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Sequences of 0’s and 1’s
Classes of Concrete ‘big’ Hahn Spaces
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Abstract. This paper continues the joint investigation by Bennett et al. (2001)
and Zeltser et al. (2002) of the extent to which sequence spaces are determined by
the sequences of 0’s and 1’s that they contain. Bennett et al. proved that each
subspace E of £*° containing the sequence e = (1,1,...) and the linear space bs of
all sequences with bounded partial sums is a Hahn space, that is, an FK-space F
contains F whenever it contains (the linear hull x(F) of) the sequences of 0’s and
I’s in E. In some sense these are ‘big’ subspaces of £°°. Theorem 2.6, one of the
main results of this paper, tells us that this result remains true if we replace bs with
suitably defined spaces bs(IN) which are subspaces of bs when N is a finite partition
of N. As an application of the main result, two large families of closed subspaces
E of £°° being Hahn spaces are presented: The bounded domain E of a weighted
mean method (with positive weights) is a Hahn space if and only if the diagonal of
the matrix defining the method is a null sequence; a similar result applies to the
bounded domains of regular Norlund methods. Since an FK-space F is a Hahn space
if and only if x(FE) is a dense barrelled subspace of F, by these results, a large class
of concrete closed subspaces E of £°° such that x(F) is a dense barrelled subspace
can be identified by really simple conditions. A further application gives a negative
answer to Problem 7.1 in the paper mentioned above.
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1. Introduction

We start with few preliminaries. (Otherwise, the terminology from the theory
of locally convex spaces and summability is standard, we refer to Wilansky
[9, 10] and Boos [3].)

w denotes the space of all real-valued sequences, and any vector subspace
of w is called a sequence space.

Let x be the set of all sequences of 0’s and 1’s and, if F is any sequence
space, let x(FE) denote the linear hull of the sequences of 0’s and 1’s contained
in E. It is always true that x(F) C x(¢°°) N E, but equality fails in general.

An FK-space is a sequence space endowed with a complete, metrizable,
locally convex topology under which the coordinate mappings x — xj (k € N)
are all continuous. A normable FK-space is called a BK-space.

The most natural FK-space is w under the topology of coordinatewise con-
vergence. Familiar examples of BK-spaces are £°° (bounded sequences) with
the supremum norm | - ||~ and its closed subspaces ¢ (convergent sequences)
and ¢p (null sequences), ¢! (absolutely summable sequences) with its usual
norm, and bs = {z = (zx) € w| sup,, | > j_; zx| < 00} = X7H(¢>) (bounded
partial sums) with the norm ||« ||ps = ||||cc ©X where ¥ denotes the summation
matrix.

A fundamental property of FK-spaces is that their topologies are mono-
tonic: if F C F, then F is continuously embedded into F'. This means that a
sequence space can have at most one FK-topology, and we take advantage of
this fact by not actually specifying the topology under consideration.

Let B = (bnk) be an infinite matrix with real entries. The (summability)
domain cg of B is defined as

cg = {ac = (z1) € w‘ Bz := (gbnkxk)n € c}

where the definition of Bx implies the convergence of the series. The pair
(cg,limp) with limp : ¢g — R, x — lim Bz is called a matriz method and
we denote it also by B. By definition, the matrix (method) B is coercive,
conservative and regular, if £° C ¢p, ¢ C ¢p, and ¢ C ¢g with limpg |, = lim,
respectively. Note that cp is a separable FK-space and, if B is conservative,
the bounded domain ¢°° N cp of B is a closed subspace of £°°.

In this paper, we continue the joint investigation of Bennett, Boos and
Leiger in [1] and of Leiger and the authors in [11] of the extent to which
sequence spaces are determined by the sequences of 0’s and 1’s that they
contain. As in these papers we consider sequence spaces FE with the property
that

X(E)CF = ECF (1.1)
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whenever F' is an arbitrary FK-space, a separable FK-space, and a matrix
domain cp, respectively. Then E is said to have the Hahn property, the
separable Hahn property, and the matriz Hahn property, respectively. We call
E a Hahn space, whenever E has the Hahn property. As well, we call a matrix
potent, if its bounded domain has the matrix Hahn property.

A sequence space having any Hahn property is necessarily a subspace of
02 (cf. [1: Theorem 5.1]). Obviously, the Hahn property implies the separable
Hahn property, and the last one implies the matrix Hahn property. Each of
the converse implications does not hold in general (cf. [1: Theorem 5.3] and
[11: Theorem 1.3]).

The study of Hahn spaces is of functional analytical interest as, for in-
stance, the following result shows.

Theorem 1.1 [2: Theorem 1]. Let E be an FK-space. Then E has the
Hahn property if and only if x(E) is a dense, barrelled subspace of E.

This result overlaps with results due to Drewnowski and Paul (see, for
instance, [5]) and pointed out in details by Stuart [8]. Namely, if the set
E = {X{reN|zp20} | T € XN E} is aring as a family of subsets of N and has the
Nikodym property (cf. [5]), then x(E) with | - || is barrelled; if in addition
X(E) is || - ||so dense in E and E is a closed subspace of (£2°,]| - ||s0), then E
has the Hahn property. In the following investigations we consider sequence
spaces F such that £ is not necessarily a ring, so that the mentioned results
do not apply in general.

It is well-known that, in general, it is complicated to identify dense, bar-
relled subspaces of Banach spaces. In this light we should see the following
result which gives us a large and very useful class of ‘big’” Hahn spaces.

Theorem 1.2 [1: Theorem 3.4]. If E is a sequence space satisfying bs +
Sp{e} C E C ¢>°, then E has the Hahn property.

