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Existence and Relaxation
for

Finite-Dimensional Optimal Control Problems
Driven by Maximal Monotone Operators

N. S. Papageorgiou and F. Papalini

Abstract. In this paper we study the optimal control of a class of nonlinear finite-
dimensional optimal control problems driven by a maximal monotone operator which
is not necessarily everywhere defined. So our model problem incorporates systems
monitored by variational inequalities. First we prove an existence theorem using the
reduction method of Berkovitz and Cesari. This requires a convexity hypothesis.
When this convexity condition is not satisfied, we have to pass to an augmented,
convexified problem known as the “relaxed problem”. We present four relaxation
methods. The first uses Young measures, the second uses multi-valued dynamics, the
third is based on Carathéodory’s theorem for convex sets in RN and the fourth uses
lower semicontinuity arguments and Γ-limits. We show that they are equivalent and
admissible, which roughly speaking means that the corresponding relaxed problem
is in a sense the “closure” of the original one.
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1. Introduction

In this paper we develop the existence and relaxation theory for a large class of
nonlinear finite-dimensional optimal control problems. The dynamic equation
of our system involves a maximal monotone operator which is not necessarily
everywhere defined. This way we incorporate in our framework variational
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inequalities (problems with unilateral constraints). Also, in the existence part
of our work the control constraint set is state dependent, i.e. there is an a
priori feedback in the system, a situation which is of interest in engineering
problems. Our approach in the existence part is based on the ”reduction”
technique, which was developed by the fundamental works of Berkovitz [2 - 4]
and Cesari [8, 9]. This method reveals the importance of convex structure in
order to guarantee the existence of optimal pairs. If this convex structure is
missing, in order to have an existence theory, we need to pass to an augmented,
convexified problem, which on the one hand is required to remain close to the
original problem and on the other hand must be “convex” enough in order to
have a solution. This delicate balance is achieved by the so-called “relaxed
problem”. Relaxation is the process of embedding the original problem to a
larger one with sufficient convex structure which guarantees the existence of
optimal pairs. There is no unique approach to relaxation. However, a proper
relaxation procedure should meet the following three basic criteria:

(a) Every original state should also be relaxed state.
(b) The set of original states must be dense in the set of relaxed states.
(c) The relaxed problem has a solution and the values of the original and

relaxed problems must be equal.

The first two requirements refer to the dynamics of the system, while the third
concerns the objective (cost) functional. The condition that the values of the
two problems are equal is often called “relaxability”. If it is not satisfied, then
it can be maintained that we have augmented the original optimal control
problem too much. If the relaxation method meets the above three criteria,
it is said to be admissible. In the second half of this work we present four
different relaxation methods and show that under reasonable conditions on the
data they are admissible. The first method uses Young measures (transition
probabilities) as relaxed controls, the second uses multi-valued dynamics and
it is an outgrowth of the reduction method of the existence theory, the third
is based on Carathéodory’s theorem for the convex sets in RN and the fourth
uses lower semicontinuity arguments and is based on the Γ-regularization of
the extended cost functional. This last method uses the notion of Γ-limit
which was developed by De Giorgi and can be found in the books of Buttazzo
[7], Dal Maso [11] and Hu and Papageorgiou [17]. A well written introduction
to the subject of relaxation of optimization problems can be found in the book
of Roubicek [24].
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2. Mathematical preliminaries

In this section, for the convenience of the reader, we present the main items
of the mathematical background needed to follow this paper. Our main ref-
erences are the books of Hu and Papageorgiou [17, 18].

Let (Ω, Σ) be a measurable space and X a separable Banach space. We
will use the notations

Pf(c)(X) =
{

A ⊂ X : A non-empty, closed (and convex)
}

P(w)k(c)(X) =
{

A ⊂ X : A non-empty, (weakly-)compact (and convex)
}

.

A multifunction F : Ω → Pf (X) is said to be measurable, if for all x ∈ X the
function

ω → d(x, F (ω)) = inf
y∈F (ω)

‖x− y‖

is measurable. Also, F : Ω → 2X \ {∅} is said to be graph measurable, if

GrF =
{
(ω, x) ∈ Ω×X : x ∈ F (ω)

} ∈ Σ×B(X)

with B(X) being the Borel σ-field of X. For a multifunction with values in
Pf (X), measurability implies graph measurability, while the converse is true
if Σ is complete, i.e. if Σ = Σ̂ is the universal σ-field.

Let µ be a finite measure on (Ω, Σ). For F : Ω → 2X \{∅} and 1 ≤ p ≤ ∞
we introduce the sets

SF =
{

f : Ω → X measurable : f(ω) ∈ F (ω) µ-a.e.
}

and
Sp

F =
{

f ∈ Lp(Ω, X) : f(ω) ∈ F (ω) µ-a.e.
}

which may be empty. For a graph measurable multifunction F , the set Sp
F

is non-empty if and only if infx∈F (ω) ‖x‖ ≤ ϕ(ω) µ-a.e. with ϕ ∈ Lp(Ω).
Moreover, if µ is non-atomic, then the set Sp

F is closed or convex if and only if,
for µ-almost all ω ∈ Ω, F (ω) is closed or convex, respectively. Finally, the set
Sp

F is decomposable, i.e. χAf1 +χAcf2 ∈ Sp
F for all (A, f1, f2) ∈ Σ×Sp

F ×Sp
F .

Let Y and Z be Hausdorff topological spaces. A multifunction G : Y →
2Z is said to be lower semicontinuous or upper semicontinuous, if for all C ⊂ Z
closed the set G+(C) = {y ∈ Y : G(y) ⊂ C} or G−(C) = {y ∈ Y : G(y)∩C 6=
∅} is closed, respectively. An upper semicontinuous multifunction with closed
values has a closed graph, provided Z is a regular topological space. The
converse is true, if G is locally compact, i.e. for every y ∈ Y there is a
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neighborhood U of Y such that G(U) is compact in Z. If Z is a metric space
with a metric d, then G is lower semicontinuous if and only if the function
y → d(z, G(y)) is upper semicontinuous for any z ∈ Z. Also, when Z is
a metric space on Pf (Z), we can define a generalized metric, known as the
Hausdorff metric, by setting

h(A, B) = max
[

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
]

for A, B ∈ Pf (Z).
If Z is a complete metric space, then so is (Pf (Z), h). A multifunction G :

Y → Pf (Z) is said to be h-continuous, if it is continuous from Y into the metric
space (Pf (Z), h). Finally, a multifunction G which is both upper and lower
semicontinuous is said to be continuous. For compact-valued multifunctions
h-continuity and continuity coincide.

As we already mentioned in the introduction, one of the relaxation meth-
ods is based on the notion of Young measure (transition probability). So let us
give the definition. Let (Ω, Σ, µ) be a finite measure space, Y a compact metric
space and M(Y ) the Banach space of all bounded Borel measures with the to-
tal variation norm. From the Riesz representation theorem, C(Y )∗ = M(Y ).
A Young measure is a function λ : Ω → M1

+(Y ) (with M1
+(Y ) the subset

of M(Y ) of all probability measures on Y ) such that, for every C ∈ B(Y ),
ω → λ(ω)(C) is Σ-measurable. We denote the set of all Young measures from
Ω into Y by R(Ω, Y ). It is easy to check that λ ∈ R(Ω, Y ) if and only if
λ : Ω → M1

+(Y ) is Σ-measurable when M1
+(Y ) is furnished with the relative

weak* topology (see [23]). We know that M1
+(Y ) topologized this way is Pol-

ish, too (cf. [23: p. 46]). The weak topology of M1
+(Y ) has a natural analog

on R(Ω, Y ). So let
Car(Ω× Y )

denote the space of all L1-Carathéodory integrands, i.e. the set of all functions
ϕ : Ω× Y → R such that

- for all y ∈ Y , ω → ϕ(ω, y) is Σ-measurable for µ-a.a. ω ∈ Ω
- y → ϕ(ω, y) is continuous
- for µ-a.a. ω ∈ Ω and all y ∈ Y , |ϕ(ω, y)| ≤ h(ω) with h ∈ L1

+(Ω).
Then the weak topology on R(Ω, Y ) is the initial topology with respect to
which the functionals

λ → Iϕ(λ) =
∫

Ω

∫

Y

ϕ(ω, y)λ(ω) (dy)dµ
(
ϕ ∈ Car(Ω× Y )

)

are continuous. Recall that ϕ : Ω × Y → R = R ∪ {+∞} is a normal
integrand if it is Σ×B(Y )-measurable and, for all ω ∈ Ω, y → ϕ(ω, y) is lower
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semicontinuous. A normal integrand can be approximated pointwise from
below by Carathéodory integrands. So we can also define the weak topology
on R(Ω, Y ) as the initial topology that makes all functionals λ → Iϕ(λ) lower
semicontinuous as ϕ ranges over all non-negative normal integrands. We want
to remark that

R(Ω, Y ) ⊂ L∞(Ω,M(Y )w∗) = L1(Ω, C(Y ))∗

(see, for example, [18: p. 377] or [19: p. 99]). Then the weak topol-
ogy of R(Ω, Y ) coincides with the relative w∗-topology that it inherits from
L∞(Ω,M(Y )w∗). Note that if the σ-field Σ is countably generated, then the
space L1(Ω, C(Y )) is separable and so the weak∗-topology on bounded sub-
sets of L∞(Ω,M(Y )w∗), such as R(Ω, Y ), is metrizable. This is actually the
context in which we shall use the weak topology of R(Ω, Y ) in this paper.

Now let X be a Banach space and let A : X → X∗ be an operator. It is
said to be “monotone” if 〈Ax1 − Ax2, x1 − x2〉 ≥ 0 for all x1, x2 ∈ X, and it
is said to be “maximal monotone”, if the graph GrA = {[x, x∗] ∈ X × X∗ :
x∗ = A(x)} of A is maximal with respect to inclusion among the graphs of all
monotone maps.

