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The Dirichlet Energy Integral on Intervals
in Variable Exponent Sobolev Spaces

P. Harjulehto, P. Hästö and M. Koskenoja

Abstract. In this article we consider Dirichlet energy integral minimizers in vari-
able exponent Sobolev spaces defined on intervals of the real line. We illustrate by
examples that the minimizing question is interesting even in this case that is trivial
in the classical fixed exponent space. We give an explicit formula for the minimizer,
and some simple conditions for when it is convex, concave or Lipschitz continuous.
The most surprising conclusion is that there does not exist a minimizer even for
every smooth exponent.
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1. Introduction

An intensive study of variable exponent Lebesgue and Sobolev spaces has
been undertaken during the last couple of years by several authors, inspired
primarily by the article [12] of Kováčik and Rákosńık from 1991. These spaces
have turned up in the modeling of non-homogeneous fluids, see the monograph
by Růžička [15] and the article [2] by Acerbi and Mingione for newer results.
However, the special case of variable Lebesgue spaces on the real line had
been studied already by Sharapudinov [17] in the late 70’s. Some questions
are now fairly well understood; as an example we mention the boundedness of
the Hardy-Littlewood maximal operator, thanks to the investigations of Pick
and Růžička [14], Diening [5], Nekvinda [13] and Cruz-Uribe, Fiorenza and
Neugebauer [4]. Other questions, like Dirichlet energy integral minimizers,
are only now beginning to be investigated.
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In a recent article Harjulehto, Hästö, Koskenoja and Varonen [10] showed
that the Dirichlet energy integral, with boundary values given in the Sobolev
sense, has a minimizer provided the variable exponent satisfies a certain jump
condition. The energy integral had previously been considered also by Coscia
and Minginone [3] and by Acerbi and Mingione [1], but their condition on
the exponent was much stricter, excluding for instance all exponents with a
discontinuity.

In the present article we will consider the Dirichlet energy integral on an
interval of the real line. Our motivation for this research was three-fold:

– We believe that studying this integral on the real line will provide us
with hints as to how it behaves in more general settings.

– Moreover, it is clear that a one-dimensional minimization problem can
be extended to higher dimensions, simply by choosing the exponent to depend
on one coordinate only. Therefore, we get several necessary conditions also for
the higher-dimensional case. For instance, we will show that the assumptions
used by Coscia and Mingione [3] in their study of energy integral minimizers
are in some sense necessary.

– Also, we think that this question is of interest on its own right, since it
turns out that even one-dimensional problems are often difficult in the variable
exponent setting. For instance Edmunds and Meskhi [6] have recently studied
potential-type operators in variable exponent spaces on the real line.

In the next section we briefly review the definition and basic properties
of variable exponent spaces. Since the energy integral problem on an interval
is trivial in fixed exponent Sobolev spaces, we start Section 3 by giving an
example which shows that the question merits study in variable exponent
spaces. We then give the explicit closed form of the solution of the Dirichlet
energy integral problem. The most important and striking conclusion is that
even for very smooth exponents no minimizer need exist. In particular this
renders support to the intuition of previous researchers that some restrictions
on the exponent are necessary in order to get minimizers. In Section 4 we
use the explicit formula to study convexity of minimizer and in Section 5 we
study its Lipschitz and Hölder continuity.

2. Variable exponent Sobolev spaces on the real line

In this section we review the standard theory of variable exponent Lebesgue
and Sobolev spaces as it pertains to the one-dimensional case.

Let Ω ⊂ R be an open set and let p : Ω → [1,∞) be a measurable function
(called the variable exponent on Ω). Throughout this paper the function p
always denotes a variable exponent; also, we define p+ = ess supx∈Ω p(x) and
p− = ess infx∈Ω p(x). We define the variable exponent Lebesgue space Lp(·)(Ω)
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to consist of all measurable functions u : Ω → R such that %p(·)(λu) =∫
Ω
|λu(x)|p(x)dx < ∞ for some λ > 0. The function %p(·) : Lp(·)(Ω) →

[0,∞) is called the modular of the space Lp(·)(Ω). We define a norm, the
so-called Luxemburg norm, on this space by the formula ‖u‖p(·) = inf{λ > 0 :
%p(·)

(
u
λ

) ≤ 1}. The variable exponent Sobolev space W 1,p(·)(Ω) is the space of
measurable functions u : Ω → R such that u and the distributional derivative
u′ are in Lp(·)(Ω). The function

%1,p(·) : W 1,p(·)(Ω) → [0,∞)

is defined by
%1,p(·)(u) = %p(·)(u) + %p(·)(u′).