In particular, the bounded domains of strongly conservative matrices A
(these are exactly those matrices with bs 4+ Sp{e} C c4) have the Hahn prop-
erty. As it is pointed out in [1: Problem 7.7], in the special case of conservative
Hausdorff matrices the strongly conservative matrices are exactly the potent
ones, so that in this case of bounded domains the matrix Hahn property and
the Hahn property coincide. In the case of conservative weighted mean meth-
ods A = (ank) the situation is much more troublesome: On the one hand, as
in the case of Hausdorff matrices, they are potent if and only if the diagonal
(ann) converges to 0, and on the other hand, as simple examples prove, the
bounded domain of a potent matrix does not necessarily contain bs + Sp{e}.
Thus Theorem 1.2 does not apply to this situation. In Section 2 we will es-
sentially extend Theorem 1.2 by replacing bs by suitable subspaces bs(V).
In Section 3 we use this result for showing that also in the case of weighted
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mean methods the matrix Hahn property and the Hahn property coincide.
In this way, we determine the class of all conservative Norlund methods with
the bounded domain having the Hahn property. These results may be seen
as a further contribution to the investigation of the question which bounded
domains have the Hahn property (cf. [1: Problem 7.7]). In Section 4 we show
that the intersection of Hahn spaces is not necessarily a Hahn space which
gives a negative answer to [1: Problem 7.1]. Moreover, we use some of the
results in Section 2 to present a large class of such spaces.

2. General classes of big Hahn spaces
Let I be a non-empty subset of N. For simplification, we assume I = N if [

has infinite, and I = N, if [ has exactly  (r € N) elements. Furthermore, let
N; = {n;; € N|j € N} (i € I) be infinite ordered sets such that

UNi=N,  NinN;=0 (i,jeli#j) (2.1)
el

that is, N = (V;|7 € I) is a partition of N (consisting of infinite sets). Then
we define

bs(N) = {:z: cw

e llbsgary = sup | (@)ken, llos < oo}.
J

Generalizing the summation matrix map X, for any partition N = (N;|i € I)
satisfying (2.1) we consider the matrix map X defined by

k
[ENx]n:anij ifn=n; (n,keNiel)
j=1

and its inverse map X 1. Note, for every y € w we have
[Z8 '], = Yni — Yniwoy Whenn=ngy (n,k €N,i€ Iy, :=0)

Remark 2.1.

(a) bs(N) = X 1(¢£>), hence bs(N) is a BK-space as the domain of a
bijective matrix map with respect to the BK-space £°°.

(b) If N is infinite, then bs(N) ¢ bs, since trivially x € bs(N) \ bs when
x is chosen such that it is 1 exactly once on each set N;, else 0. However, if
N is finite, then we obviously have bs(N) C bs and, moreover, bs(N) C bs if
and only if N consists of more than one set. In the last case the codimension
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of bs(IN) in bs is ‘uncountable infinite’ as we now verify. It is sufficient to
prove that it is not finite since the FK-space bs cannot be the union of an
increasing sequence of FK-spaces. Now, if we suppose that bs = bs(N) + X
where dimX < oo, then (X, || - ||ps) is a BK-space, hence bs(N) is closed in bs
by [10: Corollary 4.5.2]. On the other hand, we may easily find a sequence
(1)) in bs(N) converging in bs to an = € bs \ bs(N). For instance, we may
choose index sequences (p,) and (v,) with ny,, <na,, <ni,,,, (s € N)and
consider the sequence (x9)) defined by

_ % ifk=1andl=ps (seNj)
29 =91 tk=2andi=v, (seN,  (klEN)
0 otherwise

(c) We get a decreasing chain of sequence spaces of the type bs(N) if we
proceed inductively, for instance, in the following way: We start with N and
divide it into two infinite parts N;, (i3 = 1,2), then we divide each N;, into
two parts Nj,;, (io = 1,2) and get in the k-th step a partition N of N
consisting of 2¥ sets N;,...;,, say Ni; (i = 1,...,2F). Obviously, we have

bs(NFHDY Cbs(N®)Y Cbs (ke N).

Further, similarly as in (b) we get that the codimension of bs(N®*+1) in
bs(N ™) is ‘uncountable infinite’.
(d) In the case that N is a finite partition the assumption in the definition

of bs(NN) that the sets N; have to be infinite is not essential since, whenever
N = (Ny,...,Ns) is a partition of N, we may define

bs(N) = {x € w’ (T )ren; € bs when j € {1,...,s} and |N;| = oo}.

Obviously, there exists at least one infinite set N;~. Then we join this set with
the finite sets among Ny,..., Ng and get a partition M = (My,..., M,) of N.

Now, it is easy to check that IIS(N) = bs(M).
Proposition 2.2. In general, {* C bs(N) and

0t = ﬂ {bs(N)‘ N = (N1, Ns) is a partition of N satisfying (2.1)}
= ﬂ {bs(N)‘ N is a partition of N satisfying (2.1)} :

Proof. Since ¢! C bs(IN) is obvious, the proof is done when for every
x € bs\l! there exists a partition N = (Ny, No) with @ & bs(N). For that,
we fix x € bs\¢', assume — without loss of generality — (z)7) & ¢*, choose a
subsequence (yx) of (z;) satisfying (yx) ¢ bs and put Ny = {k € N|y; > 0}
and N2 = N\Nl [
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In the following steps we verify that Theorem 1.2 remains true if we replace
bs by any space bs(N). The proofs are much the same as in the corresponding
proofs in [1]. However, for the sake of completeness we adapt them to the case
in hand.

Proposition 2.3. If E is a sequence space satisfying bs(N) + Sp{e} C
E C (%, then E = bs(N) + x(E).

Proof. Let x € E be given. Without loss of generality we may suppose
that 0 <z, <1 (k€N). Weset yp,,, =0, zn,, = Tn,, — Yn,, and

. k k
Yni w1 = { L Zj:l I - Zj:l s (k eN,i € I)
0 otherwise

where N; = {n;;| j € N} is the i-th partition set. Then z € bs(N) and
y=x—2€FE+bs(N)=E,soye x(F)NI

Lemma 2.4. Let E be a sequence space including bs(N) for some parti-
tion N = (N;|i € I). If x € E takes only the values {0,1,..., K} in N, then
xz e x(E).

Proof. For each j € I we set xfj) =z, for k € N; and l',(fj) = 0 otherwise
(k € N). Further, let L be the least common multiple of 1,..., K. Following
the proof of [1: Lemma 3.2], for every j € I we obtain subsets V{,..., V] of
Supp:):(j) such that Xyi — %x(j) € bs and x(j? = Zle Xy Since supp (Xij —
120)) C N; (j € I), then > jer (Xij —12U)) € bs(N) (coordinatewise sum).