Finally, if C ⊂ X, then the support function σ(·, C) : X∗ → R = R ∪
{+∞} is defined by

σ(x∗, C) = sup
c∈C

(x∗, c).

It is well-known that σ(·, C) is sublinear and w∗-lower semicontinuous.

3. Existence theorem

The problem under consideration is the following:

J(x, u) =
∫ b

0

L(t, x(t), u(t))dt → inf = m

such that

− ẋ(t) ∈ A(x(t)) + f(t, x(t), u(t)) a.e. on [0, b]

x(0) = x0, u ∈ S1
U(·,x(·))





. (1)

In problem (1),

L : [0, b]× RN × Rm → R ∪ {+∞} is the cost integrand

A : D(A) ⊂ RN → 2R
N

is a maximal monotone operator

U : [0, b]× RN → 2R
m

is the control constraint multifunction
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where it is not assumed that D(A) = RN . We emphasize that U is x-
dependent (closed loop system). Also, f : [0, b] × RN × Rm → RN is the
so called “control vector field” and x0 ∈ D(A) is the initial state. In problem
(1) the function x ∈ W 1,1([0, b],RN ) ⊂ C([0, b],RN ) is called “state” of the
system and the function u ∈ L1([0, b],Rm) is called “control” of the system.
A state-control pair (x, u) which satisfies all the constraints of problem (1) is
said to be admissible (feasible). By

P (x0) ⊂ W 1,1([0, b],RN )× L1([0, b],Rm)

we denote the set of all admissible pairs. An admissible pair (x, u) is optimal
if J(x, u) = m.

If C ⊂ Pfc(RN ),

iC(x) =
{

0 if x ∈ C
+∞ if x 6∈ C

(the indicator function of C) and A = ∂iC (the subdifferential of iC), then
the dynamics of problem (1) is a “variational inequality”. Note that A(x) =
∂iC(x) = NC(x) is the normal cone to C at x ∈ C. If C ∈ Pkc(RN ), Cor-
net [10] proved that the variational inequality is equivalent to the projected
differential inclusion

−ẋ(t) ∈ proj
(− f(t, x(t), u(t));TC(x(t))

)
a.e. on [0, b]

x(0) = x0

}

with TC(x(t)) being the tangent cone to C at x(t) and proj(·; TC(x(t))) be-
ing the metric projection to the closed, convex set TC(x(t)). Such projected
differential inclusions are appropriate in the modeling of systems with state
constraints. For such systems, in describing the effect of the constraints on the
dynamical equation, it can be assumed in many cases that the velocity ẋ(t)
is projected at each time instant to the set of allowed directions towards the
constraint set at the point x(t). This is true for electrical networks with diode
non-linearities (see, for example, Krasnoselskii and Pokrovskii [20]). Also, the
projected inclusions are important in mathematical economics, in the analysis
of resource allocation problems (see Henry [15]).

Our hypotheses on the data of (1) are the following:

H(A) A : D(A) ⊂ RN → 2R
N

is a maximal monotone operator with D(A)
closed and the minimal section Ao is bounded on compact subsets of
D(A).

We want to recall that Ao(x) = proj(0; A(x)) and, because A is maximal
monotone, A(x) ∈ Pfc(RN ) for all x ∈ D(A) (see [17]).
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Remark 1. Note that hypothesis H(A) is satisfied if A = ∂iC with C ∈
Pfc(RN ) (case of variational inequalities).

H(f) f : [0, b]× RN × Rm → RN is a function such that:
(i) For all (x, u) ∈ RN × Rm, t → f(t, x, u) is measurable.
(ii) For a.a. t ∈ [0, b], (x, u) → f(t, x, u) is continuous.
(iii) There exist a, c ∈ L1

+([0, b]) such that ‖f(t, x, u)‖ ≤ a(t) + c(t)‖x‖
for a.a. t ∈ [0, b], all x ∈ RN and all u ∈ U(t, x).

H(U) U : [0, b]× RN → Pk(Rm) is a multifunction such that:
(i) For all x ∈ RN , t → U(t, x) is measurable.
(ii) For a.a. t ∈ [0, b], x → U(t, x) is continuous.
(iii) There exists c1 > 0 such that ‖u‖ ≤ c1(1 + ‖x‖) for a.a. t ∈ [0, b],

all x ∈ RN and all u ∈ U(t, x).

H(L) L : [0, b]× RN × Rm → R = R ∪ {+∞} is an integrand such that:
(i) (t, x, u) → L(t, x, u) is measurable.
(ii) For almost all t ∈ [0, b], (x, u) → L(t, x, u) is lower semicontinuous.
(iii) There exist φ ∈ L1([0, b]) and c2 > 0 such that φ(t)−c2‖x‖ ≤ L(t, x, u)

for a.a. t ∈ [0, b], all x ∈ RN and all u ∈ U(t, x).

Under these hypotheses, by considering the differential inclusion which
results from the deparametrization of the problem

(
i.e. defining the multi-

function F (t, x) = f(t, x, U(t, x)
)

and using the results of Papageorgiou [22]
and Hu and Papageorgiou [16], we can check that if x0 ∈ D(A) = D(A),
then P (x0) 6= ∅ and P1(x0) = projC([0,T ],RN )P (x0) ⊂ C([0, b],RN ) (the set of
admissible states) is compact.

As we already mentioned in the introduction, in order to have an existence
result for problem (1), we need a convexity hypothesis:

HC For a.a. t ∈ [0, b] and all x ∈ RN , the set

Q(t, x) =





(h, η) ∈ RN × R

∣∣∣∣∣∣∣

h = f(t, x, u)

u ∈ U(t, x)

L(t, x, u) ≤ η





is convex.

Remark 2. If, for example, f(t, x, u) = f1(t, x) + f2(t, x)u and U(t, x) ∈
Pkc(RN ) for all (t, x) ∈ [0, b] × RN and L(t, x, ·) is convex for a.a. t ∈ [0, b]
and all x ∈ RN , then it is easy to see that hypothesis HC is satisfied.

We employ the “reduction of variables method” due to Berkovitz [2, 3,
5] and Cesari [8, 9]. The idea of this method is simple and elegant. We use
hypothesis HC to pass to a control-free (deparametrized) variational problem
(i.e. a calculus of variations problem) with convex structure, which we can
solve using the “Direct Method”.
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Theorem 1. If hypotheses H(A), H(f), H(U), H(L), HC hold, x0 ∈ D(A)
= D(A) and m < +∞, then problem (1) admits an optimal state-control pair.

Proof. Let Γ : [0, b]× RN × RN → 2R
m

be the multifunction defined by

Γ(t, x, v) =
{

u ∈ U(t, x) : −v ∈ A(x) + f(t, x, u)
}

which is the multifunction that gives all admissible controls which, at time
t ∈ [0, b] and when the state is x ∈ RN , generate the velocity v ∈ RN . Note
that

Gr Γ =

(
(t, x, v, u) ∈ [0, b]×RN ×RN ×Rm :

�����
(t, x, u) ∈ GrU

(x,−v − f(t, x, u)) ∈ GrA

)
.

By modifying f, U and L on a Lebesgue-null subset of [0, b], we may assume
without any loss of generality that

- for all (x, u) ∈ RN × Rm, t → f(t, x, u) is measurable
- (t, x, u) → L(t, x, u) is Borel measurable
- GrU ∈ B([0, b])×B(RN )×B(Rm).

Then because GrA ⊂ RN × RN is closed (because A is maximal monotone),

Gr Γ ∈ B([0, b])×B(RN )×B(RN )×B(Rm).

We introduce the function p : [0, b]× RN × RN → R defined by

p(t, x, v) = inf
u∈Γ(t,x,v)

L(t, x, u).

Note that p(t, x, v) represents the minimum istantaneous cost needed to gener-
ate velocity v ∈ RN when the state is x ∈ RN . As usual we use the convention
inf ∅ = +∞, and for this reason p is R-valued. In a series of Claims I - III
below we establish the properties of p.

Claim I: (t, x, v) → p(t, x, v) is Borel measurable. Indeed, for every λ ∈ R
we have

{
(t, x, v) ∈ [0, b]× RN × RN : p(t, x, v) < λ

}

= projT×RN×RN

{
(t, x, v, u) ∈ GrΓ : L(t, x, u) < λ

}

∈ B([0, b])×B(RN )×B(RN )

(see [16: p. 146]). So p is Borel measurable.
Claim II: For all t ∈ [0, b], (x, v) → p(t, x, v) is lower semicontinuous.

Indeed, we need to show that for every λ ∈ R the sublevel set

K(λ) =
{

(x, v) ∈ RN × RN : p(t, x, v) ≤ λ
}



Existence and Relaxation 871

is closed. To this end let {(xn, vn)}n≥1 ⊂ K(λ) and assume that xn → x
and vn → v in RN . We can find un ∈ Γ(t, xn, vn) such that L(t, xn, un) ≤
p(t, xn, vn) + 1

n . So un ∈ U(t, xn) and −vn ∈ A(xn) + f(t, xn, un) (n ≥ 1).
By passing to a subsequence if necessary, we may assume that un → u in
Rm and u ∈ U(t, x) (see hypothesis H(U)/(ii)). Then f(t, xn, un) → f(t, x, u)
in RN and, because GrA ⊂ RN × RN is closed, −v ∈ A(x) + f(t, x, u) with
u ∈ U(t, x) and so u ∈ Γ(t, x, v). Also, from hypothesis H(L)/(ii) we have
L(t, x, u) ≤ lim infn→∞ L(t, xn, un) ≤ λ, hence p(t, x, v) ≤ λ, i.e. (x, v) ∈
K(λ) which proves the claim.

Claim III: For all (t, x) ∈ [0, b] × RN , v → p(t, x, v) is convex. Indeed,
note that

epi p(t, x, ·) =
{

(v, η) ∈ RN × R : p(t, x, v) ≤ η
}

=
⋂
ε>0





(v, η) ∈ RN × R

∣∣∣∣∣∣∣

− v ∈ A(x) + f(t, x, u)
L(t, x, u) ≤ η + ε

u ∈ U(t, x)





.

