ and $B(x_0, \alpha r) \subset \Omega$. Then $F|_{B(x_0, r)}$ is η -quasisymmetric where η depends only on n, K and α .

Using this theorem for $\alpha = 2$ and a quasiconformal mapping $F : \Omega \to \mathbb{R}^n$, there is $0 < \rho_0 < 1$ such that, for a fixed $x \in \Omega$ and $r < \frac{\rho_0}{2}$ dist $(x, \partial \Omega)$,

$$
\sup_{\{a:|x-a|\le r\}} |F(x) - F(a)| \le \frac{1}{4} \inf_{\{b:|x-b|=\frac{r}{\rho_0}\}} |F(x) - F(b)|. \tag{3.1}
$$

Lemma 3.4. Let $0 < \lambda \leq 1$, $f \in BV_{\lambda}^{n}(\Omega)$ and $f \in AC_{\lambda,\text{loc}}^{n}(\Omega)$. Then $f \in AC_{\lambda}^{n}(\Omega)$.

Proof. Fix $\varepsilon > 0$. It is not difficult to see from the definition of n, λ variation that we can find a finite collection of pairwise disjoint balls $B(x_i, r_i)$ such that $B(x_i, r_i) \subset \Omega$ and

$$
\sum_{i} \left(\operatorname{osc}_{B(x_i,\lambda r_i)} f\right)^n > V_{\lambda}^n(f,\Omega) - \varepsilon.
$$

Since Ω is open and $B(x_i, r_i) \subset \Omega$, we can find $k \in \mathbb{N}$ such that for

$$
\Omega_k = \left\{ x \in \Omega : |x| < k \text{ and } \text{dist}(x, \partial \Omega) > \frac{1}{k} \right\} \tag{3.2}
$$

we have $B(x_i, r_i) \subset \Omega_k$ for each i and therefore $V_{\lambda}^n(f, \Omega_k) > V_{\lambda}^n(f, \Omega) - \varepsilon$. From this fact and $V_{\lambda}^{n}(\Omega_{k}) + V_{\lambda}^{n}(\Omega \setminus \Omega_{k}) \leq V_{\lambda}^{n}(\Omega)$ we obtain $V_{\lambda}^{n}(\Omega \setminus \Omega_{k}) < \varepsilon$.

For a given ε we can find δ_1 from the definition of $AC_\lambda^n(\Omega_{k+1})$ for f. Put

$$
\delta = \min\left\{\delta_1, \mathcal{L}_n\left(B\left(0, \frac{1}{2k(k+1)}\right)\right)\right\}.
$$
\n(3.3)

Fix pairwise disjoint balls B_1, \ldots, B_l in Ω such that $\sum_{i=1}^l \mathcal{L}_n(B_i) < \delta$. From (3.3) we obtain diam $(B_i) < \frac{1}{k}$ $\frac{1}{k} - \frac{1}{k+1}$ $(i \in \{1, ..., l\})$. Thus (3.2) gives that either $B_i \subset \Omega_{k+1}$ or $B_i \subset \Omega \setminus \Omega_k$ for every i. Hence we obtain from the definition of δ_1 and k that

$$
\sum_{i} \operatorname{osc}_{\lambda B_{i}}^{n} f \leq \sum_{i:B_{i} \subset \Omega_{k+1}} \operatorname{osc}_{\lambda B_{i}}^{n} f + \sum_{i:B_{i} \subset \Omega \setminus \Omega_{k}} \operatorname{osc}_{\lambda B_{i}}^{n} f
$$

$$
\leq \sum_{i:B_{i} \subset \Omega_{k+1}} \operatorname{osc}_{\lambda B_{i}}^{n} f + V_{\lambda}^{n} (\Omega \setminus \Omega_{k})
$$

$$
\leq \varepsilon + \varepsilon
$$

$$
= 2\varepsilon
$$

and the proof is finished

The following theorem [3: Theorem 3.1] gives us the opportunity to use any $\lambda \in (0,1)$ in the definition of the classes AC_{λ}^{n} and BV_{λ}^{n} . We will use this fact in the proof of Theorem 3.6.