So xv, € EN{0,1}" where Vi, = ,¢; V{ (k=1,...,L). Hence

L L
x = Z ) = Z Z Xyi = Z Xv, € X(F) (coordinatewise sum)
k=1

jelI jel k=1

and the lemma is proved l
Lemma 2.5. We have x({>°) C Zn(x(bs(N) + Sp{e})).

Proof. Let w be an arbitrary sequence of 0’s and 1’s. The sequence
Yy = EN_lw belongs to bs(IV) and takes only the values —1,0, 1. It follows from
Lemma 2.4 that y + e € x(bs(N) + Sp{e}) and thus y € x(bs(N) + Sp{e}).
Hence w € Y (x(bs(N) + Sp{e})) N

The following result generalizes Theorem 1.2.

Theorem 2.6. If E is a sequence space satisfying bs(N) + Sp{e} C E C
£2° for some partition N, then E has the Hahn property.
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Proof. Proposition 2.3 shows that E = bs(N) + Sp{e} + x(E). Since
X(FE) certainly has the Hahn property, it suffices in view of [1: Proposition
2.1] to show that bs(IN) 4+ Sp{e} does, too. Suppose then that F' is an FK-
space containing x(bs(IN) 4+ Sp{e}); we must show that F' contains all of
bs(N) 4+ Sp{e}. For this it is sufficient to check that bs(N) C F or, what
is equivalent, that > C Xy (F). But this last assertion follows from [1:
Corollary 1.2], it being plain from Lemma 2.5 that x(¢>°) C Xn(F) Il

As an immediate consequence of Theorem 1.1 and Theorem 2.6 we get:

Corollary 2.7. If E is any FK-space satisfying bs(N)+Sp{e} C E C £
for some partition N, then x(F) is both dense and barrelled in E.

We apply the above results to more concrete sequence spaces than the
spaces bs(N) which are related to the bounded domains of weighted means.
For that we replace in the definition of bs the summation matrix by more
general triangles.

Let p = (pn) be any real sequence satisfying p,, > 0 (n € N). Then we
consider the matrices

¥, = X diag (pn) and Ep_l = diag(}%)E_l

and the domain

éogp = {:c = (xk) € w‘ S?Lp | ;pkxk’ < OO} = Ep_l(goo)-

In particular, we have (%, = = Zp_l(éoo) C ¢ if and only if (pi) € (.
Therefore, Eogp = Zp_l(ﬁ‘x’) does not have any Hahn property when (pi) ¢ (>
by [1: Theorem 5.1].

Proposition 2.8. Let r € N and p, q be sequences in N,. and, moreover,
let Nyi—1)+; = {k € N|pp =i, qu = j} (i,j =1,...,7). Then bs(N) C
ey, Nes, (C £€°) holds where N = {N,;_1y4; |4, = 1,...,r}. Consequently
(¢f. Theorem 2.6), every linear subspace of £>° containing (%5, NE%; )@ Sp{e}
has the Hahn property. In particular, eogp @ Sp{e}, (Z"%p N €°§q) @ Sp{e},
(€75, @ Spfe}) N (45, @ Sp{e}) have the Hahn property.

Proof. Note first that some of the sets N, might be empty or finite. For
that see Remark 2.1(d). Since

(65, N6535,) ® Sple} C (£, © Spie}) N (43, @ Spie}),
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by Proposition 2.6 it suffices to verify that bs(N) C £, NEs; for the partition
N fixed in the proposition. Let = € bs(N) be arbitrarily given. Then

n T n
E DLk E { E Tk

P =1

< iiisup

i=1 j=1 "

sup = sup
n n

>«

k€N (i—1)4+;NNn,

< Q.

Hence z € KC’%p. Analogously we may prove x € €°§q |

The following example shows that the statement in Proposition 2.8 fails
in general if p is not bounded.

Example 2.9. Let p = (n). Then (%, @& Sp{e} does not enjoy any of the
Hahn properties. (However, compare this result with that in Example 3.5.)

For a proof note that

1
o C L%, C{mew:xn:D<—>}§00
v Pn

X (0%, @ Sp{e}) = x(¢ @ Sple}) = x(c) = ¢ & Sp{e}.

Furthermore, z = ((—1)¥1) € 0%, , x & ca where A = (any) is the matrix
with anr = (—1)¥ when k < 2n and a,x = 0 otherwise, and obviously ¢ @

Sp{e} C ca. So Eogp @ Sp{e} does not enjoy the matrix Hahn property.

and

3. Bounded domains of Riesz and Norlund means

In connection with Riesz and Norlund means we consider exclusively real
sequences (pg) with

p1 >0, p,>0 (keN), P,:= Zpk (n € N). (3.1)
k=1

The Riesz matrix R, = (rnx) and the Norlund matriz N, = (pnx) (associated
with p) are defined by

Pr 3 <
rnk:{Pn thsn ken
0 otherwise
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and

Pn—k+1 : <
pnkz{ P Mhsn (n,k € N),
0 otherwise

respectively. The summability method corresponding R, is called Riesz meth-
od, Riesz mean or weighted mean method whereas the summability method
corresponding NV, is called Norlund method or Norlund mean.

Note that R, = dlag( )E and, if P, — oo, that obviously % s, C CoR,

We recall some basic properties of Riesz and Norlund matrices (methods)

(cf. [3: Sections 3.2 and 3.3], [4] and [6]).
Remarks 3.1.

(a) R, is conservative and it is either regular (being equivalent to P, —
o0) or coercive (cf. also [7]).

(b) If pr > 0 for all k € N, then cg, = ¢,{*Ncpg, —cand( ) € l>® a
equivalent. In particular, in this case R, is not potent.

(c) If (P,) is bounded, then R, is potent since /*Ncg, = £>° (cf. assertion
(a)). If (P,) is unbounded, that is P, — oo, then the potency of R, is
equivalent to (p—") € ¢o (which is obviously equivalent to (HMXP;N"I)) € o).
Note that this equivalence is proven in [3: Sections 3.2 and 3.3] (cf. also [4, 6])
under the assumption pg > 0 for all £ € N, but the proofs work also without

this assumption.
(d) If (px) is monotonically decreasing, then cg, D cc, with consistency.
(e) If (pr) is monotonically increasing, then cr, C cc, with consistency.

