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Fixed Point Theorems
for Decomposable Multi-Valued Maps
and Applications
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Abstract. We present fixed point theorems for weakly sequentially upper semicon-
tinuous decomposable non—convex-valued maps. They are based on an extension of
the Arino-Gautier-Penot Fixed Point Theorem for weakly sequentially upper semi-
continuous maps with convex values. Applications are given to abstract operator
inclusions in L? spaces. An example is included to illustrate the theory.
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1. Introduction

Various types of boundary value problems for differential inclusions, integro-
differential inclusions or, more generally, functional-differential inclusions can
be equivalently reformulated as operator inclusions of the form

u € Uy (1.1)

in an appropriate space of functions, where by Y® we mean the composition
PWod. Most frequently ¥ is an “integral type” map, the inverse of a differential
operator, while ® is a multi-valued map associated with the right-hand side
of the functional-differential inclusion.

For the theory of differential inclusions and its applications we refer the
reader to the books of Deimling [9], Gérniewicz [12], Hu and Papageorgiou
[14, 15] and Kamenskii, Obukhovskii and Zecca [16].
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Using a fixed point approach to problem (1.1), we may first try to apply
fixed point theorems to the composite multi-valued map F = W®. Several
difficulties arise when treating such multi-valued compositions this way. One
of them consists in guaranteeing continuity properties for the maps; another
one concerns the geometric properties of their values. For example, even if
the values of ® are convex and W is single-valued (but nonlinear), the values
of F = W® can be non-convex. In this connection we may think to use
fixed point theorems for non—convex-valued maps, for example, the Eilenberg-
Montgomery Theorem (see Couchouron and Precup [5, 6]). However, it is
expectable that one can take advantage from the representation of F as U®.
Several authors have done this under various aspects (see Andres and Bader
[1], Bader [3] and Gérniewicz [12]). The main purpose of the present paper
is to develop a fixed point theory for maps which are decomposable into P,
with both ® and ¥ convex-valued maps between Banach spaces. We shall
succeed this by considering the Cartezian product map

I(z,y) = Yy x dx

whose values are convex in the corresponding product space X x Y endowed
with the weak topologies on X and Y.

The abstract results established in this paper can be used to prove el-
ementarily that the hypothesis of contractibility asked in Couchouron and
Kamenskii [4] and that one of acyclicity from Couchouron and Precup [5, 6]
are not necessary (for [4] this was previously shown by Bader [3] by means of a
topological fixed-point index theory for decomposable maps, under a stronger
compactness condition on ¥). In Section 3 the abstract continuation principle
established in Section 2 is applied to discuss operator inclusions in LP spaces,
under general assumptions which were inspired by those in Couchouron and
Kamenskii [4] and in Couchouron and Precup [5]. Finally, we present a simple
example concerning functional-differential inclusions.

The main contributions of this paper are as follows:

1) A fixed point theory for non—convex-valued maps which can be repre-
sented as compositions of two convex-valued maps. This theory improves and
extends the results from Couchouron and Kamenskii [4] and from Couchouron
and Precup [5, 6]. Also, our theory represents a fixed point alternative to the
index theory presented in Bader [3] under some more restrictive conditions
(for example, in [3] only ® is multi-valued).

2) A continuation principle accompanying the Arino-Gautier-Penot Fixed
Point Theorem [2] for weakly sequentially upper semicontinuous maps.

3) Theorems of Moénch type for set-valued maps with conditions expressed
with respect to the strong or the weak topology. These results complement
those in Moénch [17], O’Regan [18] and in O’Regan and Precup [19].
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For the remainder of this section we gather together some definitions and
results which we will need in what follows.

For any Hausdorff topological space X we define

Pr(X) = {A C X : A is non-empty, closed}

P.(X) = {A C X : A is non-empty, compact}.
If X is a closed convex subset of a Banach space, then we define

P (X) = {A C X : A is non-empty, closed, COHVGX}

Pro.(X) = {A C X : A is non-empty, weakly compact, convex}.

A multi-valued map ® : X — 2Y, where X and Y are Hausdorff topological
spaces, is said to be upper semicontinuous if for every closed subset A of Y
the set

® (A)={zeX: Andz # 0}

is closed in X.

Throughout this paper we shall consider multi-valued maps ® : X — 2V
where X and Y are subsets of two Banach spaces. We shall use the following
terminology:

- ®is u.s.c. if ® is upper semicontinuous with respect to the strong topolo-
gies of X and Y.

- ®is w-u.s.c. if @ is upper semicontinuous with respect to the weak topolo-
gies of X and Y.

- O is sequentially w-u.s.c. if for every weakly closed subset A C Y the set
®~(A) is sequentially closed for the weak topology on X.

We recall the following two known fixed point theorems: Theorem 1.1 (Bohnen-Jj
blust-Karlin). If X is a Banach space, C is a non-empty compact convex
subset of X and ® : C — Py.(C) is u.s.c., then there exists an x € C with
x € Px.

Theorem 1.2 (Arino-Gautier-Penot). If X is a Banach space (or, more
generally, a metrizable locally convex linear topological space), C is a non-
empty weakly compact convex subset of X and ® : C' — Py (C) is sequentially
w-u.S.c., then there exists an x € C' with x € ®x.