Theorem 3.5. Let $0 < \lambda_1 < \lambda_2 < 1$ and $f : \Omega \to \mathbb{R}^m$. Then $BV_{\lambda_1}^n(\Omega) =$ $BV_{\lambda_2}^n(\Omega)$ and $AC_{\lambda_1}^n(\Omega) = AC_{\lambda_2}^n(\Omega)$.

Now we can prove the main result of this section.

Theorem 3.6. Let $n \geq 2$ and $0 < \lambda < 1$. Suppose that the mapping $F: \Omega \to \mathbb{R}^n$ is K-quasiconformal and $f: \Omega \to \mathbb{R}$. Then:

(i) $f \circ F^{-1} \in BV_{\lambda}^{n}(F(\Omega)) \implies f \in BV_{\lambda}^{n}(\Omega)$ (ii) $f \circ F^{-1} \in AC_{\lambda}^{n}(F(\Omega)) \implies f \in AC_{\lambda}^{n}(\Omega)$.

Proof. Let us first suppose that $f \circ F^{-1} \in BV_{\lambda}^{n}(F(\Omega))$. Thanks to Theorem 3.5 we can suppose that $\lambda = \frac{1}{2}$ $\frac{1}{2}$. We will prove that $f \in BV^{\underline{n}}_{\underline{\rho_2}}(\Omega)$. Recall that the constant $0 < \rho_0 < 1$ comes from (3.1).

Suppose that $B_i = B(x_i, r_i) \subset \Omega$ are pairwise disjoint balls. Clearly,

$$
F\left(B\left(x_i, \frac{\rho_0}{2}r_i\right)\right) \subset B\left(F(x_i), \mathrm{osc}_{B(x_i, \frac{\rho_0}{2}r_i)}F\right). \tag{3.4}
$$

Thanks to (3.1), for $r = \frac{\rho_0}{2}$ $\frac{p_0}{2}r_i$ and $x=x_i$ we have

$$
B\left(F(x_i), 2\cos_{B(x_i, \frac{\rho_0}{2}r_i)}F\right)
$$

\n
$$
\subset B\left(F(x_i), 4 \sup_{\{a: |x_i - a| \le \frac{\rho_0}{2}r_i\}} |F(x_i) - F(a)|\right)
$$

\n
$$
\subset B\left(F(x_i), \inf_{\{b: |x_i - b| = \frac{1}{\rho_0}, \frac{\rho_0}{2}r_i\}} |F(x_i) - F(b)|\right)
$$

\n
$$
\subset F\left(B\left(x_i, \frac{1}{2}r_i\right)\right).
$$
\n(3.5)

Hence the balls $\widetilde{B}_i = B$ ($F(x_i), 2$ osc $B(x_i, \frac{\rho_0}{2}r_i)F$ ¢ are pairwise disjoint in $F(\Omega)$. Thus (3.4) gives us

$$
\sum_{i} \operatorname{osc}_{B(x_i, \frac{\rho_0}{2}r_i)}^n f = \sum_{i} \operatorname{osc}_{F(B(x_i, \frac{\rho_0}{2}r_i))}^n f \circ F^{-1}
$$

\n
$$
\leq \sum_{i} \operatorname{osc}_{B(F(x_i), \operatorname{osc}_{B(x_i, \frac{\rho_0}{2}r_i)}^n F)}^n f \circ F^{-1}
$$

\n
$$
= \sum_{i} \operatorname{osc}_{\frac{1}{2}\widetilde{B}_i}^n f \circ F^{-1}
$$

\n
$$
\leq V_{\frac{1}{2}}^n (f \circ F^{-1}, F(\Omega)).
$$
\n(3.6)

It follows that $V_{\frac{\rho_0}{2}}^n(f, \Omega) \leq V_{\frac{1}{2}}^n(f \circ F^{-1}, F(\Omega)) < \infty$.

Now let us suppose that $f \circ F^{-1} \in AC_{\lambda}^{n}(F(\Omega))$. As before we can assume that $\lambda = \frac{1}{2}$ $\frac{1}{2}$. From the conclusions above we obtain $f \in BV_{\frac{\rho_0}{2}}^n(\Omega)$. Thanks to Lemma 3.4 and Theorem 3.5 it is enough to prove that $f \in AC_{\frac{\rho_0}{2},\text{loc}}^n(\Omega)$.