(f) If (pr) is monotonically increasing, then cg, = cc, with consistency if
and only if (”p”) € (.

Remarks 3.2.

(a) The Norlund method N, is conservative if and only if (%) € ¢, and
regular if and only if ( ) € ¢p.

(b) If N, is conservative and non-regular, then it is coercive (cf. [7:
Theorem 2]).

By Remark 3.1(c) we have a very simple as well as satisfactory char-
acterization of those Riesz means R, satisfying (3.1) with £°*° N cg, having
the matrix Hahn property. This is quite different in the case of the (regu-
lar) Norlund means: Up to now, there was not known a similar satisfactory
necessary or sufficient condition for the potency of regular Norlund methods.

As an application of Theorem 2.6 we will prove in this section the strong
result that the bounded domain of a regular potent Riesz matrix R, (p as in
(3.1), P, — oo and (& ) € ¢o) has the Hahn property and (this is hke a nice
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additional gift that the bounded domain of the corresponding Noérlund matrix
N, has also the Hahn property) in particular that N, is potent.

Before we start this program, we consider N, in the much easier open case
that p € (1.

Theorem 3.3. If (in addition) p € (', then the Nérlund method N, is
(obviously regular and) not potent.

Proof. Let k; € N be chosen such that Ef:klﬂ P < % and pg, > 0.
Let X be the set of all elements in x N ¢y, such that

kl kl
§ PkTn4+1—k — g PeTn—k
k=1 k=1

for every n > k1. Obviously, X # @ sincee € X. If x,,_ (k=1,...,ky) are
fixed (n > ki), then there exists at most one x,, € {0,1} such that

p1
< —=
2

k1 k1
P
kTn+1—k + P1Tn — kTn—k| < & -

kZ:Qp + p ;p 9
So each element z € X is completely defined by the first k; coordinates
T1,..., Tk . Evidently, ng := | X| < 2%, Since there exist exactly 2% different
combinations z,_; € {0,1} (k = 1,...,k;) and =, is uniquely defined by
Tn—r (E=1,...,k1), it follows that every element x € X is periodic starting

with some place. Now, if 2 € x Ncy, and M = ), pg, then there exists
N € N, N > kq, such that

P1 4!

| [Np]m — [Npaln| < saf And pallNpalna| <=

for all m,n > N. Hence
kl kl
Zpkﬂcn+1—k - Zpkxn—k
k=1 k=1

S Pn ‘ [pr]n - [pr]n—l} +pn|[Np$]n—1| + 2 Z Dk <
k=ki1+1

p1
2

for each n > N. So xNen, C o+ X.

Let (M, ..., 2(") be elements of X and let vy € N, vy < ng, be the
maximal integer such that N := ﬂ{supp @i =1,... ,Vo} is infinite. Let
(k;) be the index sequence of all elements in N. We consider the matrix
A = (ani) with

n if £ = ko,

ank = { -n ifk= k‘gnfl (n, ke N)
0 otherwise

It is easy to see that ¢ + X C ca. So xNcy, C ca. On the other hand, A is

not conservative, so that £°° Ncyn, ¢ ca. Thus N, is not potent N
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Now, for instance, bs C (> N cg, implies that £>° N cg, has the Hahn
property. So in a first step on the way to the goal aimed at we give a char-
acterization of those potent regular Riesz matrices fulfilling this sufficient
condition.

Proposition 3.4. Let (in addition) p = (p) ¢ ¢* and (2—2) € co. Then
the following statements are equivalent:

(a) bs C cp,

(b) bs C cn,

(c) bs C cor, Ncon,q

(d) limy, 5= 37025 [k — pra| = 0.

Proof. This is an obvious consequence of [3: Exercise 2.4.19]

Examples 3.5.

(a) Let p = (pn) := (n). Obviously, (p,) is monotonically increasing,
(5—:) g 1>, (%Z) € cp and (%) € £>°. Therefore, c C £*°Ncgr, = {>*Nce, C
cr, = cc, and R, is potent (cf. Remark 3.1(b) and (c)). In particular, £>*°Ncg,
has the Hahn property since £>° N ¢, has (because bs @ Sp{e} C £>* N ¢y,
cf. [1: Theorem 3.4]).

We should note that £%, @& Sp{e} C £ Ncr, D bs ® Sp{e} and that
%5, @ Sp{e} does not have the matrix Hahn property (cf. Example 2.9)

whereas both /> Ncg, and bs @ Sp {e} have the Hahn property.

(b) If p € ¢\co, then the assumptions and assertion (d) of Proposition
3.4 are fulfilled, thus bs C cor, N con,, and consequently both £°° N cg, and
£°° N ¢y, have the Hahn property.

(c) If p, € N, (n € N) for some 7 € N, then £°° N cg, has the Hahn
property by Proposition 2.8 since (%, @ Sp{e} C £*° Ncg,. Note, in this
case we have p ¢ /! and (%—") € c¢p, but p fails in general the condition of

Proposition 3.4(d) as, for instance, p = (1,2,1,2,...) shows.
For the proof of the promised main result we need two lemmas.

Lemma 3.6. Let n € N and let p1,...,p, be a (finite) sequence of
numbers. Then there exists a partition (My,..., M) of {1,...,n} such that
t < 2v/n and (pi)iem, (J € Ng) is monotone.

Proof. A non-decreasing subsequence of (p;)!_; is temporarily called a
chain and an r-chain when its length is . Let s € N be the maximal length
of all chains of (p;)i~;.

First we suppose s < /n. We choose all possible indices ni,... ,n}fl
with n} < nd < ... < n,lcl such that p,1 is the beginning of some s-chain
J

(j =1,...,k1). Note that for every j = 1,...,k; — 1 we have p,1 > Pnl, -
J J
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(Otherwise, p,,1, Pnt,, would be the beginning of an (s+1)-chain.) So (p,, )?1:1
J J J
is decreasing.