Notice that Theorem 1.2 is an immediate consequence of Ky Fan’s Fixed
Point Theorem (see Deimling [8: pp. 310 — 315]) and of the following lemma
(Arino, Gautier and Penot [2], O’Regan [18]) whose proof is based upon
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the Eberlein-Smulian Theorem (see Dunford and Schwartz [11: pp. 430]).
Lemma 1.1. Let X,Y be Banach spaces (or, more generally, locally convex
linear topological spaces, and X metrizable) and let C' be a weakly compact
subset of X. Then any sequentially w-u.s.c. map ® : C — 2Y is w-u.s.c.

Remark 1.1. For a map ® : C — 2¢ with C a compact subset of a
Banach space, the notions of u.s.c., w-u.s.c. and sequentially w-u.s.c. are
identical. Thus in Theorem 1.1 & can be equivalently assumed to be sequen-
tially w-u.s.c. So Theorem 1.2 appears as a generalization of Theorem 1.1.

Next we recall the definitions of measures of non-compactness and weak
non-compactness. By a measure of non-compactness in a closed convex subset
C of a Banach space X we mean a real function y defined on the collection of
all non-empty bounded subsets of (', such that

n(A) = p(coA)
u(A)=0 <= A isrelatively compact
ACB = pu(4) < uDB).

We shall denote by Gx the ball measure of non-compactness in X,
Bx(A) = inf {5 > 0: A admits a finite cover by balls of radius 5}.

By a measure of weak non-compactnessin a closed convex subset C' of a Banach
space we mean a real function y defined on the collection of all non-empty
bounded subsets of (', such that

x(4) = x(co4)
X(A) =0 <= Ais relatively weakly compact
AcB = x(4) <x(B).

For an example of a measure of weak non-compactness see De Blasi [7].

We conclude this section with two well-known compactness criteria in
L?(0,T; E) (see Guo, Lakshmikantham and Liu [13: pp. 15 — 18] and Diestel,
Ruess and Schachermayer [10], respectively). Here 0 < T' < oo, p € [1, 00] and
E is a Banach space with norm |- |g. For a function u : [0,7] — E we define
the translation by h (0 < h < T') to be the function 7,u : [0, 7 —h] — E given
by mhu(t) = u(t + h). Theorem 1.3. Let p € [1,00]. Let M C LP(0,T; E)
be countable and assume that there exists a function v € LP(0,T;Ry) with
lu(t)|g < v(t) a.e. on [0,T], for allw € M. In addition, assume that M C
C([0,T]; E) if p = 00. Then M is relatively compact in LP(0,T; E) if and only
if
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(1) supyear |The — ulpro,r—n;5) — 0 as h | 0

(ii) M(t) = {u(t) : we M} is relatively compact in E for a.e. t € [0,T].

Theorem 1.4. Let p € [1,00). Let M C LP(0,T;FE) be countable and
assume that there exists a function v € LP(0,T;R,) with |u(t)|g < v(t) a.e.

on [0,T], for allu € M. If M(t) is relatively compact in E for a.e. t € [0,T],
then M is weakly relatively compact in LP(0,T; E).

2. Fixed point theory First we give an extension of the
Arino-Gautier-Penot Fixed Point Theorem [2] to de-

composable non—convex-valued maps. Theorem 2.1. Letj

X and Y be Banach spaces (or, more generally, met-
rizable locally convex linear topological spaces), let A
and B be non-empty weakly compact convex subsets
of X and Y, respectively, and let

d: A— PfC(B)
v: B — Pfc(A)

be two multi-valued maps. Assume ® and ¥ are se-
quentially w-u.s.c. Then there exists at least one
r € A with *x € ¥Y®x and, equivalently, there exists
at least one y € B with y € &Vy.

Proof. Let X XY be endowed with the product topol-
ogy. In this way, X XY is a Banach space (respectively, a
metrizable locally convex linear topological space). Con-
sider the multi-valued map actingin X XY, Il : AXB —
Ps.(A X B), given by

II(x,y) = Py X Px.

We have that A X B is a weakly compact convex subset
of X XY . In addition, IT is sequentially w-u.s.c. (see Ka-
menskii, Obukhovskii and Zecca [16: Theorem 1.2.12]).
Thus we may apply the Arino-Gautier-Penot Fixed Point
Theorem. Therefore, there exists a (z,y) € A X B with
(z,y) € II(z,y). We have x € ¥y and y € ®x. Conse-
quently, x € Y®&x and y € ¥y i
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Remark 2.1. The Arino—Gautier—Penot Theorem ap-
pears as a particular case of Theorem 2.1, when X =Y,
A = B and ® or ¥ is the identity map of A.

Theorem 2.2. Let X,Y be Banach spaces, let C be a
closed convex subset of X, and let

®: C — Pruwc(Y)

¥ : co®(C) — P (C)
be two multi-valued maps. Assume that, for every weakly
compact convex subset A of C, ® and ¥ are sequentially
w-u.s.c. on A and on ¢co ®(A), respectively. In addition,

assume that there exists an x, € C such that the cond:i-
tion

ACC

A — @({330} U W(@@(A))) } —> A is weakly compactl

(2.1)
ts satisfied. Then there exists at least one x € C with
T € o,

Proof. Let M be the collection of all non-empty closed]j
convex subsets M of C' with

eo({z,} U ¥(eo ®(M))) C M.

