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On Sobolev Theorem
for Riesz-Type Potentials in

Lebesgue Spaces with Variable Exponent

V. Kokilashvili and S. Samko

Abstract. The Riesz potential operator of variable order α(x) is shown to be

bounded from the Lebesgue space Lp(·)(Rn) with variable exponent p(x) into the

weighted space L
q(·)
ρ (Rn), where ρ(x) = (1 + |x|)−γ with some γ > 0 and 1

q(x)
=

1
p(x)

− α(x)
n

when p is not necessarily constant at infinity. It is assumed that the ex-

ponent p(x) satisfies the logarithmic continuity condition both locally and at infinity
and 1 < p(∞) ≤ p(x) ≤ P < ∞ (x ∈ Rn).
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AMS subject classification: Primary 42B20, secondary 47B38

1. Introduction

We consider the Riesz potential operator Iα(·) defined by

(Iα(·)f)(x) =
∫

Rn

f(y)
|x− y|n−α(x)

dy (1.1)

in the Lebesgue generalized spaces Lp(·)(Rn) with variable exponent p(x). We
refer, for instance, to the papers [16, 19 - 21] for the spaces Lp(·). (The order
α(x) of the potential operator is also assumed to be variable.) Nowadays
there is an evident increase of investigations related to both the theory of the
spaces Lp(·)(Ω) themselves and the operator theory in these spaces. This is
caused by possible applications to models with non-standard local growth (in
elasticity theory, fluid mechanics, differential equations; see, for example, [6,
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17] and references therein) and is based on a recent breakthrough result on the
boundedness of the Hardy-Littlewood maximal operator in these spaces. We
refer, for example, to the papers [2 - 7, 10 - 15] (see also references therein).

The boundedness of the operator Iα(·) from the space Lp(·)(Rn) into the
space Lq(·)(Rn) with limiting Sobolev exponent 1

q(x) = 1
p(x) − α(x)

n was an
open problem for a long time. It was solved in the case of bounded domains.
First, in the case of bounded domains Ω there was proved a conditional result
in [18]: the Sobolev theorem is valid for the potential operator Iα(·) within
the framework of the spaces Lp(·)(Ω) with p satisfying the logarithmic Dini
condition, if the maximal operator is bounded in the space Lp(·)(Ω). After,
L. Diening [3, 5] proved the boundedness of the maximal operator, and the
validity of the Sobolev theorem for bounded domains became an unconditional
statement. We refer also to the paper D. E. Edmunds and A. Meskhi [8] where
some weighted statements on (Lp(·)-Lp(·))–boundedness for one-dimensional
fractional integrals were obtained.

Recently, L. Diening [4] proved Sobolev’s theorem for the potential Iα

on the whole space Rn assuming that p is constant at infinity (p(x) ≡ const
outside some large ball) and satisfies the same logarithmic condition as in [18].
Another progress for unbounded domains is the recent result of D. Cruz-Uribe,
A. Fiorenza and C. J. Neugebauer [2] on the boundedness of the maximal
operator in unbounded domains for exponents p satisfying the logarithmic
smoothness condition both locally and at infinity.

In this paper we prove a Sobolev-type theorem for the potential Iα(·) from
the space Lp(·)(Rn) into the weighted space L

q(·)
ρ (Rn) with the power weight

ρ fixed to infinity, under the logarithmic condition for p satisfied locally and
at infinity, not supposing that p is constant at infinity but assuming that
1 < p(∞) ≤ p(x) ≤ P < ∞ (Theorem A). The crucial points of the proof
are the usage of the above mentioned result on maximal functions obtained in
[2] and the estimates for

∥∥ |x− x0|β(x0)
∥∥

Lp(·)(Rn\B(x0,r))
as r → 0 and r →∞

obtained in [18], see Propositions 1 and 2 in Section 3.

N o t a t i o n s:

- χΩ is the characteristic function of a set Ω in Rn

- |Ω| is the Lebesgue measure of Ω

- B(x0, r) is the ball centered at x0 and of radius r

- |Bn| = |B(0, 1)|
- p : Rn → [1,∞) is a measurable function

- p0 = infx∈Rn p(x) and P = supx∈Rn p(x).

Everywhere inf and sup stand for ess inf and ess sup, respectively.
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2. Statement of the main result.