Fix $\varepsilon > 0$ and $\Omega' \subset \Omega$ such that $\overline{\Omega'} \subset \Omega$. Choose δ_1 from the definition of $AC_{\frac{1}{2}}^{n}(\Omega)$ for function $f \circ F^{-1}$. By [4: Theorem 4.3], quasiconformal mappings are locally absolutely continuous and therefore $F \in AC_{\lambda}^{n}(\Omega')$. Hence for a given $\varepsilon_1 = \frac{\delta_1}{2^n}$ $\frac{\delta_1}{2^n}$ we can choose δ_2 from the definition of $AC_{\frac{\rho_0}{2}}^n(\Omega')$ for the function F.

Suppose that the balls $B_i = B(x_i, r_i) \subset \Omega'$ are pairwise disjoint and $\overline{ }$ i_{i} $\mathcal{L}_{n}(B_{i}) < \delta_{2}$. As before we obtain (3.4) and (3.5). Therefore the balls

$$
\widetilde{B}_i = B\left(F(x_i), 2\mathrm{osc}_{B\left(x_i, \frac{\rho_0}{2}r_i\right)}F\right)
$$

are pairwise disjoint in $F(\Omega')$. Further, $\sum_i \mathcal{L}_n(B_i) < \delta_2$ and the definition of δ_2 give us

$$
\sum_{i} \mathcal{L}_n(\widetilde{B}_i) = 2^n \sum_{i} \text{osc}_{B(x_i, \frac{\rho_0}{2}r_i)}^n F \le 2^n \varepsilon_1 = 2^n \frac{\delta_1}{2^n} = \delta_1.
$$

Analogously to (3.6) we obtain from the definition of δ_1 that

$$
\sum_i \mathrm{osc}^n_{B(x_i, \frac{\rho_0}{2}r_i)} f \leq \sum_i \mathrm{osc}^n_{\frac{1}{2}\widetilde{B}_i} f \circ F^{-1} < \varepsilon
$$

and the proof is finished

The inverse mapping to a quasiconformal mapping is also quasiconformal [7: Corollary 13.3] and hence we have the following

Corollary 3.7. Let $0 < \lambda < 1$, $n \geq 2$ and let $f : \Omega \to \mathbb{R}^m$. Suppose that $F: \Omega \to \mathbb{R}^n$ is a quasiconformal mapping. Then:

- (i) $f \in BV_{\lambda}^{n}(\Omega) \iff f \circ F^{-1} \in BV_{\lambda}^{n}(F(\Omega))$
- (ii) $f \in AC_{\lambda}^{n}(\Omega) \iff f \circ F^{-1} \in AC_{\lambda}^{n}(F(\Omega)).$

The following elementary example shows that the assumption $f \in BV_\lambda^n$ from the definition of the class AC_{λ}^{n} is important in Theorem 3.6.

Example 3.8. Let $0 < \lambda < 1$. There exists a domain $\Omega \subset \mathbb{R}^2$ and a 1-quasiconformal mapping $F: \Omega \to \mathbb{R}^2$ such that $f \circ F^{-1}$ is 2, λ -absolutely continuous on $F(\Omega)$ but f is not 2, λ -absolutely continuous on Ω . ¤

Indeed, set $\Omega = \{ [x, y] : x > 0 \}$ } and $F(x, y) = \left[\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right]$ x^2+y^2 . In other words, for $z \in \mathbb{C}$ we define $F(z) = \frac{1}{z}$ (thus also $F^{-1}(z) = \frac{1}{z}$). It is well known that the mapping $\frac{1}{z}$ is conformal and hence also 1-quasiconformal [7: Theorem 8.1]. Plainly, $F(\Omega) = \{ [x, y] : x > 0 \}$. Put

$$
\tilde{f}(x) = \sum_{k=1}^{\infty} \max\{0, 1 - \text{dist}(x, [2k, 0])\}.
$$

Clearly, \tilde{f} is a Lipschitz function with Lipschitz constant 1 on $F(\Omega)$ and hence also 2, λ -absolutely continuous.

Set $f = \tilde{f} \circ F$ (hence $\tilde{f} = f \circ F^{-1}$) and $B_k = B([2k, 0], 1)$. Properties of inversion and easy computation gives us

$$
\widetilde{B}_k := F^{-1}(B_k) = B\left(\left[\frac{\frac{1}{2k+1} + \frac{1}{2k-1}}{2}, 0\right], \frac{\frac{1}{2k-1} - \frac{1}{2k+1}}{2}\right)
$$

for every $k \in \mathbb{N}$. From $\operatorname{osc}_{\widetilde{B}_k} f \ge 1$ and $\operatorname{diam} \widetilde{B}_k \to 0$ we obtain that f is not 2, λ -absolutely continuous.