The norm ‖u‖1,p(·) = ‖u‖p(·) + ‖u′‖p(·) makes W 1,p(·)(R) a Banach space. For
more details on variable exponent spaces see [12].

In [9] we introduced a Sobolev capacity Cp(·) in variable exponent spaces
and in [10] we used it to define Sobolev spaces with zero boundary values,
following the ideas of Kilpeläinen, Kinnunen and Martio [11] in metric spaces.
In the one-dimensional case it is possible to dispense with much of the fancy
stuff, claims holding only quasi-everywhere etc., and to give simpler defini-
tions, which is what we do next. For the complete definitions, valid also in
higher dimensions, the reader is referred to the above mentioned papers.

Let again Ω ⊂ R be an open set. Since every element in the space
W 1,p(·)(Ω) has a continuous representative, we will assume throughout this
paper that every function in a Sobolev space is continuous. We denote
u ∈ W

1,p(·)
0 (Ω) and say that u belongs to the variable exponent Sobolev space

with zero boundary values if it can be continuously continued by 0 outside Ω
(the extension is again denoted by u). The space W

1,p(·)
0 (Ω) is endowed with

the norm
‖u‖

W
1,p(·)
0 (Ω)

= ‖u‖W 1,p(·)(R).

If 1 < p− ≤ p+ < ∞, then W
1,p(·)
0 (Ω) is a reflexive Banach space [9: Theorems

3.1 and 3.6]. Let Ω ⊂ R be an open set and let w ∈ W 1,p(·)(Ω). The energy
operator corresponding to the boundary value function w acting on the space

{
u ∈ W 1,p(·)(Ω): u− w ∈ W

1,p(·)
0 (Ω)

}

is defined by

I
p(·)
Ω,w(u) =

∫

Ω

|u′(x)|p(x)dx.

The general problem is to find a function that minimizes values of the oper-
ator I

p(·)
Ω,w. It was shown in [10: Section 5] that this operator has a unique

continuous minimizer provided 1 < p− ≤ p+ < ∞.
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3. The Dirichlet energy integral minimizer
on an interval

Let us start by stating the Dirichlet energy integral problem on an interval.
We will assume that the interval under consideration is I = (0, 1). It follows
from the definitions in the previous section that u ∈ W

1,p(·)
0 (0, 1) if and only

if u(0) = u(1) = 0. Hence the Dirichlet energy integral problem reduces to
finding u ∈ W 1,p(·)(0, 1) with u(0) = 0 and u(1) = a > 0 which minimizes

∫ 1

0

|u′(y)|p(y)dy.

Let us denote by I
p(·)
a the energy integral operator acting on such functions.

Energy integral minimizers

If p is fixed, then the minimizer is linear, u(x) = ax. The next example
shows that the variable exponent adds some interest to this minimization
question.

Example. Let p: (0, 1) → (1,∞) be defined by

p(x) =
{

3 for 0 < x ≤ 1
2

2 for 1
2 < x < 1.

Suppose that u ∈ W 1,p(·)(0, 1) is the minimizer for the boundary values 0 and
a > 0. Denote u( 1

2 ) = b. Then u|(0, 1
2 ) is the solution to the classical energy
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integral problem with boundary values 0 and b, and u|( 1
2 ,1) is the solution with

boundary values b and a. Therefore these functions are linear, and so

u(x) =
{

2bx for 0 < x ≤ 1
2

2b + 2(a− b)(x− 1
2 ) for 1

2 < x < 1.