Clearly, C € M and =, € M for every M € M. More-
over, it is easy to see that

MeM = co({n}UT(@®(M)))eEM. (2.2)
Define the set
A=n{M : M € M}.
We have A € M. Also, (2.2) implies

A =co({x,} U ¥(co®(A))).
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Then (2.1) guarantees that A is weakly compact. Now
Theorem 2.1 applies to A and B = ¢co ®(A). Notice (see
Kamenskii, Obukhovskii and Zecca [16: Theorem 1.1.7])
that ®(A) is weakly compact since ® is w-u.s.c. on A
(from Lemma 1.1) and has weakly compact values. Then
the Krein-Smulian Theorem (Dunford and Schwartz [11:
pp. 434]) implies that co #(A) is weakly compact 1

Remark 2.2. If in addition C is weakly compact, then
condition (2.1) trivially holds and Theorem 2.2 becomes
Theorem 2.1.

Theorem 2.2 yields in particular the following result
for convex-valued self-maps of a closed convex subset of
a Banach space (compare Theorem 4.3 in O’Regan [18]
and Theorem 2.1 for single-valued maps in Ménch [17]),
an alternative result to Theorem 3.1 in O’Regan and
Precup [19]. Corollary 2.1. Let X be a Banach space,
C a closed convex subset of X and ® : C — Pyuw.(C).
Assume P is sequentially w-u.s.c. and that there is an
x, € C such that

ACC 1 .
= 18 wea compact.
A = eo({z,} U 2(4)) y comp
(2.3)
Then there exists at least one x € C with x € $«x.
Proof. We apply Theorem 2.2toY = X and ¥ = Ix,
the identity map of X. Note that
co({x }U¥ (co (A))) = co({z,}Uco ®(A)) = co({z,}ud(A))|
and the assertion is proved 1

Remark 2.3. If in addition C is weakly compact, then
condition (2.3) trivially holds and Corollary 2.1 becomes
the Arino-Gautier-Penot Theorem.

Under a stronger condition than (2.1) and a weaker
one on ®, we have the following result. Theorem 2.3. Let
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X and Y be Banach spaces, let C be a closed convex
subset of X, and let

P : C — Puuo(Y)
¥ : co®(C) — Py.(C)

be two multi-valued maps. Assume that, for every com-
pact convex subset A of C, ® and ¥ are sequentially
w-u.s.c. on A and ¢o P(A), respectively. In addition,
assume that there exists an x, € C such that the condi-
tion

AcCC

—> A is compact

A = co({z,} U ¥(co(A))) } P
(2.4)

ts satisfied. Then there exists at least one x € C with

x € bz,

Next we present a fixed point theorem of Leray-Schauder]
type (a continuation principle) for decomposable non—
convex-valued maps. Theorem 2.4. Let X and Y be Ba-
nach spaces, K a closed convex subset of X, U a convex
relatively open subset of K, x, € U and let

b : U — Pruwe(Y)

U : coP(U) — Ps(K)
be two multi-valued maps. Assume that, for every com-
pact convexr subset A of U, ® and ¥ are sequentially

w-u.s.c. on A and co P(A), respectively. In addition,
assume that the two conditions

ACU
A closed convex —> A is compact

A Ceo({z,} U ®(coD(A)))
(2.5)
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and
x & (1— Nz, + A¥Px VeeU\UMEe (0,1) (2.6)

are satisfied. Then there exists at least one x € U with
r € Vox.

Proof. If U = K, then U \ U = 0, so (2.6) is super-
fluous and the result follows from Theorem 2.3, where
C = K. Assume U # K. Let

C = co({x} U ¥(co @(D))).

It clear that x, € C C K and C is closed convex. Since
U is open in K, convex, and x, € U, we can define a
single-valued operator P : K — U by

Pr—17% ifreU
A =Nz + Az ifxg¢U

where A € (0,1) is such that (1 — ANz, + Az € U \ U.
Clearly, P is continuous.

Consider
D : C — Proc(Y), dxr = ®dPx (x € C)
U : co®(C) — Ps.(C), Uy =0y (y € cod(C).

We first check that ® is sequentially w-u.s.c. on any
compact convex subset A of C. Indeed, we can see that
it suffices to prove this for compact convex sets A with
x, € A. In this situation, P(A) = ANU, so P(A) is
compact and convex. Now let B C Y be weakly closed.
We have to show that the set

M:{mGA: ti)azﬂB;é(a}

is weakly sequentially closed. Assume x; € A, dx,NB #*
@ and x;, — x weakly. Since A is compact, there is a
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subsequence (xg/) of (xy) with xp, — x strongly. Then
Pz, — Px strongly. Since P(A) is compact convex, ®
is sequentially w-u.s.c. on P(A). Consequently, the set

N ={y€ P(A): dyn B # 0}

is weakly sequentially closed. Since Pxy belongs to N
for all k’, we have Px € N, too. Thus ®PxN B # () with
x € A. Therefore, x € M as desired. It is easy to see
that ¥ is sequentially w-u.s.c. on co ®(A).