By hypothesis HC , each set in the intersection is convex and so epi p(t, x, ·) is
convex, too. This proves the claim.

Now let

{(xn, un)}n≥1 ⊂ P (x0) ⊂ C([0, b],RN )× L1([0, b],Rm)

be a minimizing sequence for problem (1), i.e. J(xn, un) ↓ m. We already
said that P1(x0) ⊂ C([0, b],RN ) is compact. So, from hypothesis H(A),

sup
t∈T

sup
n≥1

‖A0(xn(t))‖ ≤ c3

for some c3 > 0. But from [6: p. 69] we know that, for all n ≥ 1 and a.a.
t ∈ [0, b],

‖ẋn(t)‖ = ‖(−f(t, xn(t), un(t))−A(xn(t)))0‖
≤ ‖ − f(t, xn(t), un(t))‖+ ‖A0(xn(t))‖
≤ â(t)

for some â ∈ L1
+([0, b]). So by the Dunford-Pettis theorem, {ẋn}n≥1 ⊂

L1([0, b],RN ) is relatively weakly compact. Hence we may assume that xn →
x in C([0, b],RN ) (recall that {xn}n≥1 ⊂ P1(x0)) and ẋn → ẋ weakly in
L1([0, b],RN ). Because of Claims I - III we can use the theorem of Olech [21]
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(see also Berkovitz [3]) and obtain

−∞ <

∫ b

0

p(t, x(t), ẋ(t)) dt

≤ lim inf
n→∞

∫ b

0

p(t, xn(t), ẋn(t)) dt

≤ lim
n→∞

J(xn, un)

= m

< +∞.

By redefining, if necessary, p(·, x(·), ẋ(·)) on a Lebesgue-null set in [0, b],
we may assume that, for all t ∈ [0, b], p(t, x(t), ẋ(t)) is finite. Then via
a straightforward application of the Yankov-von Neumann-Aumann selec-
tion theorem (see [17: p. 158]) we can find Borel measurable functions
uk : [0, b] → Rm (k ≥ 1) such that

uk(t) ∈ Γ(t, x(t), ẋ(t))

L(t, x(t), uk(t)) ≤ p(t, x(t), ẋ(t)) + 1
k

}
(a.e. on [0, b]).

Let
L̂k(t) = L(t, x(t), uk(t)).

We have

‖φ(t)− c2‖x(t)‖ ≤ L̂k(t) ≤ p(t, x(t), ẋ(t)) +
1
k

(a.e. on [0, b])

and so {L̂k}k≥1 ⊂ L1([0, b]) is uniformly integrable. Therefore we may assume
that L̂k → L̂ weakly in L1([0, b]) as k → ∞, with L̂ ∈ L1([0, b]). Also, if we
set

hk(t) = f(t, x(t), uk(t)),

then hk ∈ L1([0, b],RN ) and from hypotheses H(f)/(iii) and H(U)/(iii) we have
that {hk}k≥1 ⊂ L1([0, b],RN ) is uniformly integrable. Thus we may assume
that hk → h weakly in L1([0, b],RN ) as k →∞, with h ∈ L1([0, b],RN ). Note
that, for some zk ∈ L1([0, b],RN ) with zk(t) ∈ A(x(t)) a.e. on [0, b] (k ≥ 1),

(−ẋ(t)− zk(t), L̂k(t)) ∈ Q(t, x(t)) (a.e. on [0, b]).

Therefore −zk(t) = ẋ(t) + hk(t) a.e. on [0, b] and so zk → −ẋ − h weakly
in L1([0, b],RN ) as k → ∞. From [17: p. 694] and using the closedness of
GrA ⊂ RN × RN we obtain

−ẋ(t)− h(t) ∈ lim sup
n→∞

A(xn(t)) ⊂ A(x(t)) (a.e. on [0, b]),
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i.e. −ẋ(t) ∈ A(x(t)) + h(t) a.e. on [0, b]. Also, via Mazur’s lemma, since
Q(t, x(t)) ∈ Pfc(RN×R) (see hypothesis HC), we have (h(t), L̂(t)) ∈ Q(t, x(t))
a.e. on T . Another application of the Yankov-von Neumann-Aumann selection
theorem gives a Borel measurable function u : [0, b] → Rm such that

u(t) ∈ U(t, x(t))

−ẋ(t) ∈ A(x(t)) + f(t, x(t), u(t))

L(t, x(t), u(t)) ≤ L̂(t)





(a.e. on [0, b]).

So (x, u) ∈ P (x0). Moreover, since

∫ b

0

L̂k(t) dt ≤
∫ b

0

p(t, x(t), ẋ(t)) dt +
b

k

we get ∫ b

0

L̂(t) dt ≤
∫ b

0

p(t, x(t), ẋ(t)) dt ≤ m

and so J(x, u) ≤ m. But because (x, u) ∈ P (x0), we must have J(x, u) = m,
i.e. (x, u) is an optimal state-control pair

Reviewing the above proof, we realize that hypothesis HC is crucial in
proving the existence of an optimal state-control pair (x, u) ∈ P (x0). If hy-
pothesis HC fails, then we no longer can guarantee that problem (1) has a
solution, because the limit of a minimizing sequence need not be admissible.
To capture the asymptotic behaviour of the minimizing sequences, we need
to augment the system in such a way so as to introduce the missing ”con-
vex structure”. This is the object of study of relaxation theory, which we
investigate in the next two sections.

4. Three relaxation methods

The first method of relaxation increases the set of admissible controls by
considering Young measures. The idea behind this method is better under-
stood in the case of R-valued functions. It is well known that a sequence
{un}n≥1 ⊂ L1([0, b]) of controls, which converges weakly but not strongly to
u, oscillates wildly around u. But in the limit function u all these fast oscil-
lations are forgotten and only an average value is recorded. Certainly, this
is not satisfactory if the control function enters in a nonlinear fashion in the
dynamics of the system. We can not say that

f(·, xn(·), un(·)) → f(·, x(·), u(·)) weakly in L1([0, b],RN )
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even if xn → x in C([0, b],RN ). Then the idea is to assign as a limit of {un}n≥1

not a usual R-valued function, but a probability-valued function (a transition
probability) λ : [0, b] → M1

+(S) where S ⊂ R is the set where the control
functions take their values. These considerations lead to the first relaxation
method based on Young measures.

We will need to the following stronger hypotheses on the control constraint
multifunction U(t, x).

H(U)1 U : [0, b]× RN → Pk(Rm) is a multifunction such that:
(i) For all x ∈ RN , t → U(t, x) is measurable.
(ii) For a.a. t ∈ [0, b], x → U(t, x) is continuous.
(iii) There exists r > 0 such that ‖u‖ ≤ r for a.a. t ∈ [0, b], all x ∈ RN

and all u ∈ U(t, x).

In what follows,
Br =

{
u ∈ Rm : ‖u‖ ≤ r

}
.

We introduce the constraint set Σ(t, x) for the controls by setting

Σ(t, x) =
{

µ ∈ M1
+(Br) : µ(U(t, x)) = 1

}
.

Given a state function x ∈ C([0, b],RN ), the set of admissible relaxed controls
is given by

SΣ(·,x(·)) =
{

λ ∈ R([0, b], Br) : λ(t) ∈ Σ(t, x(t)) a.e. on [0, b]
}

.

Then the first relaxation of problem (1) based on Young measures is the
optimal control problem

J1
r (x, λ) =

∫ b

0

∫

Br

L(t, x(t), u)λ(t)(du)dt → inf = m1
r

such that

− ẋ(t) ∈ A(x(t)) +
∫

Br

f(t, x(t), u)λ(t)(du) a.e. on [0, b]

x(0) = x0, λ ∈ SΣ(·,x(·))





. (2)

Note that in (2) the control function enters linearly in the dynamics and in
the cost functional. This gives problem (2) the desired “convex structure”.
Also, note that every original control u ∈ S1

U(·,x(·)) can be viewed as a relaxed
control by considering the corresponding Dirac transition probability δu(·).

For problem (2), with no extra hypotheses, we can show that it has a
solution.
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Proposition 2. If hypotheses H(A), H(f), H(U)1, H(L) (in which hy-
potheses H(f)/(iii) and H(L)/(iii) are true for all u ∈ Br) hold, x0 ∈ D(A) =
D(A) and m1

r < +∞, then problem (2) admits an optimal relaxed pair (x, λ) ∈
C([0, b],RN )× SΣ(·,x(·)).

Proof. Let {xn, λn}n≥1 ⊂ C([0, b],RN ) × R([0, b], Br) be a minimizing
sequence for problem (2). We know that the sequence {xn}n≥1 ⊂ C([0, b],RN )
is relatively compact. Also, by Alaoglu’s theorem, the sequence {λn}n≥1 ⊂
L∞([0, b], M(Br)w∗) is relatively w∗-compact. Because the predual L1([0, b],
C(Br)) is separable, {λn}n≥1 is relatively w∗-sequentially compact. So we
may assume that xn → x in C([0, b],RN ) and λn → λ weakly∗ in L∞([0, b],
M(Br)w∗).

First we show that (x, λ) is admissible for problem (2). Set f̂n(t)(u) =
f(t, xn(t), u) and f̂(t)(u) = f(t, x(t), u). We have

∥∥f̂n(t)− f̂(t)
∥∥

C(Br)
= sup

u∈Br

∥∥f̂n(t)(u)− f̂(t)(u)
∥∥

=
∥∥f̂n(t)(un)− f̂(t)(un)

∥∥
(n ≥ 1)

for some un ∈ Br. We may assume that un → u in Br. Hence f̂n(t) → f̂(t)
in C(Br), and by the dominated convergence theorem, f̂n → f̂ in L1([0, b],
C(Br)). If by ((·, ·)) we denote the duality brackets for the pair

(
L1([0, b], C(Br)), L∞([0, b], M(Br)w∗)

)
,

for every C ∈ B([0, b]) we have ((f̂n, χCλn)) → ((f̂ , χCλ)) and subsequently
∫

C

∫

Br

f(t, xn(t), u)λn(t) (du)dt →
∫

C

∫

Br

f(t, x(t), u)λ(t) (du)dt.