For this u we have I
p(·)
a (u) = 4b3 +2(a−b)2. It is easy to see that the function

b 7→ 2b3 + (a − b)2 has a minimum at b =
√

1+12a−1
6 , which determines the

minimizer of the variable exponent problem. The minimizing functions for
some a’s are shown in the figure above. As can be seen in that figure, and as
can be confirmed by calculation, the minimizer is convex if a > 2

3 , concave if
a < 2

3 and linear for a = 2
3 .

It is in fact possible to give an explicit formula for the minimizer, as shown
in the next theorem. The formula is not quite transparent, however, so we
will also prove some properties of the minimizers later on.

Theorem 3.2. Let p be bounded on I = (0, 1) and strictly greater than 1
almost everywhere on (0, 1), and let a > 0 be a constant. Then the operator
I

p(·)
a has a unique minimizer if and only if either

a ≤
∫ 1

0

( 1
p(y)

) 1
p(y)−1

dy (3.1)

or there exists a constant c > 1 such that
∫ 1

0

c
1

p(y)−1 dy < ∞. (3.2)

In this case the minimizer is given by

u(x) =
∫ x

0

( c̃

p(y)

) 1
p(y)−1

dy

for some constant c̃ > 0.

Proof. We start by considering a different, related, minimizing problem:
for f ∈ Lp(·)(I), minimize

∫ 1

0
|f(x)|p(x)dx under the constraint

∫ 1

0
f(x) dx = a.

This problem can be solved using the classical variational method (cf. [8]). It is
clear that we can assume f ≥ 0 when looking for the minimizer. Let (fi) be a
minimizing sequence. By Fatou’s lemma, f̃(x) = lim inf fi(x)p(x) exists almost
everywhere and is integrable. Therefore f(x) = f̃(x)1/p(x) is a minimizer, if∫ 1

0
f(x) dx = a. Let us call such a function f a tentative minimizer. Let then

f be any tentative minimizer. Let δ: (0, 1) → R be bounded and measurable
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such that
∫ 1

0
δ = 0. Let ε > 0. If (fi) is a minimizing sequence tending to

f , then (fi + δ) is a sequence tending to f + δ. Since the first sequence was
minimizing, we have

∫ 1

0
(f(x) + εδ(x))p(x)dx ≥ ∫ 1

0
f(x)p(x)dx. Therefore

∫ 1

0

|f(x) + εδ(x)|p(x) − f(x)p(x)

ε
dx ≥ 0.

Since p and δ are bounded, it follows by dominated convergence, as ε → 0,
that ∫ 1

0

p(x)|f(x)|p(x)−1δ(x) dx ≥ 0.

Suppose that p(x)(f(x))p(x)−1 is not constant almost everywhere. Let then
d1 < d2 be such that

A1 =
{
x ∈ (0, 1): p(x)(f(x))p(x)−1 < d1

}

A2 =
{
x ∈ (0, 1): p(x)(f(x))p(x)−1 > d2

}

have positive measure. Let A′1 ⊂ A1 and A′2 ⊂ A2 be such that |A′1| = |A′2| >
0. Define

δ(x) =

{
1 for x ∈ A′1
−1 for x ∈ A′2
0 otherwise.

Then ∫ 1

0

p(x)|f(x)|p(x)−1δ(x) dx

=
∫

A′1

p(x)|f(x)|p(x)−1dx−
∫

A′2

p(x)|f(x)|p(x)−1dx

≤ (d1 − d2)|A′1|
< 0

contrary to what was shown earlier. Therefore p(x)(f(x))p(x)−1 = c for some
constant c and almost every x ∈ (0, 1). We have shown that every tentative

minimizer is of the form fc(x) =
(

c
p(x)

) 1
p(x)−1 . Therefore we see that f is a

minimizer if and only if c can be chosen so that
∫ 1

0
fc dx = a.

Let us next prove that c 7→ ∫ 1

0
fc dx is continuous when c is such that the

integral converges. Let c > 0 be such that the integral is finite. Fix ε > 0 and
define

Aλ =
{
x ∈ (0, 1): p(x) > λ

}
.
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We choose a λ > 1 such that
∫
(0,1)\Aλ

fc dx < ε. In Aλ the exponent 1
p(x)−1 is

bounded from above and so we can choose d > 0 such that
∫

Aλ
(fc−fc−d) dx <

ε. Then∫

(0,1)

(fc − fc−d) dx ≤
∫

Aλ

(fc − fc−d) dx +
∫

(0,1)\Aλ

(fc + fc−d) dx

≤ 3ε.