It is not difficult to prove that the condition $\mathcal{L}_n(\Omega) < \infty$ guarantees that any n, λ -absolutely continuous function f on Ω satisfies $f \in BV_{\lambda}^{n}(\Omega)$. Hence such an example can exist only if $\mathcal{L}_n(F(\Omega)) = \infty$ in view of Theorem 3.6.

4. Continuous homeomorphisms $F:\,BV_\lambda^n\to BV_\lambda^n$

In this section we will use ideas of Gold'stein, Gurov and Romanov [2]. They proved that a homeomorphism $F: \Omega \to \mathbb{R}^n$ which induces a bounded operator from $W^{1,n}(F(\Omega))$ to $W^{1,n}(\Omega)$ is a quasiconformal mapping (see [2] for details and [3] for the history of similar problems).

Let us denote $F'_v(x) = \lim_{r\to 0} \frac{|F(B(x,r))|}{|B(x,r)|}$ $\frac{E(B(x,r))}{|B(x,r)|}$. We shall need the following connection between F'_v and the Jacobian of F [7: Theorems 24.2 and 24.4].

Theorem 4.1. Let $F: \Omega \to \mathbb{R}^n$ be a homeomorphism. Then:

- (i) $F'_v < \infty$ almost everywhere.
- (ii) F'_v is a measurable function.
- (iii) For each measurable set $A \subset \Omega$, $|F(A)| \geq \int_A F'_v(x) dx$.

(iv) If F is differentiable at x and $J_F(x)$ is the Jacobi matrix of F at x, then $F'_v = |J_F(x)|$.

Lemma 4.2. If a homeomorphism $F: \Omega \to \mathbb{R}^n$ induces the bounded operator $F^* : BV_{\lambda}^n(F(\Omega)) \to BV_{\lambda}^n(\Omega)$, then F is differentiable almost everywhere on Ω.

Proof. Fix $R > 0$. The mapping F is a homeomorphism and therefore the set \overline{a} ª

$$
A_R = \{x \in \Omega : F(x) \in B(0, R)\} = F^{-1}(B(0, R))
$$

is open. Fix $1 \leq i \leq n$. Plainly, there is a Lipschitz function $f : F(\Omega) \to \mathbb{R}$ such that

$$
f(x) = \begin{cases} x_i & \text{for } x \in F(\Omega), |x| < R \\ 0 & \text{for } x \in F(\Omega), |x| > R + 1. \end{cases}
$$

Hence $f \in BV_{\lambda}^n(F(\Omega))$ implies $F^{\star} f = f \circ F \in BV_{\lambda}^n(\Omega)$. If $|F(x)| < R$, then $f \circ F = F_i(x)$. Thus $F_i(x) \in BV_{\lambda}^n(A_R)$. Functions from $BV_{\lambda}^n(A)$ are differentiable almost everywhere on A for every open set A (see [6: Theorem 3.3] and [4: Theorem 3.4] for details) and hence F_i is differentiable almost everywhere on A_R . Since $A_R \to \Omega$ as $R \to \infty$ we obtain that F_i is differentiable almost everywhere on $\Omega \blacksquare$

In the proof of Theorem 4.4 below we will need the following elementary lemma [2: Lemma 3.5]:

Lemma 4.3. Let $F: \Omega \to \mathbb{R}^n$ be a continuous mapping and $G \subset \mathbb{R}^k$. Suppose that ${K_y}_{y \in G}$ is a family of pairwise disjoint compact sets such that $K_y \subset F(\Omega)$. Then $\mathcal{L}_n(F^{-1}(K_y)) = 0$ for all $y \in G$ except possibly a countable subset of G.

Theorem 4.4. Let $0 < \lambda \leq 1$ and $n \geq 2$. If a homeomorphism F: $\Omega \to \mathbb{R}^n$ induces the bounded operator F^* : $BV_\lambda^n(F(\Omega)) \to BV_\lambda^n(\Omega)$, then $F \in W^{1,n}_{loc}(\Omega)$ and there is a number K such that

$$
|\nabla F_i|^n \leq K F'_v(x)
$$

for almost all $x \in \Omega$ and for all $i = 1, 2, \ldots, n$.