Now, we exclude all the elements p,1 (j € Ni,) from the sequence (p;)?_,
and consider all the remaining elements in the original order with the original
indices. The maximal length of all sorts of chains is now s — 1. We pick out
all possible indices n?, ... ,n%Q with nf <n3 <...< n%z such that Pn2 is the

beginning of some (s — 1)-chain (j = 1,..., k). Again, the sequence (p,,2 )?2:1
J
is decreasing.

We now exclude from the (already reduced) sequence (p;)!'_; also all the
elements p,2 (j € Ni,) and consider the remaining sequence where the ele-
J

ments are listed in the original order with the original indices.

Continuing this procedure, we get s — 2 decreasing subsequences (p,,: )?;1
J
(1 € Ng_g) of (p;)I.;. We now exclude from the sequence (p;)I; all the

elements p,,;; (i € Ng_a, j € Ni,) and consider the remaining sequence where
J

the elements are listed in the original order with original indices. Let ¢1,...,t,
(with t; < to < ... <t,) be the indices of it. The maximal length of its chains
is obviously 2. Let [; be the minimal index such that pt, is the beginning
of some 2-chain and let m; > [; be the minimal index such that P, < Pt,,, -
Now we choose the minimal index I, with Il > m; such that P, is the
beginning of some 2-chain and pick out the minimal index mo with mo > Iy
such that p;, < py,, . Continuing this procedure we obtain the minimal index
Uk, with g, > my,_, 1 such that p; ) is the beginning of some 2-chain

and we may pick out the minimal index my,_, with my_ _, > lx,_, such that

ptlks—l S ptmk

s—1

s—1

Note that p;, _, > py,, : Namely, if I; —1 > m;_, (mo := 0), this
statement follows since [; is the minimal index greater than m;_; such that
Pr, is the beginning of some 2-chain, and if [; — 1 = m;_; it follows since
otherwise we would obtain the 3-chains py, = < py, . <p,, (7 € Ng,_,).

We also have Pty -1 > P, because otherwise Pty 1 =Pty < Pty (=
2,...,ks_1) would be 3-chains.

Evidently, py, > pi,,, for every j € {1,...,ks_1 — 1}, a € {m;_1 +
1,...,l; =2} and o € {my,_,,...,v}. Moreover, we have in fact p;, > p;. .,
for every j € Ng, , and o € {l; +1,...,m; —2}. Namely, if j € Nj_,
and o € {l; +1,...,m; — 2} is the minimal integer such that p,, < p; ..,
then pe, ., > pe,, (otherwise p;, < py,., < Pt,,, would be a 3-chain); hence
Pti; > Ptosr > Pt s yielding a contradiction.
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Summarizing, we constructed two increasing sequences

ptll >ptll+1 > ... >ptm171 >ptl2 >
el > Dtiny—1 > 0> ptlks—1 > ... >ptmk871—1

Dty 2 Pty > -« > Pty 2 Pty =
...>pt1271 > .. >ptmks_1 > ... > Dy,

Altogether we divided the sequence (p;)?; into s, s < /n, monotone (de-
creasing) subsequences.

Now, we suppose s > /n. We extract from (p;)"_; some s-chain (ex-
cluding the referring elements from (p;),). If the maximal length s; of the
new sequence is greater than \/n, we extract from (p;)?_; some s;-chain. We
continue this procedure until the maximal length s; of the chain is less than
or equal to y/n. The number k of extracted chains is less than or equal to \/n.
Now in the same way as in the first part of the proof we divide the remaining
sequence into s, sp < y/n, decreasing subsequences. Altogether, we divided
the sequence (p;)!"_, into k + sg, k + sx < 2y/n monotone subsequences §

Lemma 3.7. If

Pin Z < Z |pnsj - pns,j+1’ + Z pn5j> — 0 (3,2)

sel JEN JEN
NsN[1,n]#0 ng j+1Sn ngj<n<ng ;i1

as n — oo holds for some partition N = (N;|i € I) , then bs(N) C cogr, N
con, C CR, N CN, -

Proof. Let x € bs(IN) be fixed. For any fixed n € N we get

n

23
5 PrTk
Fa k=1
SEDIEDS
= 75 Png; Tng,;
Pn sel jEN ’ ’
NsN[1,n]#0 ngj<n
1
S D D [ 1 P B S A S E o S
n serl JEN JEN
NgN[1,n]#0 ng j41<n ngjS<n<ng jyq
2 [lbs (v
S% Z Z [Prsy = Proginl + Z Png; |-
n sel JEN JEN

NsN[1,n]#0 ng jy1<n ngj<n<ng ;i1
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Hence R,z € co. Considering the Norlund method for a fixed n € N we get

n

1>
o Pn—k+1Tk
P, nohE
k=1
1
= P_ E E Prn—ngj+1Tn;
n ser jEN
NgN[1,n]#0 ngj<n
1
= P_ E § Png;Tn—mng;+1
n sel jEN
NsN[1,n]#0 ngj<n
J
1
S P_ § SUP E Tn—ngp+1
n s€l I k=1
NsN[1,n]#0
X < § |pnsj _pns,j+l| + E pnsj)
JEN JEN
ns’j+1§n n5j§n<n57j+1
1
< = E 2 H(wnsj)ijs
Py,
sel
NgN[1,n]#0
X E |pnsj _pns,j+1| + E Png;
JEN JEN
Ts,j+1Sn nsjSM<Ns 41
< 2||z([ps(w)
P,
X E § , |pnsj _pns,j+1’ + E Png; |-
sel jEeN JjeN
NgN[1,n]#0 ng j41<n ngjS<n<ng j4q

Thus Nyz € co i

Theorem 3.8. Ifp ¢ (' and R, is a potent matriz, then there exists a
partition N = (N;|i € I) of N satisfying (2.1) and bs(N) C £>*° Ncgr, Ncn, .
In particular, by Theorem 2.6, £°° N cgr, Ncn,, L Ncg, and £>° Ncy, have
the Hahn property.

As an immediate consequence, we get the following extension of the char-
acterization of the potency of weighted means due to Kuttner and Parameswa-
ran (cf. [6] and also [3, 4]).