Next we show that (2.4) holds for the couple (®, ¥).
Let A C C be such that

A =co({x,} U ¥ (co ®(A))).

Clearly,
A =co({x,} U ¥(co®P(A))).

We have
P(A) = ANU C co({z,} U ¥(co®P(A)))

where P(A) is a closed convex subset of U. Then (2.5)
guarantees that P(A) is compact. Let (xg) be any se-
quence in A. Since P(A) is compact, there exists a sub-
sequence (xy:) of (xy) with Pxy — y strongly for some
y € P(A). We have Pxy: = (1 — Agr )@y + Aprxg for some
Aks € [0, 1]. Passing eventually to a new subsequence we
may assume that A\px — A for some A € [0,1]. If A > 0,
we immediately find that (xg/) is strongly convergent.
Assume A\ = 0. Then y = x, and so Pxyr = x for
all ¥’ > k,. Hence (xg’) is strongly convergent as well.
Hence A is compact.

Thus all the assu/r\nptions of Theorem 2.3 are satisfied
for the couple (®,¥). Therefore, there exists * € C
with * € ¥®x. Clearly, x € PPPx. We claim that
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x € U. Assume the contrary, that is * ¢ U. Then
Pz = (1 —X)x,+ Az for some X € (0,1) and Pz € U\ U.
From z € $®Px we deduce

Pr=1-MNx,+ Az € (1 — Nz, + A\ UPPx

which contradicts (2.6). Hence x € U, so Px = = and
z e Yozl

Theorem 2.4 yields in particular the following contin-
uation principle for convex-valued maps (compare The-
orem 2.2 for single-valued maps in Ménch [17]), an al-
ternative result to Theorem 3.2 in O’Regan and Precup
[19]. Corollary 2.2. Let X be a Banach space, K a closed
convex subset of X, U a convex relatively open subset of
K, x, € U and let

®: U — Pruw.(K)

be a multi-valued map. Assume that ® is sequentially w-
u.s.c. on each compact convex subset of U. In addition,
assume that the two conditions

ACU
A closed convex —> A is compact

A C co({z,} UB(A))
and
r & (1—Nxy+ APz VeeU\UMe (0,1)

are satisfied. Then there exists at least one x € U with
T € Px.

Remark 2.4. Let U be bounded, and let ® and ¥ send
bounded sets into bounded sets. If p is a measure of
strong non-compactness in K, x is a measure of weak
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non-compactness on ¢o ®(U), and there are functions
¢, : R, — R, with 1 non-decreasing such that

vo(r) < T (r > 0) (2.7)
x(®(M)) < ¢(u(M)) (M CU)
p(¥(M)) < p(x(M)) (M Cco®(U),

then condition (2.5) holds. Indeed, if A C U and A C
co({x} U ¥(co ®(A))), then

u(A) < p(¥(co@(A))) < ¢(x(co®(A))) = ¢(x(®(A))) < po(u(A)) ]

Then (2.7) implies u(A) = 0, i.e. A is compact.

3. Operator inclusions in L?P spaces
In this section we are concerned with the abstract operator inclusion
w € Udw (w e K) (3.1)

in a closed convex subset K of L?(0,T; F'), where

o : K — 2L (OTE) ig o multi-valued map
U: L90,T; F) — K is a single-valued operator.
Here 0 < T < 00, p € [1,00], ¢ € [1,0), and E and F are Banach spaces. We

shall denote by r the conjugate exponent of ¢, i.e. % + % =1. By |- |4 we shall

denote the norm of L%(0,7T; E) and by || - || an equivalent norm on the closed
subspace of LP(0,T; F') generated by K.

We now state our assumptions:
(¥1) There exists a function n : [0,T] x L2(0,T; Ry ) — R4, non-decreasing

in its second variable such that, for every t € [0, 7],

sup  [n(t,g+h)—n(t,g)l =0  (|hlqg = 0) (3.2)
g€LI(0,TiR )

and

(Uf =W fo)t)|r <nt, |(fi = f2)C)|E)
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a.e. on [0,T], for all fi1, fo € LY(0,T; E).

(U2) There exists a constant L > 0 with ||¥ f; — U fa|| < L|f1 — fa2l, for all
fi, f2 € Lq(O,T; E)

(¥3) For any compact C' C E and any sequence (fy) of L9(0,T; FE) with

{f(®)}k>1 C C for a.e. t € [0,T], the weak convergence fr, — f
implies U f, — W f strongly in LP(0,T; F).

(1) The values of ® are non-empty, weakly compact, convex, and ® is
sequentially w-u.s.c. on any compact convex subset A of K.

(®2) For every a > 0 there exists a v, € L9(0,7;Ry) such that |f(¢)|g <
vo(t) a.e. on [0,7], for all f € dw and all w € K satisfying ||w|| < a.