Also, as before we have ẋn → ẋ weakly in L1([0, b],RN ) (see the proof of
Theorem 1). Hence ∫

C

ẋn(t) dt →
∫

C

ẋ(t) dt.

Moreover, if zn ∈ S1
A(xn(·)) is such that

−ẋn(t) = zn(t) +
∫

Br

f(t, xn(t), u)λn(t) (du) (a.e. on [0, b]),

the sequence {zn}n≥1 ⊂ L1([0, b],RN ) is uniformly integrable and so we may
assume that zn → z weakly in L1([0, b],RN ). Exploiting the closedness of
GrA, z ∈ S1

A(x(·)). So in the limit, as n →∞, we obtain

−
∫

C

ẋ(t) dt ∈
∫

C

A(x(t)) dt +
∫

C

∫

Br

f(t, x(t), u)λ(t) (du)dt
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for all C ∈ B([0, b]), hence

−ẋ(t) ∈ A(x(t)) +
∫

Br

f(t, x(t), u)λ(t)(du) a.e. on [0, b]

x(0) = x0



 .

We need to show that λ ∈ SΣ(·,x(·)) = SΣ(x). To this end, let h ∈
L1([0, b], C(Br)). We have

((h, λn)) ≤ σ(h, SΣ(xn)) =
∫ b

0

σ
(
h(t), Σ(t, xn(t))

)
dt

(see [17: p. 183]), and so

((h, λ)) ≤ lim sup
n→∞

∫ b

0

σ
(
h(t),Σ(t, xn(t))

)
dt

≤
∫ b

0

lim sup
n→∞

σ
(
h(t),Σ(t, xn(t))

)
dt.

(3)

We claim that Σ(t, ·), as a multifunction into M1
+(Br) with the weak topology,

has a closed graph. Recall that M1
+(Br), topologized this way, is compact and

metrizable (see [23: p. 45]). Moreover, the weak topology coincides with the
relative w∗-topology, it inherits from the Banach space M(Br). To prove
the claim, we consider a sequence {(vn, µn)}n≥1 ⊂ GrΣ(t, ·) and assume that
vn → v in RN and µn → µ weakly in M1

+(Br). By virtue of hypothesis
H(U)1/(ii), given 0 < ε < r we can find n0 = n0(ε) ≥ 1 such that U(t, vn) ⊂
U(t, v)+εB1 for all n ≥ n0, hence µn(U(t, vn)) ≤ µn(U(t, v))+ε for all n ≥ n0

and so
1 ≤ lim sup

n→∞
µn(U(t, vn)) + ε ≤ µ(U(t, v)) + ε

by the Portmanteau theorem (see [23: p. 40]). Let ε ↓ 0 to conclude that
1 ≤ µ(U(t, v)), hence µ(U(t, v)) = 1 and so (v, µ) ∈ GrΣ(t, ·) which proves
the claim. Using this fact we have

lim sup
n→∞

σ
(
h(t), Σ(t, xn(t))

) ≤ σ
(
h(t), Σ(t, x(t))

)

a.e. on [0, b] and so from (3) we obtain

((h, λ)) ≤
∫ b

0

σ
(
h(t), Σ(t, x(t))

)
dt = σ(h, SΣ(x))

for all h ∈ L1([0, b], C(Br))
)
, hence λ ∈ SΣ(x), i.e. (x, λ) is admissible for

problem (2).
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Next, let Lk : [0, b] × RN × Br → R be Carathéodory integrands such
that ψ(t) − c2‖x‖ ≤ Lk(t, x, u) ≤ k for a.a. t ∈ [0, b], all x ∈ RN and all
u ∈ Br and Lk ↑ L as k → ∞ (see, for example, [18: p. 279]). So let
L̂k,n(t, u) = Lk(t, xn(t), u) and L̂k(t, u) = Lk(t, x(t), u). Evidently, for all k ≥
1, {L̂k,n, L̂k}n≥1 ⊂ L1([0, T ], C(Br)), and as we did for the f̂n’s, we can show
that L̂k,n → L̂k in L1([0, T ], C(Br)) as n → ∞. So ((L̂k,n, λn)) → ((L̂k, λ))
as n →∞, while from the monotone convergence theorem

((L̂k, λ)) ↑
∫ b

0

∫

Br

L(t, x(t), u)λ(t) (du)dt

as k →∞. Then from [1: p. 32] we can find a sequence n → k(n) increasing
(not necessarily strictly) to +∞ such that

((L̂k(n),n, λn)) →
∫ b

0

∫

Br

L(t, x(t), u)λ(t) (du)dt.

But note that

((L̂k(n),n, λn)) ≤
∫ b

0

∫

Br

L(t, xn(t), u)λn(t) (du)dt = J1
r (xn, λn).

Hence ∫ b

0

∫

Br

L(t, x(t), u)λ(t) (du)dt ≤ m1
r.

Because (x, λ) is admissible for problem (2), we conclude that J1
r (x, λ) = m1

r

Since there are more relaxed controls than originals ones, we have m1
r ≤ m.

In principle strict inequality is possible, including the extreme case in which
m1

r < +∞ and m = +∞. This can happen if, for example, there is a target
set which can be reached by relaxed trajectories but not by original ones. We
want to have that m1

r = m or otherwise it can be said that the relaxed problem
generalizes the original one too much and we can not find an ε-optimal control
among the original (physically realizable) ones. Such a relaxation method is
for all practical purposes “non-admissible”. To avoid having a “relaxation
gap” we need to strengthen our hypotheses on the data.

H(U)2 U : [0, b] → Pk(Rm) is a measurable multifunction such that there
exists r > 0 with the property that ‖u‖ ≤ r for all u ∈ U(t).

H(f)1 f : [0, b]× RN × Rm → RN is a function such that:
(i) For all (x, u) ∈ RN × Rm, t → f(t, x, u) is measurable.
(ii) There exists k ∈ L1

+([0, T ]) such that ‖f(t, x, u)− f(t, x′, u)‖
≤ k(t)‖x− x′‖ for a.a. t ∈ [0, b], all x, x′ ∈ RN and all u ∈ U(t).
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(iii) For a.a. t ∈ [0, b] and all x ∈ RN , u → f(t, x, u) is continuous.
(iv) There exist a, c ∈ L1

+([0, b]) such that ‖f(t, x, u)‖ ≤ a(t) + c(t)‖x‖
for a.a. t ∈ [0, b], all x ∈ RN and all u ∈ U(t).

H(L)1 L : [0, b]× RN ×Br → R is an integrand such that:
(i) For all (x, u) ∈ RN ×Br, t → L(t, x, u) is measurable.
(ii) For a.a. t ∈ [0, b], (x, u) → L(t, x, u) is continuous.
(iii) For every n ≥ 1, there exists ψn ∈ L1

+([0, b]) such that |L(t, x, u)|
≤ ψn(t) for a.a. t ∈ [0, b], all x ∈ RN with ‖x‖ ≤ n and all u ∈ Br.

Remark 3. Hypothesis H(U)2 implies that there is no feedback in the
system (open loop system).

With these stronger hypotheses we shall show the admissibility of the
first relaxation method. We start with an auxiliary result which follows from
a powerful result about the extremal structure of a measurable multifunction
(see [17: pp. 191 - 192]).

Lemma 3. If hypothesis H(U)2 holds, then S
w

U = SΣ where S
w

U denotes
the closure of SU in R([0, b], Br) with the weak topology.

Proof. By definition,

Σ(t) =
{

µ ∈ M1
+(Br) : µ(U(t)) = 1

}
.

We claim that Σ is graph measurable. For G ∈ B([0, b]) × B(Br), let ηG :
[0, b]×M1

+(Br) → [0, 1] be defined by ηG(t, µ) = (δt ⊗ µ)(G), where δt is the
Dirac probability measure concentrated on t. Let

I =
{

G ∈ B([0, b])×B(Br) : ηG is measurable
}

(recall that on M1
+(Br) we consider the weak topology). For any D ∈ B([0, b])

and C ∈ B(Br) we have

ηD×C(t, µ) = χD(t)µ(C) = χD(t)ϕC(µ)

where ϕC : M1
+(Br) → [0, 1] is defined by ϕC(µ) = µ(C). From the Portman-

teau theorem, ϕC is measurable. Hence ηD×C is measurable and so D×C ∈ I.
It is easy to see that I is actually a field and a monotone class, so it is a σ-field.
Therefore I = B([0, b])×B(Br). So GrU ∈ I and let

G1 =
{

(t, µ) ∈ [0, b]×M1
+(Br) : (δt ⊗ µ)(GrU) = 1

}

= η−1
GrU (1)

∈ B([0, b])×B(M1
+(Br)).
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By Fubini’s theorem,

(δt ⊗ µ)(GrU) =
∫ b

0

∫

Br

χU(s)(u) µ(du)δt(ds) = µ(U(t)).

So
G1 = GrΣ ∈ B([0, b])×B(M1

+(Br)),

i.e. Σ is graph measurable. Then, from [17: p. 191], ext SΣ = SextΣ and
extΣ(t) = {δu : u ∈ U(t)}. So extSΣ = SU . Finally, use [17: p. 192/Propo-
sition II.4.7] to obtain the desired density result

Using this lemma we can prove the admissibility of the first relaxation
method. In what follows, by P 1

r (x0) we denote the admissible relaxed pairs
of problem (2) and P 1

r1
(x0) = projC([0,T ],RN )P

1
r (x0).

Theorem 4. If hypotheses H(A), H(f)1, H(U)2, H(L)1 hold, x0 ∈ D(A) =

D(A) and m < +∞, then P 1
r1

(x0) = P1(x0)
C([0,T ],RN )

and m1
r = m.