Corollary 3.9.

(i) If R, is conservative and non-reqular, that is p € €1, then £>° N CR,
has the Hahn property (and R, is potent).
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(ii) If R, is regular, that is p ¢ (', then the following statements are
equivalent:

(a) R, is potent, that is £°° N cr, has the matriz Hahn property.

(b) ( ) € Co.

(c) (— maxg<p pk) € cp.

(d) R, € KG, that is each matriz A with x(£*°Ncr,) C ca is conservative.
(e) £° Ncg, has the separable Hahn property.

(f) £>° Ncgr, has the Hahn property.

By Remark 3.2, Theorem 3.3 and Theorem 3.8 we also have a full charac-
terization of the potent conservative Norlund matrices.

Corollary 3.10.

(i) If N, is conservative and non-regular, that is (%~) € c\ co, then
£ Ny, has the Hahn property (and Ny, is potent).

(ii) If Np is regular, that is () € co, then the following statements are
equivalent:

(a) N, is potent, that is £°° N cy, has the matriz Hahn property.

(b) p ¢ ¢*.
(c) £>° Necn, has the separable Hahn property.
(d) £*° Necn, has the Hahn property.

Proof of Theorem 3.8. Aiming to a partition N = (N;|i € I) of N
satisfying (2.1) and bs(N) C cg, Ncn,, it is sufficient to find a partition which
fulfils condition (3.2) in Lemma 3.7.

Since (%) € co (see Remark 3.1(c)), we may choose mo € N such that

Dn < %P 1Pn_1 + %pn or, equivalently, p,, < P,_1, for each n > my.
Let ig € N be such that 4°°=1 < P, < 4%. For every i > ig we denote by
m; the minimal integer n such that P, > 4°. Then P,,, = Py, _1 + Dm, <
2P, 1 <2-4" 50 Py, >8P, and P, <271P, (i > ip). Since R,

mi41 mi41

is potent, ; := w -0 (i — oo) by Remark 3.1(c). Without loss

of generality, we may assume that ¢; <1 (i > ip). (Otherwise, we may choose
a bigger mo ) For every i > 19 we choose the minimal integer j; € N such that

1/31 < e, 7. Since g; = w > mi,we have m; 25;1 (i > ).
Hence j; > 2 (i > ip). Note that mz/ﬁ > 5;1/4 (1 > idp). [Otherwise
mg/[(”ﬂ)/z] < mz/jz <e¢g 1/2, SO % +1> [7’] 4+ 1 > j;, which is equivalent

to j; < 2 and Contradlcts Ji > 2.]

Prn, . ,
Set a; = —=% and 3; = max{px|k < m;;1} (i € N). For every i € N

i+1
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and s =2,...,7;41 — 2 we use the notations

1/7:
M = {mi <k <miy1|pr < mi_i/_jl“ai}
— ) k< m.; (s=1)/Jit1 . < s/ji+1
Mis = qmi <k <mypq|mg o < pp <mi oy

ji+1—2)/Ja
Mijioy—1 = {mz <k <mjq mii—fl & oy < pkz}.

Set v;s = |M15| (Z eNs=1,...,7i41 — 1) Note,

Mi+1 _ (Jixr1+1=5)/dit1
Vis < GG—D/jips TN+l
m;q
since otherwise
(s=1)/Jit+1
Pm-;+1 2 Vismi+1 ai
(Jit1+1=8)/Git1, (s—1)/Fit1
> My m;q Q
= M4+104
= Pmi+1-
By Lemma 3.6, for every ¢ € N and s = 1,...,j;,41 — 1 we may choose a

partition (Sis1,...,Sisk,,) of Mg with ks < 2./v;s such that (p,)ves,., is
monotone (t = 1,...,k;s). Let ejop := |Sisk| and let (&sx1);2F be the finite
sequence of all elements of S5, arranged in ascending ordering (i € N, s =
17~~'7ji+1 —land k= 1,...,]{7i5). Then

kis €isk—1
(pé:ism + Z |p€iskz - pfi,s,k,1+1| +p£iskeisk)

=

s

2 max {pgiskl 1 Deiske, }
1

k
s/ji+1
S Zkismiﬂ (67

s/ji+1
<4 VisTy iy

< 4mz(_iz1r1+ s)/ Jl+1m;?J/rjlz+1ai

_ (Jit1+145) /25541
=dm; ] o
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fors=1,...7,41 —2 and

kis €isk—1
(péiskl + Z |p€iskl - p&i,s,k,l—&-l‘ + pfiskeisk)
k=1 =1

k

= Z 2 max {p5i8k17p£iskeisk }
k=1

< 4\/Visfi
1/3:
< 4m1_{_j1 +1ﬂi
for s = j;y1 —1 (i € N). Hence for every i > iy we get

1 Jit1 =1 ks €isk—1
P Z (pfism + Z ’piiskl _pﬁi,s,k,l+1| +p§iskeisk>
=1

Mitl =1 k=1

Jit1—2
1 Ui N N
Jit1+1+48)/25i41 1/Fi41

< 2 Z 4m; a; +4miy" B

Mit+1 s=1

(Jit1+1) /25041 (Ji41—1)/25i41 1/jita
_ g M @ <mi+1 -1 1) +4ﬁi it1
Mit104 1/2jiv1 _ Prii

ULAN)
. . m(ji+1_1)/2ji+l
< 4m(_]i+1+1)/2]i+1 i+1
- itl 1/25i41
4=1Im 5t
1+1

—-1/2
+ 4€i+16i+1

= 1om P 4 gl

< 16e}/ + e},

Aiming to a definition of N; (i € N), for any subset N C N and n € N we use
the notation
N|, ={k e N|k <n}.