(®3) For every separable closed subspaces Ey and Fy of E and F, respec-
tively, there exists a map ¢ : LP(0,T;R,) — L2(0,T;Ry) such that
¢(0) =0 and

B, (S(M)(t) N Eo) < ((Br, (M(-)))(t) (3-3)

a.e. on [0, T, for every countable set M C K with M(t) C F, a.e. on
[0, T], for which there exists v € LP(0,T;R,) with |w(t)|r < v(t) a.e.
on [0,7] for any w € M. In addition, ¢ = 0 is the unique solution in
LP(0,T;R,) to the inequality

p(t) <n(t,¢(p))  ae on|0,T]. (3-4)

(L-S) There exists a bounded convex subset U of K, open in K, and a
wo € U such that w ¢ (1 — MNwg + AW®w for all w € U \ U and
A€ (0,1). Theorem 3.1. Let assumptions (V1) — (U3), (®1) — (P3)
and (L-S) hold. Then inclusion problem (3.1) has at least one solution
in U.

For the proof we need the following Lemmas 3.1 and 3.2. Lemma 3.1. Let
assumptions (V1) and (¥3) hold. Further, let B C L%(0,T;E) be countable
with

|f()le < v(t) (3.5)

a.e. on [0,T] for all f € B, where v € L1(0,T;Ry). At last, let Ey and F
be separable closed subspaces of E and F, respectively, with f(t) € Ey and
Uf(t) € Fy a.e. on [0,T] for every f € B. Then the function ¢ defined by
o(t) = Br, (B(t)) belongs to L1(0,T;Ry) and satisfies

Br, (¥(B)(t) < n(t, ¢) (3.6)

a.e. on [0,T].
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Proof. Let B = {f,}n>1. The space Ey being separable, we may rep-
resent it as Up>1 Ey where, for each k, Ej is a k-dimensional subspace of Ey
with Fy C Ery1. The fact that ¢ is measurable follows from the formula of
representation of the ball measure of non-compactness for separable spaces
which yields

¢(t) = lim supd(fn(t), Ex). (3.7)

k—o0 p>1
From d(f.(t),Ex) < |fn(t)|E, (3.5) and (3.7) we have ¢(t) < v(t) a.e. on
[0,T]. Consequently, ¢ € L1(0,T;R ).

Since B is countable, we may suppose that (3.5) holds for all ¢t € [0,T]
and f € B. To prove (3.6), let € > 0 and choose § > 0 such that

0] <6 — / V(£)9dt < 9. (3.8)
©

Here |O] is the Lebesgue measure of ©. Also, choose a constant p > 0 such
that |01 < & for ©1 = {t € [0,T] : v(t) > p}. So we have d(fn(t), Ey) <
lfn®)|g < pfort € I\ ©; and n,k > 1. Consequently, d(f,(t),Ex) =
d(fn(t),Cr) with Cy, = {z € Ey : |x|g < p}.

From (3.7) and Egoroff’s Theorem (see Dunford and Schwartz [11: pp.
149]) there is a set ©2 C [0,7]\ ©; with |©;] < & and an integer ko such that

sup d(fa(t),Cr) < o(t) +¢ (3.9)

n>1

for t € [0,T]\ (01 UBO3) and k > kg. Since B is a countable set of strongly
measurable functions, we may find a set ©3 C [0,7] with |©3] = 0 and a

countable set B = {ﬁl}nzl of finitely-valued functions from [0, 7] to E with

|fa) = fu()|e < e (3.10)
for t € [0,7]\ ©3 and n > 1. From (3.9) and (3.10) we obtain
d(fn(t),Ck) < p(t) + 2¢

forn>1,k>koand t € [0,7]\ O with © = ©; UO5UO3. Then there exists
a finitely-valued function f, ;. from [0,7] to C} with

fa(t) = Far ()5 < o(t) + 3¢ (3.11)

forn>1,k > koand ¢t € [0,7]\©. We put fnk(t) = 0 for t € ©. Notice that
O] < 6.
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For each fixed k > kg, Theorem 1.4 guarantees that the set {ﬁl,k}nZl is
weakly relatively compact in L2(0,T; E). Then, from assumption (¥3), the
set {‘Ifﬁb7k}n21 is relatively compact in LP(0,T; F'). Therefore, by Theorem
1.3, the set {\Ijﬁz,k(t)}nZI is relatively compact in F for all t € [0, T except a
subset of measure zero. Since an at most countable union of sets of measure
zero also has measure zero, we may assume that {¥f, (t)},>1 is relatively
compact for all k > ko and t € [0,7T]\ ©¢, where |Og| = 0. Let to € [0,7]\ Og
be arbitrary. Using assumption (¥1) and (3.11), we obtain

W f(to) — \Pﬁz,k<t0)|F < n(to, [ fu() = Frk()lE)

(3.12)
< n(to, ) + |n(to, ¢ + h) — n(to, )|
where ; [ e
_J 3e orte |0,T
ht) = {I/(t) for t € ©.
Writing
h="hy+ hs
with

3¢ forte |0, 7]\ O
hi(t) = ’
1(#) {0 fort € ©

ho (1) {0 for t € [0, 7]\ ©

v(t) forte©
and using (3.8), we find that

hly < |halq + |holy < 3eT7 +e.