By Lp(·) we denote the space of functions f on Rn such that

Ap(f) =
∫

Rn

|f(x)|p(x)dx < ∞,

where p is a measurable function on Rn with values in [1,∞) and

1 ≤ p0 ≤ p(x) ≤ P < ∞ (x ∈ Rn). (2.1)

This is a Banach function space with respect to the norm

‖f‖Lp(·) = inf
{

λ > 0 : Ap

(f

λ

)
≤ 1

}
(2.2)

(see, e.g., O. Kováčık and J.Rákosńık [16]).
We assume that the exponent p(x) satisfies the condition

|p(x)− p(y)| ≤ A

ln 1
|x−y|

(|x− y| ≤ 1
2 ;x, y ∈ Rn

)
. (2.3)

We shall also use the assumption introduced in [19: Definitions 3.2 - 3.3] that
there exists p(∞) = lim|x|→∞ p(x) and

|p(x)− p(∞)| ≤ A∞
ln(e + |x|) (x ∈ Rn). (2.4)

Note that (2.4) is equivalent to the condition |p(x) − p(y)| ≤ C
ln[e+min(|x|,|y|)]

introduced by D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer [2] to treat
maximal functions in spaces with variable exponent on Rn. Condition (2.4)
is obviously fulfilled for functions p satisfying the Hölder condition at infinity
|p(x)− p(∞)| ≤ C

(1+|x|)λ (0 < λ ≤ 1, x ∈ Rn).

The order α = α(x) of the Riesz potential operator is not supposed to be
continuous. We assume that it is a measurable function on Rn satisfying the
conditions

α0 := inf
x∈Rn

α(x) > 0 (2.5)

sup
x∈Rn

p(x)α(x) < n

sup
x∈Rn

p(∞)α(x) < n





. (2.6)
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Theorem A. Let assumptions (2.3)− (2.6) be satisfied and let 1 < p(∞)
≤ p(x) ≤ P < ∞. Then the following weighted Sobolev-type estimate is valid
for the operator Iα(·):

∥∥(1 + |x|)−γ(x)Iα(·)f
∥∥

Lq(·)(Rn)
≤ c ‖f‖Lp(·)(Rn) (2.7)

where 1
q(x) = 1

p(x)− α(x)
n is the Sobolev exponent and γ(x) = A∞α(x)

[
1− α(x)

n

]
,

A∞ being the Dini-Lipschitz constant from (2.4).

Observe that γ(x) ≤ n
4 A∞.

Corollary. Under the assumptions of Theorem A, estimate (2.7) is valid
also for the fractional maximal operator Mα(·) defined by

(Mα(·)f)(x) = sup
r>0

1
|B(x, r)|n−α(x)

∫

B(x,r)

|f(y)| dy.

Remark.

1. If α satisfies the (2.4)-type condition |α(x) − α(∞)| ≤ C
ln(e+|x|) (x ∈

Rn), then the weight (1 + |x|)−γ(x) is equivalent to the weight (1 + |x|)−γ(∞).
2. One can also treat operator (1.1) with α(x) replaced by α(y). In the

case of potentials over bounded domains Ω such potentials differ unessentially,
if the function α satisfies the smoothness logarithmic condition as in (2.3),
since

c1|x− y|n−α(y) ≤ |x− y|n−α(x) ≤ c2|x− y|n−α(y)

in this case (see [18: p. 277]).

3. Preliminaries

3.1 Estimates of Lp(·)-norms of powers of distance truncated to ex-
terior of a ball. In this subsection we reproduce some results from [18 - 19],
with slight modifications.

Let β be a function on Rn and x0 ∈ Rn and consider

µβ = µβ(x0, r) =
∥∥ |x− x0|β(x0)

∥∥
Lp(·)(Rn\B(x0,r))

so that ∫

|y|≥r

( |y|β(x0)

µβ

)p(x0+y)

dy = 1 (3.1)

by the definition of the norm in (2.2).
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Lemma 3.1. The function µβ(x0, ·) is decreasing. If conditions (2.1) and
(2.3) are satisfied and n + β(x0)p(x0) ≤ 0, then limr→0 µβ(x0, r) = ∞.

Proof. The proof is straightforward and omitted

In [18 - 19] the estimation of µβ(x0, r) as r → 0 and r →∞ was obtained
under the assumptions

B := sup
x∈Rn

|β(x)| < ∞

−d1 := sup
x∈Rn

[n + β(x)p(x)] < 0

−d2 := sup
x∈Rn

[n + β(x)p(∞)] < 0.