Proof. In this proof we will follow the ideas from [2: Theorem 3.6]. By Theorem 4.1, $F'_v(x) < \infty$ a.e. Fix $\varepsilon > 0$ and a point $x_0 \in \Omega$ such that $F'_v(x_0) < \infty$. There is r_0 such that for all $r \in (0, r_0)$ we have

$$
|F(B(x_0, 2r))| \le (F'_v(x_0) + \varepsilon)|B(x_0, 2r)|
$$

= $(F'_v(x_0) + \varepsilon)2^n|B(x_0, r)|.$ (4.1)

Set $M = (F'_v(x_0) + \varepsilon)2^n$. Let us call a cube Q *h-regular* if all its edges are parallel to the coordinate axes, the length of the edge is h and every vertex has the form $[k_1h, \ldots, k_nh]$ where k_1, \ldots, k_n are integers. Fix $r < r_0$ and choose $h > 0$ such that

$$
h < \frac{1}{2\sqrt{n}} \text{dist}\left(F(S(x_0, 2r)), F(S(x_0, r))\right).
$$

Let A be the union of all h-regular cubes Q such that $Q \cap F(B(x_0, r)) \neq \emptyset$. It is evident that

$$
F(B(x_0,r)) \subset A \subset F(B(x_0,2r)).
$$

Fix $j \in \{1, \ldots, n\}$ and let us focus on the j-th coordinate. Denote the hyperplanes $x_j = th$ by L_t . The hyperplanes L_m (m an integer) divide \mathbb{R}^n into layers \overline{a} ª

$$
Z_m = \{ x \in \mathbb{R}^n : mh < x_j < (m+1)h \}.
$$

Put $A_m = Z_m \cap A$.

For every A_m we construct three functions

$$
\psi_{m,1} = x_j - mh
$$

\n
$$
\psi_{m,2} = (m+1)h - x_j
$$

\n
$$
\psi_{m,3} = \frac{h}{2} - \text{dist}(P_j(x), P_j(A_m)).
$$

Here $P_j: \mathbb{R}^n \to \mathbb{R}^{n-1}_j$ j^{n-1} is the orthogonal projection of \mathbb{R}^n onto \mathbb{R}^{n-1}_j i^{n-1} . Consider the functions

$$
\psi_m = \max \{0, \min \{\psi_{m,1}, \psi_{m,2}, \psi_{m,3}\}\}\
$$
 and $\psi = \sum_m \psi_m$.

Put

$$
E = \{ x \in G : \psi(x) \text{ is not differentiable at } x \}.
$$

It follows from the definition of ψ that:

(1) $\text{supp}(\psi) \subset F(B(x_0, 2r))$ (2) ψ is Lipschitz with constant 1 (3) $\psi \in BV_{\lambda}^{n}(F(\Omega))$

(4) ψ is differentiable almost everywhere

776 S. Hencl

(5) $\psi(x) = \pm x_i + \text{const}$ in all components of the set $F(B(x_0, r)) \setminus E$. The set $E \cap F(B(x_0, r))$ belongs to a finite union of hyperplanes L_{t_1}, \ldots, L_{t_s} where $2t_i$ is an integer. By Lemma 4.3, for almost all small translations τ_y parallel to the axis x_j we have

$$
\left| F^{-1}\left(\tau_y\left(\bigcup_{i=-\infty}^{\infty} L_{\frac{i}{2}}\right) \cap F(\overline{B(x_0,r)})\right) \right| = 0.
$$

Thus we can assume without loss of generality that

$$
|F^{-1}(E \cap F(B(x_0, r)))| = 0.
$$
 (4.2)

Otherwise it is possible to change the j-th coordinate of the point $[0, \ldots, 0]$ at the beginning of the construction of ψ .