Now (3.12) and (3.2) shows that the set {VUf,(t0)}n>1 admits a relatively

compact e-net of the form {Wf, x(to)}n>1 for every e > n(to, ). Letting
e | n(to, p) we obtain (3.6) B

Lemma 3.2. Let assumptions (V2) and (V3) hold. Further, let B be a
countable subset of L1(0,T; E) such that B(t) is relatively compact for a.e.
t € [0,T] and there exists a function v € L9(0,T;Ry) with |f(t)|g < v(t)
a.e. on [0,T], for all f € B. Then the set ¥(B) is relatively compact in
LP(0,T; F). In addition, ¥ is continuous from B equipped with the relative
weak topology of L4(0,T; E) to LP(0,T; F) equipped with its strong topology.

Proof. Let B = {f,}n>1 and let € > 0 be arbitrary. As in the proof of
Lemma 3.1 we can find functions f,, ; with values in a compact CLCE (Uk

being a closed ball of a k-dimensional subspace of E') such that | f,, — fnk 4 <e¢
for every n > 1. Then assumption (¥2) implies

[V frn =Vl < Lfn — farlg < L. (3.13)
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On the other hand, the set {ﬁ,k}nzl C L9(0,T; F) is weakly relatively com-
pact in L9(0,7T; F). Next, assumption (¥3) guarantees that {\IfﬁL7k}n21 is
relatively compact in LP(0,7T; F'). Hence from (3.13) we see that {\Ifj?n,k}nzl
is a relatively compact eL-net of W(B) with respect to the norm || - ||. Since
¢ was arbitrary, we conclude that W(B) is relatively compact in LP(0,T; F').

Next we show that the graph

A:{(f,w): fEB,w:\Ilf}

is weakly-strongly sequentially closed in L%(0,7T;FE) x LP(0,T; F). To this
end, assume (fr) and (wy) are sequences with fr € B and wy = U fy, fr — f
weakly and wy — w strongly for some f € B and w € LP(0,T; F'). We shall
prove that w = W f. For an arbitrary number ¢ > 0, we have already seen
that the proof of Lemma 3.1 provides a compact set P. and a sequence (f;)
of P.-valued functions satisfying

[fe = filg <€ (3.14)

for every k. The set { f }x>1 being weakly relatively compact in L(0,T, E), a
suitable subsequence (f;,) must be weakly convergent in L?(0, 7T, E) towards
some f¢. Consequently, ¥ fr, — Wf¢ strongly in L”(0,T; F). Also, Mazur’s
Lemma and (3.14) imply

f= il <e. (3.15)

Now assumption (¥2) and the triangle inequality yields

lw — W
< lw =Vl + (9 for = Wl + [V = O+ [0 =TS
< llw = w4+ Ll fir = fiolg = 1V fior = WS+ LIS = flo-

Using (3.14), (3.15) and |[jw —wy|| — 0 and ||¥f;, — VU f¢|| — 0 as k' — oo we
deduce that
|lw—Wf] < 2eL. (3.16)

Since £ was arbitrary, (3.16) gives w = ¥ f and the proof of Lemma 3.2 is
complete B

Proof of Theorem 3.1. We apply Theorem 2.4 with zy := wg, X the
closed subspace of LP(0,T; F) generated by K, and Y := L9(0,T; E). Notice
that, since U is bounded in K, there exists a > 0 such that ||w| < a for all
w € U. Then from assumption (®2) one has |f(t)|r < v(t) a.e. on [0,T]
for all f € ®w and w € U. It follows that the same inequality is true for all

fecwd(U).
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To guarantee that ¥ is sequentially w-u.s.c. on ¢6 ®(A) for any compact
convex subset A of U we have to show that

fr — f weakly, fr €co®(A) = Vfy — Uf strongly.

Let A. C A be countable such that { fx}x>1 C €0 ®(A,). In virtue of Theorem
1.3, A.(t) is relatively compact in F for a.e. ¢t € [0,7]. Then from (3.3) we
deduce that Bg,(P(A:)(t) N Ep) = 0 a.e. on [0,T], for every separable closed
subspace Ey of E. As a result the set {fi(t)}x>1 is relatively compact in £
for a.e. t € [0,T]. Now Lemma 3.2 guarantees that ¥ f, — W f strongly.

It remains to check condition (2.5) for the couple [®, ¥]. Let A C U be a
closed convex set with

A co({wo}UT(co®(A))).

To prove that A is compact it suffices that every sequence (w?) of A has a

convergent subsequence. Let Ag = {w},>1. Clearly, there exists a countable
subset

A1 = {w) }nx1

of A, fl € @ ®(A;) and vl = Ufl with A9 C co({wo} U V1), where V! =
{v}},>1. Furthermore, there exists a countable subset

Ay = {wl}n>1

of A, f2 € @0 ®(Ay) and v2 = Uf2 with A; C co({wo} U V?), where V2 =
{v2},>1, and so on. Hence for every k > 1 we find a countable subset

A = {wk}n>1

of A and correspondingly f¥ € €6 ®(A;) and vF = Uf* such that A,_; C
co({wo} UV*) and V* = {vF},>1. Let