Clearly,
∫ 1

0
f0 dx = 0 and c 7→ ∫ 1

0
fc dx is increasing. Since

∫ 1

0
f1 dx < ∞, we

see that there exists a suitable c ≤ 1, if a ≤ ∫ 1

0
f1 dx, i.e. if (3.1) holds. If,

on the other hand, (3.2) holds, then
∫ 1

0
fc dx increases continuously to ∞ so

that there again exists a suitable c. If neither (3.1) nor (3.2) is satisfied, then
there does not exist a c such that

∫ 1

0
fc dx = a.

We have now shown that the minimizing problem has a solution if and only
if (3.1) or (3.2) holds. Let us return then to our original minimizing problem.
Suppose that (3.1) or (3.2) holds and let f = fc so that

∫ 1

0
fc dx = a. If

u ∈ W 1,p(·)(I) is such that f = u′ and u(0) = 0, then clearly u is the minimizer
we are looking for. Define therefore u(x) =

∫ x

0
f(y) dy for x ∈ (0, 1]. Since u

is bounded by a, u ∈ Lp(·)(I). Further, we have

%p(·)(u′) =
∫ 1

0

( c

p(x)

) p(x)
p(x)−1

dx ≤ c

∫ 1

0

c
1

p(x)−1 dx < ∞

if c ≤ 1 or by assumption (3.2). Therefore u ∈ W 1,p(·)(I) and we are done.
On the other hand, if u is a minimizer of the original problem, then f = u′

is a minimizer of the problem considered in this proof. So then (3.1) or (3.2)
holds. Therefore these conditions are both necessary and sufficient

Corollary 3.3. If p: (0, 1) → [m,M ] for 1 < m ≤ M < ∞, then the
operator I

p(·)
a has a unique minimizer given by

u(x) =
∫ x

0

( c

p(y)

) 1
p(y)−1

dy

for some constant c > 0.

The following example shows that the Dirichlet energy integral does not
always have a minimizer.

Example 3.4. For p(x) = 1 + x the operator I
p(·)
a does not have a mini-

mizer for large a. For, let c > 1. Then
∫ 1

0

c
1

p(x)−1 dx =
∫ 1

0

c
1
x dx ≥ log c

∫ 1

0

dx

x
= ∞

so that the condition of Theorem 3.2 is not satisfied for a >
∫ 1

0
p(x)

1
1−p(x) dx.
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4. Convexity and concavity of the minimizers

In the previous section we gave an explicit formula for the minimizer of the
energy integral on an open unit interval. This formula is, however, somewhat
complicated and not very transparent. So in this section and the next one we
give simple conditions that guarantee some regularity of the minimizer.

Example 4.1. Using the previous theorem we plot some minimizers of
the energy integral for p(x) = 1.1 + x. The number on the right is again the
second boundary value, a. It looks as if there is a shift from convex to concave
minimizers as the difference between the boundary values is large enough.

Energy integral minimizers when p(x) = 1.1 + x

The next theorem shows that if p is increasing, then the minimizer pos-
sesses quite a bit of regularity, namely it has zero or one point of inflection.
The same holds also for decreasing p, only then concave and convex should
be swapped.

Corollary 4.2. Let p: [0, 1] → [m,M ] for 1 < m ≤ M < ∞ be increasing.
Then the energy integral minimizer is either

(1) convex,
(2) concave, or
(3) concave on (0, z) and convex on (z, 1), for some z ∈ (0, 1).

Proof. Let us define F (z) = log c
z

z−1 . Then the derivative of the minimizer
equals exp(F (p(x))), by Theorem 3.2. The minimizer is convex if its derivative
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is increasing. Since z 7→ exp(z) and x 7→ p(x) are increasing, this is equivalent
to z 7→ F (z) being increasing. We find that

dF (z)
dz

=
− z−1

z − log c
z

(z − 1)2
.