(3.2)

a) The ”norming” value r0. To reproduce the estimates for µβ(x0, r)
and distinguish between ”small” values 0 < r < r0 and ”large” values of
r > r0, we need the number r0 = r0(x0) for which µβ(x0, r0) = 1. This
number is the root of the equation

∫

|x|>r0

|x|β(x0)p(x+x0)dx = 1.

A positive root of this equation certainly exists for p satisfying (2.3), if n +
β(x0)p(x0) ≤ 0 and n + β(x0)p(∞) < 0 (see [18: Lemma 1.3]).

Lemma 3.2 [18: Lemmas 1.4 and 1.5]. The number r0 as function of x0

is bounded from above and below:

0 < c1 ≤ r0(x0) ≤ c2 < ∞ (3.3)

where c1 and c2 are constants not depending on x0, if assumptions (2.1), (2.3)
and (3.2) are satisfied and there exists the limit p(∞) = lim|x|→∞ p(x).

b) Estimates for µβ(x0, r) as r → 0 and r →∞. In [18] the following
statements were proved.

Proposition 1 (an estimate as r → 0, [18: Theorem 1.8]). Let p and β
satisfy assumptions (2.1), (2.3) and (3.2). Then

∥∥ |x− x0|β(x0)
∥∥

Lp(·)(Rn\B(x0,r))
≤ Cr

β(x0)+
n

p(x0) (0 < r ≤ r0)

where the constant C > 0 does not depend on r and x0.

Proposition 2 (an estimate as r →∞, [2: Theorem 1.10]). Let p and β
satisfy assumptions (2.1), (2.3) and (3.2). Then

C1

K(x0)
rβ(x0)+

n
p(∞) ≤ ∥∥ |x− x0|β(x0)

∥∥
Lp(·)(Rn\B(x0,r))

≤ C2K(x0)r
β(x0)+

n
p(∞)

(3.4)
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for large r
(
r ≥ max

{
2

1
n , |Bn|− 1

n , r0

})
, where the constants C1 and C2 do

not depend on r and x0, while

K(x0) = (1 + |x0|)
A∞|β(x0)|

p(∞) ,

A∞ being the Dini-Lipschitz constant from (2.4); in the case where p(x) ≥
p(∞) one may take K(x0) ≡ 1 in (3.4).

We shall prove Proposition 2 in the next section, since in [18] it was proved
with a worse exponent for the factor K(x0).

Lemma 3.3. Under the assumptions of Lemma 3.2, there exist absolute
constants 0 < c1 < c2 < ∞ not depending on x0 such that

µβ(x0, r) ≤ 1 for r ≥ c2

µβ(x0, r) ≥ 1 for r ≤ c1

}
(3.5)

uniformly in x0, and µβ(x0, r) is uniformly bounded from above and below for
c1 ≤ r ≤ c2:

0 < m1 ≤ µβ(x0, r) ≤ m2 < ∞ (c1 ≤ r ≤ c2) (3.6)

with constants m1 and m2 not depending on x0.

Proof. Statement (3.5) follows immediately from (3.3) with the same
constants c1 and c2. Bounds (3.6) can be obtained from (3.1) by easy estima-
tions

Corollary (to Propositions 1 and 2). Let p and β satisfy assumptions
(2.1), (2.3) and (3.2). Then

∥∥ |x− x0|β(x0)
∥∥

Lp(·)(Rn\B(x0,r))

≤
{

C r
β(x0)+

n
p(x0) if 0 < r ≤ 1

CK(x0)r
β(x0)+

n
p(∞) if r ≥ 1

(3.7)

where C > 0 is an absolute constant nor depending on r and x0. The estimate
given in (3.7) for 0 < r < 1 is valid even for all 0 < r < ∞, if p(x) ≤
p(∞) (x ∈ Rn).

Proof. The corollary follows directly from Propositions 1 and 2 in view
of Lemma 3.2



On Sobolev Theorem 905

3.2 Boundedness of the maximal operator in Lp(·)(Rn). The bound-
edness of the maximal operator M defined by

(Mf)(x) = sup
r>0

1
|B(x, r)|

∫

B(x,r)

|f(y)| dy

was proved by L. Diening [3, 5] for bounded domains, and also for Rn, but
in the case when p is constant at infinity (that is, outside some large ball).
Recently, D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer [2] proved the
boundedness of the maximal operator in Lp(·)(Rn) under condition (2.4) on
the behaviour of p at infinity. We shall use that result which runs as follows.