Set
Nllmio = {1, . .,mio}
=0

Nj|mi0 (.7 > 1)'
Let s9,...,s) be all indices such that M0 #0 (t=1,...,%). We set

Njlmi, U Sipson for j =320 kigso +k

205 =1

(t: 17"',t0;k:17""ki03g)
Nj’mio for j > Z:O:I kiosg'

Nj‘mi0+1 -
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Continuing inductively for i > g, let s77*,...,s; "

M, g 0 (t=1,...,ti—). Then we set

. be all indices such that

7

. t—1
Nj|mi U Sisi_iok for j = ZT:]. kisi—io +k
(t: 17---7ti—i0;k: 1,...,k. i—ig

Nj|mi+1 - 5t

. ti—i
Nj|m, for j >3 721" kygi—io-

Let I be the set of all indices i € N such that N; # (). If I is infinite, then,
by our construction, every N; is infinite. If I is finite, then without loss of
generality (cf. Remark 2.1(d)) we may assume that N; is infinite (i € I). Let
n € N with m; <n <m;y; and i > iy be fixed. Then

JEN JEN
NgN[1,n]#0 ne, j41<n ngj<n<ng i1

Bn L= Pin Z ( Z ’pnsj _pns,j+1‘ + Z pn5j>

7 ]T+1_1 kTS eTsk_l
+ Z (pﬁism + Z |p£-rskl _pﬁr,s,k,z+1| +p£iskeisk>)

=1

8 %
< P (2Pmi0 + Z (16571'/+81 + 4671'/+21)Pmr+1>

m; .
i+l T=10

16 L1 1/8 1/2
< m + 32 Z 9ir (457-+1 + 57-+1)'

T=10
Consider the matrix A = (a;;) with a;; = 277 for 7 < 7 and a;; = 0
otherwise. Evidently, A is regular for null sequences, so it sums the null
1/2

sequence (45%20 + 5T+i0)7 to zero. Thus B, — 0 (n — oc0). Now, applying

Lemma 3.7, we get the desired inclusion bs(IN) C cg, Ncy, B

The following example shows that there exists a potent Riesz method R,
such that bs(N) ¢ £>° N cg, for each finite partition N = (Ny,...,N,) of N.
Since R, is potent, £°° N cg, has the Hahn property by Theorem 3.8 and, by
the proof of this theorem, we have bs(M) C £*° N cp, for a suitable partition
M = (M;|i € I) of N. This shows that, in the proof of Theorem 3.8, we
applied Theorem 2.6 in its full generality.

Example 3.11. Let ky =1 and k;41 = k;+(i+1) (i € N). We consider
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the Riesz method R, with

1
pr=p2=1, pr, =Dr;+1 = E
2j—l 2j—i—1

fori,j €N, i>1, j=2,...,i. Evidently, (p,) € ¢o. Furthermore,

hence p ¢ ¢'. Consequently, R, is regular and potent, and > N cr, has the
Hahn property by Theorem 3.8.

Now, we verify that the inclusion bs(N) C > N cg, fails for all finite
partitions N = (Ny,...,Ns) of N. Since €°§p C cgr,, we get as an immediate
consequence that bs(IN) ¢ EO%p for all s € N and partitions N = (Ny,..., Ny)
of N.

Suppose, by contrast, that bs(N) C £>*°Ncg, for some s € N and partition
N = (Ny,...,N;) of N. Then, on the one hand, by Proposition 3.4 we have

l = P Z Z ’pnz] _pni7j+1’ - O (l — OO)
ki—1

i=1 {j|n; j41<ki—1}

On the other hand, we get

v

1
A, 5 YN > Prs; — Prjos |

v=11i=1 {j| k,<n;j<n; jt+1<kupi1}
-1 s

1
Pkl—l ZZ Z ’pnij _pnij+1‘

v=14i=1 {j| k, <n;;j<n; j+1<kvt+1}

v

and, since

(@, 0) k <niyj < kg1 <mgjpr}] <s

(v € N),
Pi+1 — Pk > Pk — Pr—1 >0 for k€ [k, +1,k,41 — 2]
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the estimation

1 1—1 kpy1—2—s
Az 5 (Pj+1 — ps)
kl_l v=1 J:ku
1 l—l( )
= Pk, 11— Pk,
Pkl—l + B

R 1,1 1
Syl Z<21+s_2_v)

v=1 v=1
1 1 1
914+ -1
2 ° 21/:1 % v=1 v2v
S 1
— 22+s

for [ sufficiently large, contradicting (A4;) € co.

The following example shows that there exist non-potent Riesz means R,
fulfilling ¢ C £°° N cg,. In particular, the FK-space ({* Ncg,,| - |/) is non-
separable and does not have the matrix Hahn property (see [1: Theorems 2.5
and 5.1]), hence not any Hahn property.

Example 3.12. For any index sequence (n,) with n;y =1 and n, +1 <
ny+1 (v € N) we define p = (p,,) inductively by

1 if n < ng
_1 .
o= Pur=Y"lpy ifn=n, (neN,v>2).
Dn,, ifn, <n<nyq

Using this definition of (p,,) we finally define (n,): Having fixed n,, fora v € N

TLV+1—1

we choose an n,4; with n, +1 < n,4; such that > v. Obviously,

Ny41—
(pn) is monotonically increasing, (5—:) ¢ (> and (3-) ¢ co. Therefore, ¢ C
> Ncr, Ccr, Ccc, and R, is not potent.
Note, £*°Ncg, does not contain any space bs(IN) since otherwise it would
have the Hahn property by Theorem 2.6.

Now, we give an example showing that, in general, the bounded domains
of a potent R, and of the corresponding N,, are different.

Example 3.13.

(a) Let p= (pn) := (1,2,1,2,...). Then, by Theorem 3.8, both /> Ncy,
and £°° N cg, have the Hahn property. Note that > N con, S £°° N cor,
since v = (2,-1,2,—1,...) € £ Ncor,, but & ¢ £>° Ncop,, and since £ N
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con, C £°° Ncor, as we may easily check (note, [R,x]on—1 = [NpT]2n—1 and
Frron, — 0 (n — o00) for every x € £%°).

(b) Let p = (pn) = (2"71). Then cg, = c since (fj—:) € (> (cf. Remark
3.1(b)). In particular, R, is not potent. By contrast, N, is coercive by the
Schur Theorem (cf. [3: Theorem 2.4.1]), so that £>° N cy, has obviously the
Hahn property. More generally, we may assume that p satisfies (3.1) and
(%) € ¢\ co. Then R, is not potent, but N, is coercive (cf. Remark 3.2).