A* = UkZOAk-

It is clear that A* is countable, Ag C A* C A and A* C co6({wo} U V™), where
V* = Ug>1VF. Let W* := {fF},.k>1. Since A*, V* and W* are countable sets
of strongly measurable functions, we may suppose that their values belong to
a separable closed subspace Fy of F' in the case of A* and V*, respectively
Ey of E in the case of W*. Since |f¥(t)| < v4(t) a.e. on [0,7], Lemma 3.1
guarantees

Br, (A7(1)) < Br, (V™ (#)) < n(t, B, (W*())) (3.17)
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while assumption (®3) gives

Bea (W (s)) < B, (R(A™)(s) N Eo) < C(Br,(A"()))(s). (3.18)

Since 7 is non-decreasing in its second variable, from (3.17) and (3.18) it
follows that

Bry (A* (1)) < n(t, ¢(Br, (A*(1))))-

Moreover, the function ¢ given by ¢(t) = Br,(A*(t)) belongs to LP(0,T;R).
Consequently, ¢ = 0, and so ¢(t) = Br,(A*(t)) =0 a.e. on [0,7]. Then (3.18)
and ((0) = 0 guarantee

Be,(W*(t)) =0 a.e. on [0, 7. (3.19)

Let (v}) be any sequence of V* and let (f) be the corresponding sequence
of W* with v} = Wf* for all i > 1. Using (3.19) we have that (f;) has
a weakly convergent subsequence in L9(0,T; F), say converging to f. Then
the corresponding subsequence of (v)) converges to v = U f in LP(0,T; F).
Hence V* is relatively compact. Now Mazur’s Lemma guarantees that the set
co({wo} U V*) is compact and so its subset A* is relatively compact. Thus
Ap possesses a convergent subsequence as we wished. Now the result follows
from Theorem 2.4 i

Remark 3.1.

(a) If the values of ¥ are in C(0,7; F), then any solution of inclusion
problem (3.1) in K C LP(0,7;F) (1 <p < o0) belongs to C(0,T; F).

(b) The existence theory in C'(0,T; F') appears as a particular case, where
p=ocand K C C(0,T; F).

Remark 3.2.

(a) The typical example of a function 7 in assumption (\Ifl) which occurs

in applications is the one defined by n(t fo s)ds where k :
[0,7]2 — R, and k(t,-) € L"(0,T) for a.e. t € [0, T] (see Couchouron and
Precup [5, 6], and O’Regan and Precup [21]). In this case condition (¥2) is a
consequence of condition (¥1).

_J0o ift<s . .
(b) For k(t,s) = {m ifs<t where m > 0 is a constant, the function
7 is defined as n(t =m fo s)ds and occurs when W is the mild solution

operator of the Cauchy problem associated to abstract evolution equations
(see Couchouron and Kamenskii [4], and Kamenskii, Obukhovskii and Zecca
[16]). In this case, and if

() () = mop(t) + / 5(s)p(s) ds (3.20)
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where mg > 0 and & € LT/(O,T; Ry) with #/ > 2, the null function is the
unique solution of inequality (3.4). Indeed, if ©(t) < n(t,{(¢)), then

oty <m [ (mopts) + [ o(rrr)dr ) as
—m /O t <m0695¢(s)e—98 4 / ) eeTa(T)gp(T)e—@TdT) ds

0

< mimgle®|r20.6)0(8)e | L2 (0,1

+ mT|603|L"(0,t) 1612 (0,1) |90(3)€_98|L2(0,T)

where % + % + % = 1. It follows that

T8,
—fs mo L™ (0, T
p(t) < me”|p(s)e” \L2<07T><\/% i (Hr)l(/T ))'

Divide by €%t and take the L?-norm to obtain

mg +T|5|Lr’(0,T))
vag o)

Clearly, if ¢ is sufficiently large, this implies |¢(s)e™%%|12¢0 ) = 0. Thus
p=0.

Remark 3.3. Let VU satisfy the following stronger compactness condition:

(V4) If B is any bounded subset of L(0,T; E) for which there exists a

function v € L9(0,T;R) such that |f(¢t)|g < v(t) a.e. on [0,T], for
all f € B, then {Uf};cp is relatively compact in LP(0,T; F).

’@(3)6_98’L2(0,T) < m\/T\SO(S)e_GSh?(o,T)(

Then the conclusion of Theorem 4.1 is true without assumptions (¥1) and
(®3). Indeed, under assumption (¥4) the compactness of the set A satisfying
(2.5) is immediate since ¥ (co ®(A)) is relatively compact in LP(0,T; F).

Condition (¥4) has been required in Bader [3]. For a discussion on this
condition, when ¥ is the mild solution operator for the initial value problem
associated to an m-accretive map, see Vrabie [23].

Example. Let us consider the initial value problem for a functional-
differential inclusion

(1) € (@u)(t) ae. on [0.7] } | (3:21)

u(0) = uo

Theorem 3.2. Let E be a Banach space and let ® : C([0,T]; E) —
oL (OT:E) | [ef assumptions (®1) — (®3) hold with p=o00,q =1, E = F, K =
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C([0,T]; E) and ¢ given by (3.20). In addition, assume that there exists a €
LY(0,T;R,) and a non-decreasing function b : Ry — (0,00) such that

[f®)]e < a(®)b(ju(t)|£)

a.e. on[0,T], for allu e C([0,T]; E) and f € ®u, and

/OT a(s)ds < /::|E %

Then problem (3.21) has a solution in W11(0,T; E).
Proof. Let ¥ : L'(0,T;E) — C([0,T]; E) be defined by

(WF)(t) = uo + / £(s) ds.