Proposition 3 (Boundedness of the maximal operator, [2: Theorem
1.4]). Let Ω be an arbitrary open set in Rn and let p : Ω → [1,∞) satisfy
the condition 1 < p0 ≤ p(x) ≤ P < ∞ (x ∈ Ω) and conditions (2.3) − (2.4)
on Ω. Then the maximal operator M is bounded in Lp(·)(Ω).

4. Proof of the main result

a) A rough estimate of µβ(x0, r) from below. We make use of the
following rough estimate of µβ = µβ(x0, ·) from below:

µβ(x0, r) ≥ 2−
B
n rβ(x0) (r ≥ |Bn|− 1

n ) (4.1)

(see [18: Lemma 1.9]). Its proof can be straightforwardly derived from (3.1):

1 ≥
∫

r<|y|<µ
1/β

β

( |y|β(x0)

µβ

)p(x0+y)

dy

≥
∫

r<|y|<µ
1/β

β

dy

= |Bn|(µn/β
β − rn)

from which (4.1) easily follows (in the above estimates we assumed that µβ <
rβ , since in the contrary case there is nothing to prove).

b) Proof of Proposition 2. We rewrite relation (3.1) as
∫

|y|>r

( |y|β(x0)

µβ

)p(∞)

ωr(y, x0) dy = 1 (4.2)

where

ωr(y, x0) = ωr(y, x0) =
( |y|β(x0)

µβ

)p(x0+y)−p(∞)

.

To derive estimates (3.4) from (4.2), we need the following lemma.
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Lemma 4.1. Let p : Rn → [1,∞) and β : Rn → R1 be bounded functions
satisfying conditions (2.1), (2.3)− (2.4) and (3.2). Then

1
c
(1 + |x0|)−A∞|β(x0)| ≤ ωr(y, x0) ≤ c (1 + |x0|)A∞|β(x0)| (x0 ∈ Rn) (4.3)

for all r ≥ max(c2, |Bn|−1/n), where the constant c > 0 does not depend on r
and x0.

Proof. We have

ωr(y, x0) ≤ 2
B(P−p0)

n

( |y|β(x0)

2B/nµβ

)p(y+x0)−p(∞)

where |y|β(x0)

2B/nµβ
≤ 1 by (4.1). Therefore,

ln ωr(y, x0) ≤ ln C +
[
p(y + x0)− p(∞)

]
ln
|y|β(x0)

2B/nµβ

≤ ln C +
∣∣p(y + x0)− p(∞)

∣∣ ln
2B/nµβ

|y|β(x0)

with C = 2
B(P−p0)

n . Since β(x0) < 0 by the last condition in (3.2), we have

ln ωr(y, x0) ≤ ln C +
∣∣p(y + x0)− p(∞)

∣∣

×
[
B

n
ln 2 + |β(x0)| ln |y|+ ln µβ

]
.

We observe that µβ ≤ 1 for r ≥ c2 by Lemma 3.3. Consequently,

ln ωr(y, x0) ≤ ln C1 +
∣∣p(y + x0)− p(∞)

∣∣ |β(x0)| ln |y|.
Making use of (2.4), we obtain

ln ωr(y, x0) ≤ ln C1 + A∞|β(x0)| ln |y|
ln(e + |y + x0|) . (4.4)

The inequality

ln |y|
ln(e + |y + x0|) ≤ ln(e + |x0|) (x0, y ∈ Rn) (4.5)

is valid. Indeed,

ln |y|
ln(e + |y + x0|) ≤

ln(|x0|+ |x0 + y|)
ln(e + |y + x0|)

and, to obtain (4.5), it remains to note that the maximum of the function
g(t) = ln (t+|x0|)

ln (t+e) (t ≥ 0) is reached at the point t = 0 when |x0| ≥ e and at
the point t = ∞ when |x0| ≤ e. Then from (4.4) the right-hand side inequality
in (4.3) follows. The left-hands side inequality can be proved in a similar way
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To prove now estimates (3.4) we observe that, from (4.2) and (4.3),

1
c
(1 + |x0|)−A∞|β(x0)|

∫

|y|>r

( |y|β(x0)

µβ

)p(∞)

dy ≤ 1

and

1 ≤ c(1 + |x0|)A∞|β(x0)|
∫

|y|>r

( |y|β(x0)

µβ

)p(∞)

dy

follow. Evidently,

∫

|y|>r

( |y|β(x0)