Proof. From Proposition 2 we know that problem (2) has a solution
(x, λ) ∈ C([0, b],RN ) × R([0, b], Br). Using Lemma 3 we can find a sequence
{un}n≥1 ⊂ S1

U such that δun → λ weakly* in L∞([0, b],M(Br)w∗) (recall
that the weak topology of R([0, b], Br) coincides with the relative w∗-topology
inherited from L∞([0, b],M(Br)w∗), see Section 2). Because of hypothesis
H(f)1/(ii), every original control un ∈ S1

U (n ≥ 1) generates a unique state
xn ∈ C([0, b],RN ). We may assume that xn → x̂ in C([0, b],RN ). If

f̂n(t) =
∫

Br

f(t, xn(t), u)δun(t)(du)

f̂(t) =
∫

Br

f(t, x̂(t), u)λ(t)(du)

we have f̂n → f̂ weakly in L1([0, T ],RN ). Also, from the proof of Theorem
1 we know that the sequence {ẋn}n≥1 ⊂ L1([0, b],RN ) is relatively weakly
compact and so we may assume that ẋn → v weakly in L1([0, b],RN ). Clearly,
v = ˙̂x. As in the proof of Theorem 1 we can check that in the limit, as n →∞,
we get

− ˙̂x(t) ∈ A(x̂(t)) +
∫

Br

f(t, x̂(t), u)λ(t)(du) a.e. on [0, b]

x(0) = x0



 .

Since the relaxed control λ ∈ SΣ generates a unique state, we must have
x̂ = x. There is

J(xn, un) = J1
r (xn, δun) → J1

r (x, λ) = m1
r

and so m ≤ m1
r. Since the opposite inequality is always true, m = m1

r. More-

over, from the above argument it is clear that P 1
r1

(x0) = P1(x0)
C([0,T ],RN )
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Remark 4. The relaxation method based on Young measures was initi-
ated by Gamkrelidze [14] and Warga [25].

Next we present the second relaxation method. It is motivated by the
reduction method used in the proof of Theorem 1. According to this method
we deparametrize the dynamics (i.e. remove the control variable) and pass
to a set-valued dynamical system. For this reason we call this method the
“multi-valued relaxation method”. Since p(t, x, ·) is not convex in general, we
consider its second conjugate in the sense of convex analysis. The resulting
variational problem is a calculus of variations problem. More precisely, the
second relaxed problem corresponding to problem (1) is

J2
r (x) =

∫ b

0

p∗∗
(
t, x(t), ẋ(t)

)
dt → inf = m2

r

such that
− ẋ(t) ∈ A(x(t)) + convF (t, x(t)) a.e. on [0, b]

x(0) = x0





(4)

where F (t, x) = f(t, x, U(t)).

First we want to clarify the relation between the two relaxed problems (2)
and (4). This requires a closer look on the dynamics and cost integrands of
the two problems. As before, by P 2

r1
(x0) ⊂ C([0, b],RN ) we denote the set of

states of problem (4).

Proposition 5. If hypotheses H(A), H(f), H(U)2 hold and x0 ∈ D(A) =
D(A), then P 1

r1
(x0) = P 2

r1
(x0), i.e. problems (2) and (4) share the same set

of states.

Proof. First we show that, for all (t, x) ∈ [0, b]× RN ,

convF (t, x) =
{ ∫

Br

f(t, x, u)λ(du) : λ ∈ Σ(t)
}

.

Note that the right-hand side of the claimed equality is convex. We show that
it is also closed. To this end let

{yn}n≥1 ⊂
{ ∫

Br

f(t, x, u)λ(du) : λ ∈ Σ(t)
}

and assume that yn → y in RN . We have

yn =
∫

Br

f(t, x, u)λn(du)
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with λn ∈ Σ(t). Recall that M1
+(Br) furnished with the weak topology (equiv-

alently, with the relative w∗-topology of M(Br)) is compact metrizable. So
we may assume that λn → λ weakly in M1

+(Br) and λ ∈ Σ(t) (see the proof
of Proposition 2). Then

∫

Br

f(t, x, u)λn(du) →
∫

Br

f(t, x, u)λ(du)

(since f(t, x, ·) ∈ C(Br)) and so y =
∫

Br
f(t, x, u)λ(du) with λ ∈ Σ(t). This

proves the closedness of the set {∫
Br

f(t, x, u)λ(du) : λ ∈ Σ(t)}. By taking
λ = δu with u ∈ U(t) we obtain

convF (t, x) ⊂
{ ∫

Br

f(t, x, u)λ(du) : λ ∈ Σ(t)
}

.

Next, let y =
∫

Br
f(t, x, u)λ(du) with λ ∈ Σ(t). From [23: p. 44], we can

find a sequence of discrete probabilities λn =
∑Mn

k=1 akδuk
, with ak ∈ [0, 1]

such that
∑Mn

k=1 ak = 1 and uk ∈ U(t) such that λn → λ weakly in M1
+(Br).

So

yn =
∫

Br

f(t, x, u)λn(du) =
Mn∑

k=1

akf(t, x, uk) ∈ convF (t, x)

and yn → y. Hence
{ ∫

Br

f(t, x, u)λ(du) : λ ∈ Σ(t)
}
⊂ convF (t, x)

and thus finally equality holds.
Then we claim that, for all x ∈ C([0, T ],RN ),

S1
convF (·,x(·))

=
{

y ∈ C([0, T ],RN ) : y(t) =
∫

Br

f(t, x(t), u)λ(t)(du), λ ∈ SΣ

}
.

(5)

Denote the left- and right-hand sides of (5) by V1(x) and V2(x), respectively.
It is clear from the equality

convF (t, x) =
{ ∫

Br

f(t, x, u)λ(du) : λ ∈ Σ(t)
}

that V2(x) ⊂ V1(x). Suppose y ∈ V1(x) and let K : T → 2M1
+(Br) \ {∅} be

defined by

K(t) =
{

λ ∈ Σ(t) : y(t) =
∫

Br

f(t, x(t), u)λ(du)
}
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(because of the equality convF (t, x) = {∫
Br

f(t, x, u)λ(du) : λ ∈ Σ(t)}, K has
non-empty values). Let

β(t, λ) = y(t)−
∫

Br

f(t, x(t), u)λ(du).

Evidently, β is a Carathéodory function (i.e. measurable in t ∈ T and contin-
uous in λ ∈ M1

+(Br)). Therefore it is jointly measurable and so

GrK =
{

(t, λ) ∈ T ×M1
+(Br) : β(t, λ) = 0

}
∩GrΣ

∈ B([0, b])×B(M1
+(Br))

(recall that Σ is graph measurable, see the proof of Lemma 3). Apply the
Yankov-von Neumann-Aumann selection theorem (see [17: p. 158]) to obtain
a Borel measurable function λ → M1

+(Br) such that λ(t) ∈ K(t) a.e. on [0, b].
So λ ∈ SΣ and y(t) =

∫
Br

f(t, x(t), u)λ(t)(du) which proves (5). From (5) it
follows at once that P 1

r1
(x0) = P 2

r1
(x0)

Proposition 6. If hypotheses H(A), H(f), H(U)2, H(L)1 hold, x0 ∈ D(A)
= D(A) and (t, x, v) ∈ [0, b]× RN × RN is such that

−v ∈ A(x) +
{ ∫

Br

f(t, x, u)λ(du) : λ ∈ Σ(t)
}

,

then there exists λ0 ∈ Σ(t) such that

−v ∈ A(x) +
∫

Br

f(t, x, u)λ0(du)

p∗∗(t, x, v) =
∫

Br

L(t, x, u)λ0(du).

Proof. By definition,

p∗∗(t, x, v) = inf
{

η ∈ R = R ∪ {+∞} : (v, η) ∈ conv epi p(t, x, ·)
}

.

Set

H(t, x) =
{(

A(x) + f(t, x, u), L(t, x, u)
)

: u ∈ U(t)
}
⊂ RN × R.

We have
p∗∗(t, x, v) = inf

{
η ∈ R : (−v, η) ∈ convH(t, x)

}
.
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From the proof of Proposition 5 we know that

V = convH(t, x)

=
{(

A(x) +
∫

Br

f(t, x, u)λ(du),
∫

Br

L(t, x, u)λ(du)
)

: λ ∈ Σ(t)
}

.

Hence we obtain

p∗∗(t, x, v) = inf





∫

Br

L(t, x, u)λ(du)

∣∣∣∣∣∣
λ ∈ Σ(t)

−v ∈ A(x) +
∫

Br

f(t, x, u)λ(du)



 .

We introduce the set

Σ1(t, x, v) =
{

λ ∈ Σ(t) : −v ∈ A(x) +
∫

Br

f(t, x, u)λ(du)
}
6= ∅.

This set is weakly closed in Σ(t) ⊂ M1
+(Br), hence it is weakly compact. More-

over, the map λ → ∫
Br

L(t, x, u)λ(du) is lower semicontinuous on M1
+(Br) (see

Section 2). So by the Weierstrass theorem we can find λ0 ∈ Σ1(t, x, v) such
that p∗∗(t, x, v) =

∫
Br

L(t, x, u)λ0(du)

Remark 5. According to the proof of Proposition 6,

p∗∗(t, x, v) = inf





∫

Br

L(t, x, u)λ(du)

∣∣∣∣∣∣
λ ∈ Σ(t)

−v ∈ A(x) +
∫

Br

f(t, x, u)λ(du)





with the usual convention inf ∅ = +∞. Moreover, the above infimum is actu-
ally attained.

Proposition 7. If hypotheses H(A), H(f), H(U)2, H(L)1 hold and x0 ∈
D(A) = D(A), then p∗∗ : [0, b]×RN×RN → R is superpositionally measurable
(i.e. if x, v : [0, b] → RN are measurable, then so is t → p∗∗(t, x(t), v(t))) and
(x, v) → p∗∗(t, x, v) is lower semicontinuous.