We can easily see that U satisfies assumptions (V1) — (U3) with n(t,¢) =

fot ©(s) ds. Then recall Remark 3.2. On the other hand, a standard argument
(see O’Regan and Precup [20: pp. 29] and Precup [22: pp. 74]) guarantees
the existence of a number R > 0 with |u(t)|g < R for all ¢t € [0,7] and any
solution u of u € A\W®u, for A € [0,1]. Hence |ul| := max,cp 7] |u(t)|p < R
and so condition (L-S) holds with U = {u € C([0,T};E) : ||u|| < R}. Now
the result follows from Theorem 3.1 il

References

[1] Andres, J. and R. Bader: Asymptotic boundary value problems in Banach
spaces. J. Math. Anal. Appl. 274 (2002), 437 — 457.

[2] Arino, O., Gautier, S. and J. P. Penot: A fized point theorem for sequentially
continuous maps with application to ordinary differential equations. Funkcial.
Ekvac. 27 (1984), 273 — 279.

[3] Bader, R.: A topological fixed-point index theory for evolution inclusions. Z.
Anal. Anw. 20 (2001), 3 — 15.

[4] Couchouron, J.-F. and M. Kamenskii: An abstract topological point of view and
a general averaging principle in the theory of differential inclusions. Nonlin.
Anal. 42 (2000), 1101 — 1129.

[5] Couchouron, J.-F. and R. Precup: Ezistence principles for inclusions of Ham-
merstein type involving noncompact acyclic multivalued maps. Electron. J.
Diff. Equ. 2002 (2002), No. 04, 1 — 21.

[6] Couchouron, J.-F. and R. Precup: Anti-periodic solutions for second order dif-
ferential inclusions (to appear).



Fixed Point Theorems 863

[7] De Blasi, F. S.: On a property of the unit sphere in Banach spaces. Bull. Math.
Soc. Sci. Math. Roum. 21 (1977), 259 — 262.

[8] Deimling, K.: Nonlinear Functional Analysis. Berlin et al.: Springer-Verlag
1985.

[9] Deimling, K.: Multivalued Differential Equations. Berlin - New York: Walter
De Gruyter 1992.

[10] Diestel, J., Ruess, W. M. and W. Schachermayer: Weak compactness in L'(u,
X). Proc. Amer. Math. Soc. 118 (1993), 447 — 453.

[11] Dunford, N. and J. T. Schwartz: Linear Operators. Part I. General Theory.
New York: Intersci. 1957.

[12] Gérniewicz, L.: Topological approach to differential inclusions. In: Topological
Methods in Differential Equations and Inclusions (NATO ASI Series C 472;
eds.: A. Granas and M. Frigon). Dordrecht: Kluwer Acad. Publ. 1995, pp.
129 — 190.

[13] Guo, D., Lakshmikantham, V. and X. Liu: Nonlinear Integral Equations in
Abstract Spaces. Dordrecht - Boston - London: Kluwer Acad. Publ. 1996.

[14] Hu, S. and N. S. Papageorgiou: Handbook of Multivalued Analysis. Vol. I
Theory. Dordrecht - Boston - London: Kluwer Acad. Publ. 1997.

[15] Hu, S. and N. S. Papageorgiou: Handbook of Multivalued Analysis. Vol. II:
Applications. Dordrecht - Boston - London: Kluwer Acad. Publ. 2000.

[16] Kamenskii, M., Obukhovskii, V. and P. Zecca: Condensing Multivalued Maps
and Semilinear Differential Inclusions in Banach Spaces. Berlin - New York:
Walter de Gruyter 2001.

[17] Monch, H.: Boundary value problems for nonlinear ordinary differential equa-
tions of second order in Banach spaces. Nonlin. Anal. 4 (1980), 985 — 999.

[18] O’Regan, D.: Fized point theory of Monch type for weakly sequentially upper
semicontinuous maps. Bull. Austral. Math. Soc. 61 (2000), 439 — 449.

[19] O’'Regan, D. and R. Precup: Fized point theorems for set-valued maps and

existence principles for integral inclusions. J. Math. Anal. Appl. 245 (2000),
594 — 612.

[20] O’Regan, D. and R. Precup: Theorems of Leray-Schauder Type and Applica-
tions. Amsterdam: Gordon and Breach Sci. Publ. 2001.

[21] O’Regan, D. and R. Precup: Ezistence theory for nonlinear operator equations
of Hammerstein type in Banach spaces. J. Dyn. Syst. Appl. (to appear).

[22] Precup, R.: Methods in Nonlinear Integral Equations. Dordrecht - Boston -
London: Kluwer Acad. Publ. 2002.

[23] Vrabie, I. I.: Compactness Methods for Nonlinear Evolutions. Harlow: Long-
man Sci. & Techn. 1987.

Received 13.02.2003