4. Intersection of Hahn spaces

In [1: Problem 7.1] the question is posed whether the intersection of Hahn
spaces is also a Hahn space. In the first step we give positive results by
presenting big classes of Hahn spaces such that the finite intersection of some
of their members is also a Hahn space. These results prove the power of
Theorem 2.6.

Remark 4.1.

(a) If £ and F are spaces lying between bs(N) @ Sp{e} and ¢>° for some
partition N of N, then F, F and also E N F have the Hahn property by
Theorem 2.6.

(b) If (p,) satisfies the conditions in Theorem 3.8, then the bounded

domains £*° Ncg, and £>° Ncy, and their intersection £*° Ncg, Ncy, have the
Hahn property.

In the following theorem we give a negative answer to [1: Problem 7.1] by
presenting a big class of such examples. For that, we consider the set 7 of
all thin sequences: A sequence is called thin if there exists an index sequence
(ky) with k,41 — k, — oo such that xp, = 1 if k = k, and 2, = 0 otherwise
(k,v € N).

Theorem 4.2. The intersection of Hahn spaces does not necessarily have
any of the Hahn properties. In particular, we have the following results:

(a) (bs@Sp{e})N(£>°-SpT) does not have the matriz Hahn property (which
is necessary for both the separable Hahn property and the Hahn property).

(b) If N = (N;|i € I) is a finite partition of N satisfying (2.1), then
(bs(N) @ Sp{e}) N (£ - SpT) does not have any Hahn property.
Proof.

(a) bs @ Sp{e} and ¢*° - Sp7 have the Hahn property (cf. [1: Theorem
3.4] and [1: (4.6) in the proof of Theorem 4.1}, respectively).

Now, we set G = (bs@®Sp{e})N(£>*°-Sp7T) and prove x(G) = . Then we
can conclude that G does not enjoy the matrix Hahn property: If I denotes
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the identity matrix, then obviously x(G) = ¢ Cc=c¢y, but y = (yx) € G\ ¢1

where
1 ifk=2" (neN)
yk—{—l ifk=2"+1 (neN)
0 otherwise.
Note, y € Sp7 since y takes only finitely many positive values and the length
of the ‘zero-gaps’ of y tends monotonically to infinity.

The inclusion ¢ C x(G) is obvious since ¢ C G. For a proof of the
contrary inclusion we consider an arbitrary = € x N (G \ ¢). Then

. N eN
x:yZazx(l) with {aleio()o, QL‘(Z) cT (Z _ 1,,N)
- Y .

First we estimate the least number of zeros and the utmost number of
ones which z, takes for v < k (k € N). By 5;,5, and S, we denote the
support of z,y and x(?, respectively. Thus S, C Sy N Uf\il Sy =: 5, NS.
So, x takes the value 1 at most for k£ € S (and the value 0 outside of S). Let
a € (0,1) be given and j € N, j > 2, be chosen such that

1

- <a, that is (1 —a) —a(j —1) <. (4.1)
J

Because (¥ € T (i = 1,...,N), for M := jN there exists a ko € N such

that for every i € Ny the sequence x(¥) takes at most once the value 1 in each

interval [k, k + M) (k > ko). Thus x takes the value 1 at most N times in
each such interval. Let k, := ko + vM (v € N). Now, for k € N we set

g(k) = |{v <k|:13,,—1}‘
f(k)=k :|{V§k|x,,:0}|

a
b= f(ko) = ko — Q.
With that, for v € N we get g(k,) < a+ v N and therefore
f(k,) =k, —g(k,) > ko+jyvN —a—vN =ky—a+ (j —1)vN.

Aiming to a contradiction we use that x is assumed to be a member of
bs @ Sp {e}, that is x = y + ae where y € bs and o € R are suitably chosen.
Considering the special cases a = 0,a = 1,a > l,a < 0and 0 < a < 1 we
get the contradiction y ¢ bs as follows:

The case o« = 0: yr, = xp — o = x, thus y is a 0-1-sequence which takes
the value 1 at infinitely many positions since = ¢ ¢.
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The case a = 1: Then we have

o . 0 if$k21
yk:—il?k—l—{_l ity =0 (k € N),

thus y is a —1-0-sequence which takes the value —1 at infinitely many positions
by the foregoing considerations.

The case o > 1: Here, y takes only the negative values 1 — a and —a.

The case o < 0: In this case y takes only the positive values 1 — o and
—a.

The case 0 < o« < 1: We have

l—a>0 ifzx, =1

y’“:x’“_o‘:{—a<o if 7, = 0.

Using the notation in the foregoing (preparing) considerations we get

ky
Zyk <(l—-a)(a+vN)—alky—a+ (j —1)vN)
k=1

=(1-a)a—alky—a)+ (1 —a) —a(j —1))vN

— —0 (Vv — o0)

(see (4.1)). Therefore y ¢ bs which contradicts = € bs & Sp {e}.

(b) We set
F = (bs(N)®Sp{e})Nn (> -SpT)
G = (bs®Sp{e})N (> -SpT).

Obviously, we have F' C G (since [ is assumed to be finite), thus x(F) C
X(G) = ¢ where the last identity has been proved in part (a). Now we proceed
analogously to the beginning of the proof of assertion (a): We consider the
identity matrix I and get obviously x(F) =¢ Cc=cr, but y = (yx) € F \ ¢s
where

-1 ifk= k1,2u+1 (V S N) (k € N)

1 if k= kl’gu (V € N)
Yk =
0 otherwise

and (k1,) is the sequence of all members of N; arranged in the ascending
order. Note that here y € bs(NN) is obvious and y € Sp7 since y may easily
be represented as difference of thin sequences i
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Problems. In addition to the problems in [1: Section 7] we pose the
following;:

1. Still we do not know whether there exists a bounded domain of a matrix
having the matrix Hahn property but not the (separable) Hahn property.

2. Find a bounded domain ¢*° N c4 having any Hahn property and a
sequence space F with /> Ncy C E C ¢*° and having not this Hahn property.
(Note, in this situation we have necessarily E # (> Nca + x(E).)

Acknowledgements. The authors wish to thank the referees for very
helpful hints.
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