Proof. Let x, v : [0, b] → RN be two measurable functions. By approxi-
mating from below L(t, x(t), ·) with Carathéodory functions (which are jointly
measurable), we can see that

(t, λ) →
∫

Br

L(t, x(t), u)λ(du)

is jointly measurable. Also,

Σ2(t) =
{

λ ∈ Σ(t) : −v(t) ∈ A(x(t)) +
∫

Br

f(t, x(t), u)λ(du)
}
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is graph measurable (since Σ is). Because

p∗∗(t, x(t), v(t)) = inf
{∫

Br

L(t, x(t), u)λ(du) : λ ∈ Σ2(t)
}

,

from [17: p. 161] it follows that t → p∗∗(t, x(t), v(t)) is measurable, i.e. p∗∗ is
superpositionally measurable.

For the lower semicontinuity of p∗∗(t, ·, ·), we need to show that for every
η ∈ R the sublevel set

Γ(η) =
{

(x, v) ∈ RN × RN : p∗∗(t, x, v) ≤ η
}

is closed. So let xn → x and vn → v in RN with (xn, vn) ∈ Γ(η) and η ≥ 1.
We know (see Proposition 6 and Remark 5) that

p∗∗(t, xn, vn) =
∫

Br

L(t, xn, u)λn(du)

with λn ∈ Σ(t) and

−vn ∈ A(xn) +
∫

Br

f(t, xn, u)λn(du).

Evidently, we may assume that λn → λ weakly in M1
+(Br). Then as in the

proof of Proposition 2 we have
∫

Br

L(t, x, u)λ(du) ≤ lim inf
n→∞

∫

Br

L(t, xn, u)λn(du)

while
−v ∈ A(x) +

∫

Br

f(t, x, u)λ(du).

Therefore
p∗∗(t, x, v) ≤

∫

Br

L(t, x, u)λ(du) ≤ η

which proves the lower semicontinuity of p∗∗(t, ·, ·)
These propositions lead at once to the following theorem which compares

the two relaxed problems (2) and (4) and shows that they are equivalent.

Theorem 8. If hypotheses H(A), H(f), H(U)2, H(L)1 hold and x0 ∈
D(A) = D(A), then problem (4) has a solution and m2

r = m1
r.

By strengthening our hypotheses on f , we can guarantee the admissibility
of this second relaxation method. More precisely, we have
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Theorem 9. If hypotheses H(A), H(f)1, H(U)2, H(L)1 hold, x0 ∈ D(A) =

D(A) and m < +∞, then P 2
r1

(x0) = P1(x0)
C([0,T ],RN )

and m = m1
r = m2

r.

Remark 6. The second relaxation method (the multi-valued relaxation
method) was initiated with the work of Filippov [13].

Now we shall present the third relaxation method, which is based on
Carathéodory’s theorem for convex sets in RN . Recall that, according to this
theorem, if C ⊂ RN , then every point of conv C is a convex combination of no
more than N+1 distinct points of C. Motivated by this theorem, we introduce
the following relaxed problem in which û = (uk)N+1

k=1 and γ̂ = (γk)N+1
k=1 :

J3
r (x, û, γ̂) =

∫ b

0

N+1∑

k=1

γk(t)L
(
t, x(t), uk(t)

)
dt → inf = m3

r

such that

− ẋ(t) ∈ A(x(t)) +
N+1∑

k=1

γk(t)f
(
t, x(t), uk(t)

)
a.e. on [0, b]

x(0) = x0, uk ∈ S1
U , γk : T → [0, 1] measurable and

N+1∑

k=1

γk(t) = 1





. (6)

By P 3
r1

(x0) ⊂ C([0, T ],RN ) we denote the set of states of problem (6).
The next theorem shows that this new relaxed problem is actually equiv-

alent to the previous ones.

Theorem 10. If hypotheses H(A), H(f), H(U)2, H(L)1 hold and x0 ∈
D(A) = D(A), then P 1

r1
(x0) = P 2

r1
(x0) = P 3

r1
(x0) and m3

r = m2
r = m1

r.

Proof. Evidently, P 1
r1

(x0) ⊂ P 2
r1

(x0) = P 3
r1

(x0). On the other hand,
from Carathéodory’s theorem mentioned above, if H(t, x) is as in the proof of
Proposition 6, we have

convH(t, x) =
8
>>>><
>>>>:

�
A(x(t)) +

N+1X

k=1

γkf(t, x(t), uk),

N+1X

k=1

γkL(t, x(t), uk)

�
����������

γk ∈ [0, 1]

N+1X

k=1

γk = 1

{uk}N+1
k=1 ⊂ U(t)

9
>>>>=
>>>>;

.
(7)

From this equality and the proof of Proposition 6 it follows easily that

P 1
r1

(x0) = P 2
r1

(x0) = P 3
r1

(x0).

Moreover, since

p∗∗(t, x(t), ẋ(t)) = inf
{

η ∈ R : (−ẋ(t), η) ∈ convH(t, x(t))
}
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a.e. on [0, b], from (7) we have

p∗∗(t, x(t), ẋ(t))

= inf





N+1∑

k=1

γkL(t, x(t), uk)

∣∣∣∣∣∣∣∣∣∣∣

uk ∈ U(t), γk ∈ [0, 1],
N+1∑

k=1

γk = 1

− ẋ(t) ∈ A(x(t)) +
N+1∑

k=1

γkf(t, x(t), uk)





a.e. on [0, b]. Since the infimum is that of a lower semicontinuous function
on a compact set, it is attained. Then an easy measurable selection argument
generates measurable γk : T → [0, 1] and uk ∈ S1

U such that
∑N+1

k=1 γk(t) = 1

−ẋ(t) ∈ A(x(t)) +
∑N+1

k=1 γk(t)f(t, x(t), uk) a.e. on [0, b] and

p∗∗(t, x(t), ẋ(t)) =
∑N+1

k=1 γk(t)L(t, x(t), uk(t)) a.e. on [0, b].

It is now clear that Theorem 8 implies m3
r = m2

r = m1
r

As before, with stronger hypotheses we have admissibility of this relax-
ation method:

Theorem 11. If hypotheses H(A), H(f)1, H(U)2, H(L)1 hold, x0 ∈ D(A)

= D(A) and m < +∞, then P 3
r1

(x0) = P1(x0)
C([0,T ],RN )

and m = m1
r = m2

r =
m3

r.

Remark 7. This third relaxation method was first suggested by Ekeland
and Temam [12] for a more restricted family of systems.

5. Relaxation via Γ-regularization

In this section we present a fourth relaxation method, quite distinct from
the other three, based on semicontinuity arguments and developed by But-
tazzo [7]. Roughly speaking the idea is the following. In the cost functional
J(x, u) we incorporate all the constraints of the problem (dynamic and non-
dynamic) by adding to J(x, u) the indicator function iΛ of the set Λ of all
constraints. Denote the resulting unconstrained cost functional by H(x, u).
The new relaxed problem is then obtained by producing the lower semicon-
tinuous envelope (Γ-regularization) of H. The implementation of this method
uses the so-called “Γ-limits” (see [7: p. 176]).

Definition. Let X1, X2 be two Hausdorff topological spaces and ϕ : X1×
X2 → R = R∪ {+∞} a proper function. In what follows, by Z(+) we denote
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the “sup” operation and by Z(−) the “inf” operation. Let (x1, x2) ∈ X1×X2

and, for k = 1, 2, let Sk be the set of all sequences in Xk which converge to
xk. Also, let αk be one of the symbols + or −. We define

Γseq(Xα1
1 , Xα2

2 )ϕ(x1, x2)

= Z(α1)(xn
1 )∈S1Z(α2)(xn

2 )∈S2Z(−α1)n̄≥1Z(α1)n≥n̄ϕ(xn
1 , xn

2 ).

If Γseq is independent of the symbols + or − in one of the spaces, then the
symbol is omitted. For example, if

Γseq(X−
1 , X+

2 )ϕ(x1, x2) = Γseq(X+
1 , X+

2 )ϕ(x1, x2),

then we write Γseq(X1, X
+
2 )ϕ(x1, x2).

Remark 8. If X1 ×X2 is metrizable or the compact subsets of X1 ×X2

are metrizable and ϕ is coercive, then Γseq(X−
1 , X−

2 )ϕ = ϕ, where ϕ is the
lower semicontinuous envelope of ϕ. The problem under consideration is now
the following:

J(x, u) =
∫ b

0

L(t, x(t), u(t))dt → inf = m

such that

− ẋ(t) ∈ A(x(t)) + C(t, x(t))g(t, u(t)) a.e. on [0, b]

x(0) = x0, u ∈ S1
U





. (8)

As before, A : D(A) ⊂ RN → 2R
N

is a maximal monotone operator satisfying
hypothesis H(A) and U : T → Pk(Rm) is a multifunction satisfying hypothesis
H(U)2. The precise hypotheses on the other data of problem (8) are the
following:

H(C) C : [0, b]× RN → RN×k is a function such that:
(i) For all x ∈ RN , t → C(t, x) is measurable.
(ii) There exists γ ∈ L∞+ ([0, b]) such that, for a.a. t ∈ [0, b] and all

x, z ∈ RN , ‖C(t, x)− C(t, z)‖ ≤ γ(t)‖x− z‖.
(iii) There exist a, c ∈ L∞+ ([0, b]) such that ‖C(t, x)‖ ≤ a(t) + c(t)‖x‖

for a.a. t ∈ [0, b] and all x ∈ RN .

H(g) g : [0, b]× Rm → Rk is a measurable function such that:
(i) For all u ∈ Rm, t → g(t, u) is measurable.
(ii) For a.a. t ∈ [0, b], u → g(t, u) is continuous.
(iii) There exists ξ ∈ L1

+([0, b]) such that, for a.a. t ∈ [0, b] and all u ∈ Rm,
‖g(t, u)‖ ≤ ξ(t).

H(L)2 L : [0, b]× RN × Rm → R is an integrand such that:
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(i) For all (x, u) ∈ RN × Rm, t → L(t, x, u) is measurable.