By the assumption of the theorem, $F^{\star}\psi = \psi \circ F \in BV_{\lambda}^{n}(\Omega)$. It follows from (5) and (4.2) that $(\psi \circ F)(x) = \pm F_j(x) + \text{const}$ for almost all $x \in B(x_0, r)$. It is easy to see from the proof of [5: Theorem 3.2] that $BV_{\lambda}^{n}(\Omega)$ is continuously embedded into $W^{1,n}(\Omega)$. These two facts give us

$$
\int_{B(x_0,r)} |\nabla (F_j(x))|^n dx \leq \int_{\Omega} |\nabla (\psi \circ F)|^n dx
$$
\n
$$
\leq CV_{\lambda}^n (\psi \circ F, \Omega)
$$
\n
$$
= CV_{\lambda}^n (F^*(\psi), \Omega).
$$
\n(4.3)

Since F^* is continuous we have

$$
V_{\lambda}^{n}(F^{\star}(\psi),\Omega) \le CV_{\lambda}^{n}(\psi,\Omega). \tag{4.4}
$$

The function ψ is Lipschitz with constant 1 and hence

$$
\operatorname{osc}_{B(x,s)}^n \psi \le (2s)^n = C|B(x,s)| \tag{4.5}
$$

for each x and every s. Thanks to (4.5), the continuity of ψ and supp $(\psi) \subset$ $F(B(x_0, 2r))$ we have

$$
V_{\lambda}^{n}(\psi,\Omega) \le C|F(B(x_0,2r))|.
$$
\n(4.6)

From (4.3) , (4.4) and (4.6) it follows that

$$
\int_{B(x_0,r)} |\nabla (F_j(x))|^n dx \le C|F(B(x_0, 2r))|.
$$

By (4.1),

$$
\int_{B(x_0,r)} |\nabla(F_j(x))|^n dx \leq CM |B(x_0,r)|.
$$

Hence

$$
\limsup_{r \to 0} \frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} |\nabla (F_j(x))|^n dx \le CM.
$$

The Lebesgue Theorem gives us $|\nabla F_j(x_0)|^n \leq C(F'_v(x_0) + \varepsilon)$ for almost all $x_0 \in \Omega$. Letting $\varepsilon \to 0$ we obtain

$$
|\nabla F_j(x_0)|^n \le C F'_v(x_0)
$$
\n(4.7)

for almost all $x_0 \in \Omega$. For every compact set $K \subset \Omega$ we obtain from Theorem 4.1 and (4.7) that

$$
\int_K |\nabla F_j(x)|^n dx \le C \int_K F'_v(x) dx \le C|F(K)| < \infty.
$$

Thus $F \in W^{1,n}_{loc}(\Omega)$

Thanks to Lemma 4.2 and Theorem $4.1/(iv)$ we obtain the following

Corollary 4.5. Let $0 < \lambda \leq 1$ and $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$. Each homeomorphism $F: \Omega \to \mathbb{R}^n$ that induces a bounded operator from $BV_\lambda^n(F(\Omega))$ to $BV_{\lambda}^{n}(\Omega)$ is quasiconformal.

Acknowledgement. The author wishes to express his thanks to Jan Maly for suggesting the problem and for many stimulating conversations.

References

- [1] Csörnyei, M.: Absolutely continuous functions of Rado, Reichelderfer and Malý. J. Math. Anal. Appl. 252 (2000), 147 – 166.
- [2] Gold'stein, V., Gurov, L. and A. Romanov: Homeomorphisms that induce monomorphisms of Sobolev spaces. Israel J. Math. 91 (1995), $31 - 60$.
- [3] Gold'stein, V. and Yu. G. Reshetnyak: Quasiconformal Mappings and Sobolev Spaces. Dordrecht: Kluwer Acad. Publ.
- [4] Hencl, S.: On the notions of absolute continuity for functions of several variables. Fund. Math. 173 (2002), 175 – 189.
- [5] Hencl, S. and J. Malý: *Absolute continuity for functions of several variables* and diffeomorphisms. Central European J. Math. 4 (2003), 690 – 705.
- [6] Mal´y, J.: Absolutely continuous functions of several variables. J. Math. Anal. Appl. 231 (1999), 492 – 508.

778 S. Hencl

- [7] Väisälä, J.: Quasi-symmetric embeddings in Euclidian spaces. Trans. Amer. Math. Soc. 264 (1981), 191 – 204.
- [8] Väisälä, J.: Lectures on n-Dimensional Quasiconformal Mappings. Berlin -New York: Springer-Verlag 1971.

Received 04.02.2003