µβ

)p(∞)

dy =
c1

µ
p(∞)
β

rβ(x0)p(∞)+n

∣∣β(x0)p(∞) + n
∣∣

where c1 is an absolute constant. Then from the above inequalities we obtain
estimates (3.4) for µβ =

∥∥ |x− x0|β(x0)
∥∥

Lp(·)(Rn\B(x0,r))
.

c) Proof of Theorem A. We use the well known approach to reduce
the boundedness of the Riesz potential to that of the maximal operator which
requires an information about the behaviour of the norms

∥∥ |x− x0|β(x0)
∥∥

Lp(·)(Rn\B(x0,r))

as r → 0 and r → ∞. This information is provided by Propositions 1 and 2.
We have

Iα(·)f(x) =
∫

|x−y|≤r

f(y) dy

|x− y|n−α(x)
+

∫

|x−y|≥r

f(y) dy

|x− y|n−α(x)

:= Ar(x) + Br(x).
(4.6)

We make use of the inequality

|Ar(x)| ≤ 2nrα(x)

2α(x) − 1
(Mf)(x) (4.7)

which is known in the case of α = const (see, for instance, [1: p. 54]) and
remains valid in the case of variable α = α(x). By (4.7) and (2.5) we have

|Ar(x)| ≤ c rα(x)(Mf)(x) (4.8)

with some absolute constant c > 0 not depending on x and r.
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We assume that ‖f‖p(·) ≤ 1. Applying the Hölder inequality for the Lp(·)-
spaces ∣∣∣∣

∫

Ω

u(x)v(x) dx

∣∣∣∣ ≤ k‖u‖p‖v‖p′ (p′ = p
p−1 )

in the integral Br(x), we obtain

|Br(x)| ≤ kµβ(x, r)‖f‖p(y) ≤ kµβ(x, r)

where µβ(x, r) =
∥∥ |x−y|β(x)χ

∥∥
s(y)

with 1
s(y) + 1

p(y) = 1, χ is the characteristic
function of {y ∈ Rn : |x − y| > r} and β(x) = α(x) − n. We make use of
Corollary to Propositions 1 and 2, which is possible since the assumptions of
that Corollary with β(x) = α(x) − n are satisfied by conditions of Theorem
A. Applying that Corollary with p(x) replaced by s(x), we obtain

|Br(x)| ≤ c3K(x)r−
n

q(x) (x ∈ Rn) (4.9)

with K(x) = (1 + |x|)
[n−α(x)]A∞

p(∞) and constant c3 not depending on r and x.
Then from (4.6) and (4.8) - (4.9) we have

|Iα(·)f(x)| ≤ c4

[
rα(x)Mf(x) + K(x)r−

n
q(x)

]
(0 < r < ∞, x ∈ Rn).

Minimizing the right-hand side with respect to r, we see that its minimum is
reached at

rmin =
[
α(x)q(x)
nK(x)

Mf(x)
]− p(x)

n

and easy evaluations yield

|Iα(·)f(x)| ≤ c5 [K(x)]
α(x)p(x)

n [Mf(x)]
p(x)
q(x) .

Since p satisfies the logarithmic condition (2.4) at infinity, we may replace

p(x) in [K(x)]
α(x)p(x)

n by p(∞). Then

|Iα(x)f(x)| ≤ c6(1 + |x|)α(x)
(
1−α(x)

n

)
A∞ [Mf(x)]

p(x)
q(x)

= c6(1 + |x|)γ(x) [Mf(x)]
p(x)
q(x)

and, further,

Aq

(
(1 + |x|)−γ(x)Iα(x)f(x)

) ≤ c6

∫

Rn

|Mf(x)|p(x)
dx ≤ c7

by Proposition 3. The theorem is proved



On Sobolev Theorem 909

Proof of Corollary to Theorem A. The statement of the corollary
follows from the pointwise estimate (Mα(x)f)(x) ≤ c (Iα(x)|f |)(x) where the
constant c does not depend on f and x. To prove this estimate, we observe
that for any x ∈ Rn there exists an r = rx such that

(Mα(x)f)(x) ≤ 2
|B(x, rx)|n−α(x)

∫

B(x,rx)

|f(y)| dy

and, on the other hand,

(Iα(x)f)(x) ≥
∫

B(x,rx)

f(y) dy

|x− y|n−α(x)

≥ c

|B(x, rx)|n−α(x)

∫

B(x,rx)

|f(y)| dy.
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