(ii) There exists k ∈ L1([0, b]) such that, for a.a. t ∈ [0, b], all x, z ∈ RN

and all u ∈ Rm, |L(t, x, u)− L(t, z, u)| ≤ k(t)‖x− z‖, and there exist
r1 ∈ L1([0, b]) and β : R+ → R+ convex such that lims→+∞

β(s)
s =

+∞ and, for a.a. t ∈ [0, b] and all u ∈ Rm, β(‖u‖)− r1(t) ≤ L(t, 0, u).
(iii) For a.a. t ∈ [0, b] and all x ∈ RN , u → (t, x, u) is continuous.
(iv) For every n ≥ 1 there exist ψn ∈ L1

+([0, b]) such that |L(t, x, u)| ≤
ψn(t) for a.a. all t ∈ [0, b], all x ∈ RN with ‖x‖ ≤ n and all u ∈ Rm.

As we already mentioned, the idea of this relaxation method is to consider
the extended cost functional

H(x, u) = J(x, u) + iΛ(x, u),

where Λ is the set of all admissible control pairs for problem (8), and to
determine its lower semicontinuous envelope H

- on W 1,1([0, b],RN ) equipped with the C([0, b],RN )-topology
- and on L1([0, b],Rm) with the weak topology

(the last denoted henceforth by L1([0, b],Rm)w). So our goal is to find

Γseq

(
(W 1,1([0, b],RN ), ‖ · ‖∞)−, L1([0, b],Rm)−w

)
H.

To do this we employ the so-called “auxiliary variable method” of Buttazzo
(see [7]).

So in what follows we set

X =
(
W 1,1([0, b],RN ), ‖ · ‖∞

)
, W = L1([0, b],Rm)w, V = L1([0, b],Rk)w.

According to [7: p. 184] the relaxation (Γ-regularization) of H is reduced to
the relaxation (Γ-regularization) in X × (W × V ) of the functional

G(x, u, v) = Φ(x, u, v) + i∆(x, u, v)

where

Φ(x, u, v) =
∫ b

0

ϕ
(
t, x(t), u(t), v(t)

)
dt

with
ϕ(t, x, u, v) = L(t, x, u) + i{v=g(t,u),u∈U(t)}

and

∆ =

{
(x, u, v) ∈ X × V ×W

∣∣∣∣∣
−ẋ(t) ∈ A(x(t)) + C(t, x(t))v(t) a.e.

x(0) = x0

}
.
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So we need to compute the functional

Γseq(X−, (W × V )−)G(x, u, v).

Using the definition of Γseq-limit we can easily check that

Γseq(X−, (W × V )−)G(x, u, v)

= Γseq(X, (W × V )−)Φ(x, u, v) + Γseq(X−,W × V )i∆(x, u, v).

From [7: p. 74] we know that for every

(x, u, v) ∈ W 1,1([0, T ],RN )× L1([0, T ],Rm)× L1([0, T ],Rk)

we have

Γseq(X, (W × V )−)Φ(x, u, v) =
∫ b

0

ϕ∗∗(t, x(t), u(t), v(t)) dt

with ϕ∗∗ being the second conjugate of ϕ(t, x, ·, ·) in the sense of convex anal-
ysis. So it remains to calculate

Γseq(X−, W × V )i∆(x, u, v).

Proposition 12. If hypotheses H(A), H(C) hold and x0 ∈ D(A) = D(A),
then Γseq(X−, W × V )i∆(x, u, v) = i∆(x, u, v).

Proof. According to the definition of the Γseq-limit, we need to prove the
following two properties:

(a) If (xn, un, vn) → (x, u, v) in X ×W × V and (xn, un, vn) ∈ ∆ for all
n ≥ 1, then (x, u, v) ∈ ∆.

(b) If (x, u, v) ∈ ∆, then for all (un, vn) → (u, v) in W × V we can find a
sequence xn → x in X such that (xn, un, vn) ∈ ∆ for all n ≥ 1 large.

First we show that property (a) holds. So let xn → x in C([0, b],RN ),
vn → v weakly in L1([0, b],Rk) and

−ẋn(t) ∈ A(xn(t)) + C(t, xn(t))vn(t) a.e. on [0, b]

xn(0) = x0

}
.

Note that C(·, xn(·))vn(·) → C(·, x(·))v(·) weakly in L1([0, b],RN ) (hypothesis
H(C)). Also, recall that {ẋn}n≥1 ⊂ L1([0, b],RN ) is relatively weakly compact.
So we may assume that ẋn → w weakly in L1([0, b],RN ) and clearly w = ẋ.
Moreover, from [17: p. 694] we have

−ẋ(t)− C(t, x(t))v(t) ∈ conv lim sup
n→∞

A(xn(t)) ⊂ A(x(t))
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a.e. on [0, b], the last inclusion following from the fact that GrA is closed
and A has closed and convex values on D(A) = D(A) (since it is maximal
monotone). Hence

−ẋ(t) ∈ A(x(t)) + C(t, x(t))v(t) a.e. on [0, b]

x(0) = x0

}
.

This proves property (a).

Next we show that property (b) holds. So let (x, u, v) ∈ ∆ and suppose
that vn → v weakly in L1([0, b],Rk). Let yn ∈ W 1,1([0, b],RN ) ⊂ C([0, b],RN )
be the unique solution of

−ẏn(t) ∈ A(yn(t)) + C(t, x(t))vn(t) a.e. on [0, b]

yn(0) = x0

}
.

We know (see [16, 22]) that {yn}n ⊂ C([0, b],RN ) is relatively compact, and
so we may assume that yn → y in C([0, b],RN ). Because C(·, x(·))vn(·) →
C(·, x(·))v(·) weakly in L1([0, b],RN ), so as above in the limit as n → ∞ we
obtain

−ẏ(t) ∈ A(y(t)) + C(t, x(t))v(t) a.e. on [0, b]

y(0) = x0

}

and hence y = x. Therefore yn → x in C([0, b],RN ).

Now let xn ∈ W 1,1([0, b],RN ) ⊂ C([0, b],RN ) be the unique solution of

−ẋn(t) ∈ A(xn(t)) + C(t, xn(t))vn(t) a.e. on [0, b]

xn(0) = x0

}
.

Exploiting the monotonicity of A, we get

(
− ẋn(t) + ẏn(t), yn(t)− xn(t)

)
RN

≤
(
C(t, xn(t))vn(t)− C(t, x(t))vn(t), yn(t)− xn(t)

)
RN

a.e. on [0, b], so

1
2

d

dt
‖xn(t)− yn(t)‖2

≤
(
C(t, xn(t))vn(t)− C(t, x(t))vn(t), yn(t)− xn(t)

)
RN
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a.e. on T and therefore

‖xn(t)− yn(t)‖2

≤ 2
∫ t

0

∥∥(
C(s, xn(s))− C(s, x(s))

)
vn(s)

∥∥‖yn(s)− xn(s)‖ ds

for all t ∈ [0, b]. Using [6: p. 157/Lemma A.5] and hypothesis H(C)/(ii), for
all t ∈ [0, b] we obtain

‖xn(t)− yn(t)‖ ≤ 2
∫ t

0

∥∥(
C(s, xn(s))− C(s, x(s))

)
vn(s)

∥∥ds

≤ 2
∫ t

0

γ(s)‖xn(s)− x(s)‖ds.

So

‖xn(t)− yn(t)‖ ≤ 2
∫ t

0

γ(s)‖xn(s)− yn(s)‖ ‖vn(s)‖ds

+ 2
∫ t

0

γ(s)‖yn(s)− x(s)‖ ‖vn(s)‖ds

for all t ∈ [0, b]. We know that yn → x in C([0, b],RN ) and vn → v weakly
in L1([0, b],Rk). So given ε > 0 we can find no = no(ε) ≥ 1 such that, for all
n ≥ no,

‖xn(t)− yn(t)‖ ≤ ε + 2
∫ t

0

γ(s)‖xn(s)− yn(s)‖ ‖vn(s)‖ds

for all t ∈ [0, b] which implies that (using the Gronwall inequality) ‖xn(t) −
yn(t)‖ ≤ k̂ε‖γ‖∞ for all n ≥ no and all t ∈ [0, b], for some k̂ > 0. Therefore
xn − yn → 0 in C([0, b],RN ) and so xn → x in C([0, b],RN ). This proves
property (b) and so we have proved the proposition

Therefore we can write

H(x, u) =

inf

8
>><
>>:

Z b

0

ϕ∗∗
�
t, x(t), u(t), v(t)

�
dt

��������

v ∈ L1([0, b],Rk)

−ẋ(t) ∈ A(x(t)) + C(t, x(t))v(t) a.e.

x(0) = x0

9
>>=
>>;

.
(9)

Recall that
ϕ(t, x, u, v) = L(t, x, u) + i{v=g(t,u),u∈U(t)}

and the double convex conjugation is with respect to the variables u and v.
Of course, (9) is not a satisfactory formulation of the relaxed problem because
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of the presence of the auxiliary variable v. So our goal is to eliminate this
auxiliary variable. To this end let

E(t, u) =
{

v ∈ Rk : (u, v) ∈ conv Gr g(t, ·), u ∈ U(t)
}

and set

Lo(t, x, u, z) = inf
{

ϕ∗∗(t, x, u, v) : −z ∈ A(x) + C(t, x)v
}

and

∆o =

{
(x, u) ∈ X ×W

∣∣∣∣∣
−ẋ(t) ∈ A(x(t)) + C(t, x(t))E(t, u(t)) a.e.

x(0) = x0

}
.

Using these items we can now formulate the relaxed problem which corre-
sponds to this fourth relaxation method.

Proposition 13. If hypotheses H(A), H(C), H(g), H(U)2, H(L)2 hold and
x0 ∈ D(A) = D(A), then

H(x, u) = Γseq(X−, W−)H(x, u)

=
∫ b

0

Lo

(
t, x(t), u(t), ẋ(t)

)
dt + i∆o(x, u).

Proof. Note that if ϕ∗∗(t, x, u, v) < +∞, then v ∈ E(t, u). So we have

H(x, u) = inf

{∫ b

0

ϕ∗∗
(
t, x(t), u(t), v(t)

)
dt

∣∣∣∣∣
v ∈ L1([0, b],Rk)

−ẋ(t) ∈ A(x(t)) + C(t, x(t))v(t) a.e. on T

}
+ i∆0(x, u).

For every v ∈ L1([0, b],Rk) with −ẋ(t) ∈ A(x(t)) + C(t, x(t))v(t) a.e. on [0, b]
we have

Lo

(
t, x(t), u(t), ẋ(t)

) ≤ ϕ∗∗
(
t, x(t), u(t), v(t)

)

a.e. on [0, b] and so
∫ b

0

Lo

(
t, x(t), u(t), ẋ(t)

)
dt + i∆o(x, u) ≤ H(x, u).

So we need to show that the opposite inequality also holds. To this end
let (x, u) ∈ ∆o and suppose that

∫ b

0
Lo

(
t, x(t), u(t), ẋ(t)

)
dt < +∞ (otherwise

there is nothing to prove). Let

K(t) =
{

v ∈ Rk : −ẋ(t) ∈ A(x(t)) + C(t, x(t))v
}

.
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Note that η : [0, b]× Rk → RN × RN defined by

η(t, v) =
(
x(t),−ẋ(t)− C(t, x(t))v

)

is a Carathéodory function (i.e. measurable in t ∈ [0, b] and continuous in
v ∈ Rk), hence it is jointly measurable. Since GrA is closed, we have

GrK =
{

(t, v) ∈ [0, b]× Rk : η(t, v) ∈ GrA
}
∈ B([0, b])×B(Rk),

i.e. the multifunction K is graph measurable. Then

inf

(Z b

0

ϕ∗∗
�
t, x(t), u(t), v(t)

�
dt

�����
v ∈ L1([0, b],Rk)

−ẋ(t) ∈ A(x(t)) + C(t, x(t))v(t) a.e.

)

= inf

�Z b

0

ϕ∗∗
�
t, x(t), u(t), v(t)

�
dt : v ∈ S1

K

�

=

Z b

0

inf
n

ϕ∗∗(t, x(t), u(t), v) : v ∈ K(t)
o

dt

=

Z b

0

Lo

�
t, x(t), u(t), ẋ(t)

�
dt

(see [17: p. 183]). Therefore

H(x, u) ≤
∫ b

0

Lo

(
t, x(t), u(t), ẋ(t)

)
dt + i∆o(x, u).

We conclude that

H(x, u) =
∫ b

0

Lo

(
t, x(t), u(t), ẋ(t)

)
dt + i∆o(x, u).

and the proposition is proved

Proposition 13 gives us the fourth relaxed problem, which is

∫ b

0

Lo

(
t, x(t), u(t), ẋ(t)

)
dt + i∆o(x, u) → inf = m4

r. (10)

Invoking [7: p. 16/Proposition 1.3.1] we obtain the solvability of problem
(10).
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Theorem 14. If hypotheses H(A), H(C), H(g), H(U)2, H(L)2 hold and
x0 ∈ D(A) = D(A), then problem (10) admits an optimal pair (x, u) ∈
W 1,1([0, b],RN )× L1([0, b],Rm).

What is important to us is the admissibility of this new relaxation method
and the relation of the resulting relaxed problem and the other three problems
established in Section 4. By showing that this fourth relaxation method is
equivalent to the other three, we shall have the answer to both questions.
The task is non-trivial since the procedure in this relaxation method is quite
distinct from the other three, and so a priori it is not at all clear that there is
any relation between them.

From Section 4 we know that to problem (8) we can associate the relaxed
problem

J1
r (x, λ) =

∫ b

0

∫

Br

L(t, x(t), u)λ(t)(du)dt → inf = m1
r

such that

− ẋ(t) ∈ A(x(t)) + C(t, x(t))
∫

Br

g(t, u)λ(t)(du) a.e. on [0, b]

x(0) = x0, λ ∈ SΣ





. (11)

In what follows, given u ∈ S1
U we can define the “barycenter” of u to be

the set

Bar(u) =
{

λ ∈ SΣ

∣∣∣∣ u(t) =
∫

Br

uλ(t)(du) a.e. on [0, b]
}

.

Proposition 15. If hypotheses H(A), H(C), H(g), H(U)2, H(L)2 hold and
x0 ∈ D(A) = D(A), then

H(x, u) =

min

8
>>><
>>>:

J1
r (x, λ)

���������

−ẋ(t) ∈ A(x(t)) + C(t, x(t))

Z

Br

g(t, u)λ(t)(du) a.e.

x(0) = x0

λ ∈ Bar(u)

9
>>>=
>>>;

.

Proof. Let (x, λ) ∈ W 1,1([0, b],RN ) × SΣ be an admissible state-control
pair for problem (11) such that λ ∈ Bar(u). From Lemma 3 we can find
a sequence {un}n≥1 ⊂ S1

U such that δun → λ in R([0, b], Br). Let xn ∈
W 1,1([0, b],RN ) be the unique state for problem (8) generated by the control
un. We know that the sequence {xn}n≥1 ⊂ C([0, b],RN ) is relatively compact
and so, by passing to a subsequence if necessary, we may assume that xn → x
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in C([0, b],RN ). For all n ≥ 1 we have un(t) =
∫

Br
uδun(t)(du) and for all

D ∈ B([0, b]) we have
∫

D

∫

Br

uδun(t)(du)dt →
∫

D

∫

Br

uλ(t)(du)dt.

If u(t) =
∫

Br
uλ(t)(du)dt, we have

∫

D

un(t)dt →
∫

D

u(t)dt

for all D ∈ B([0, b]) and so un → u weakly in L1([0, b],Rm) with u ∈ S1
U .

Also, because (xn, un) is admissible for problem (8), H(xn, un) = J(xn, un)
and so

lim inf
n→∞

H(xn, un) = lim inf
n→∞

J(xn, un) = lim inf
n→∞

J1
r (xn, δun).

Using hypothesis H(L)2/(ii) we can see that J1
r (xn, δun) → J1

r (x, λ) and so
lim infn→∞H(xn, un) = J1

r (x, λ). Therefore

H(x, u) ≤ inf
{

J1
r (x, λ) : (x, λ) ∈ P 1

r (xo), λ ∈ Bar(u)
}

. (12)

On the other hand, if H(x, u) < +∞, from the definition of

H(x, u) = Γseq(X−,W−)H(x, u),

given ε > 0 we can find a sequence {(xn, un)}n≥1 ⊂ Λ such that

xn → x in C1([0, b],RN )

un → u weakly in L1([0, b],Rm)

lim inf
n→∞

J(xn, un) ≤ H(x, u) + ε.

By passing to a subsequence if necessary, we may assume that δun → λ
weakly in R([0, b], Br). For every D ∈ B([0, b]) we have

∫

D

un(t) dt =
∫

D

∫

Br

uδun(t)(du)dt →
∫

D

∫

Br

uλ(t)(du)dt

∫

D

un(t) dt →
∫

D

u(t) dt.

Hence u(t) =
∫

Br
uλ(t)(du) a.e. on T and so λ ∈ Bar(u). Also, by virtue of

hypothesis H(L)2, J(xn, un) → J1
r (x, λ) and so J1

r (x, λ) ≤ H(x, u) + ε with
λ ∈ Bar(u) and (x, λ) ∈ P 1

r (xo). Since ε > 0 was arbitrary, it follows that

inf
{

J1
r (x, λ) : (x, λ) ∈ P 1

r (xo), λ ∈ Bar(u)
}
≤ H(x, u). (13)

From (12) and (13) we conclude that equality must hold. Moreover, it is clear
that the infimum is attained
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From Proposition 15 we obtain at once the equivalence of problems (10)
and (11).

Theorem 16. If hypotheses H(A), H(C), H(g), H(U)2, H(L)2 hold and
x0 ∈ D(A) = D(A), then the relaxed problems (10) and (11) are equiva-
lent. More precisely, if (x, u) ∈ Λ solves problem (10), then there exists
λ ∈ Bar(u) such that (x, λ) ∈ P 1

r (xo) solves problem (11) and conversely,
if (x, λ) ∈ P 1

r (xo) solves problem (11), then we can find u ∈ S1
U such that

λ ∈ Bar(u) and (x, u) is a solution of problem (10). Moreover, we have
m4

r = m1
r = m.

From Section 4 we know that we can have two more relaxed problems,
which are

J2
r (x) =

∫ b

0

p∗∗(t, x(t), ẋ(t))dt → inf = m2
r

such that

− ẋ(t) ∈ A(x(t)) + convF (t, x(t)) a.e. on [0, b]

x(0) = x0





(14)

where F (t, x) = C(t, x)g(t, U(t)) and

J3
r (x, û, γ̂) =

∫ b

0

N+1∑

k=1

γk(t)L
(
t, x(t), uk(t)

)
dt → inf m3

r

such that

− ẋ(t) ∈ A(x(t)) + C(t, x(t))
N+1∑

k=1

γk(t)g(t, uk(t)) a.e. on [0, b]

x(0) = x0, uk ∈ S1
U , γk : T → [0, 1] measurable,

N+1∑

k=1

γk(t) = 1





. (15)

Combining Theorem 16 with the results of Section 4, we obtain

Theorem 17. If hypotheses H(A), H(C), H(g), H(U)2, H(L)2 hold and
x0 ∈ D(A) = D(A), then problems (10), (11), (14) and (15) are equivalent (in
the sense of Theorem 16) and m1

r = m2
r = m3

r = m4
r = m.

Remark 9. Buttazzo in [7] did not investigate the relation of his relax-
ation method with the other methods existing in the literature. So our work in
this section in addition of extending the work of Buttazzo [7] (since our model
system is more general) it also complements it. Finally, note that our general
framework in this paper also incorporates gradient systems with non-smooth
potential. This is the case when A = ∂ϕ with ϕ : RN → R continuous, convex
but not necessarily differentiable.
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