Since z > 1, z 7→ F (z) is increasing if and only if 1
z + log z ≥ 1 + log c. Since

the function z 7→ z−1 +log z is increasing for z > 1, we see that the minimizer
is convex if 1

p(0) +log p(0) ≥ 1+ log c and concave if 1
p(1) +log p(1) ≤ 1+ log c.

If neither of these conditions hold, then there exists a z ∈ (0, 1) such that
x 7→ 1

p(x) + log p(x)− (1 + log c) changes sign at z, and then the minimizer is
concave on (0, z) and convex on (z, 1)

Corollary 4.3. Let p: [0, 1] → [m,M ] for 1 < m ≤ M < ∞ be increasing.
If a ≤ exp(− 1

p(0) ), then the minimizer of I
p(·)
a is convex. If, on the other hand,

a ≥
(p(1)

p(0)

) 1
p(0)−1

exp
(
− 1

p(1)
p(1)− 1
p(0)− 1

)
,

then the minimizer of I
p(·)
a is concave. Both conditions are the best possible

in terms of only p(0) and p(1).

Proof. Let us estimate c in the derivative of the minimizer. We have

sup
x∈(0,1)

( c

p(x)

) 1
p(x)−1 ≥

∫ 1

0

( c

p(x)

) 1
p(x)−1

dx = a ≥ inf
x∈(0,1)

( c

p(x)

) 1
p(x)−1

.

It follows from this that

max
x∈[0,1]

p(x)ap(x)−1 ≥ c ≥ min
x∈[0,1]

p(x)ap(x)−1.

Let us start with the first claim of the theorem, convexity. Since a ≤ e−
1

p(0) ,
the function z 7→ zaz−1 is decreasing so that c ≤ p(0)ap(0)−1. It was shown in
the previous theorem that the minimizer is convex if 1

p(0) +log p(0) ≥ 1+log c.
Therefore it suffices to show that 1

p(0) +log p(0) ≥ 1+log
(
p(0)ap(0)−1

)
, which

is the condition of the first part of the corollary.
The argument for the second claim is almost the same. We find that for

z ∈ [p(0), p(1)] the function z 7→ zaz−1 is increasing, provided a ≥ e−
1

p(1) . We
prove that (p(1)

p(0)

) 1
p(0)−1

exp
(
− 1

p(1)
p(1)− 1
p(0)− 1

)
≥ e−

1
p(1) .
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When we raise both sides to the power p(0)− 1, we see that this is equivalent
to

p(1)
p(0)

≥ exp
(
− p(0)− 1

p(1)
+

p(1)− 1
p(1)

)
.

Defining the new variable z = p(1)
p(0) , we find that this is the same as ze

1
z ≥ e.

But z ≥ 1, so this is clear. Having established that z 7→ zaz−1 is increasing,
it follows that c ≥ p(0)ap(0)−1. It was shown in the previous theorem that the
minimizer is concave if 1

p(1) +log p(1) ≤ 1+log c. Therefore it suffices to show
that 1

p(1) + log p(1) ≤ 1 + log
(
p(0)ap(0)−1

)
, which is just the condition of the

second part of the corollary.
We prove the sharpness in the first case only, since the proof in the second

case is similar. Fix p1 > p0 > 1. Suppose that a > exp(−1/p0). Then we
see that 1

p0
+ log p0 < 1 + log(p0a

p0−1). We can therefore choose ε > 0 such
that 1

p0
+ log p0 < 1 + log(p0a

p0−1 − ε). Let us set p(x) = p0 if x ∈ [0, t) and
p(x) = p1 otherwise for t ∈ (0, 1). Then

t
( c

p0

) 1
p0−1

+ (1− t)
( c

p1

) 1
p1−1

= a.

Then by choosing t close to one, we get c > p0a
p0−1 − ε, But then 1

p(0) +
log p(0) < 1 + log c and so the minimizer is not convex, by Corollary 4.2

Remark 4.4. It follows from Corollary 4.3 that if a ≤ 1
e , then the mini-

mizer is always convex, irrespective of how p increases.

5. Regularity of the minimizers

Coscia and Mingione [3] and Acerbi and Mingione [1] have investigated the
regularity of energy integral minimizers. Their approach is based on local
minimizers and avoiding using variable exponent spaces explicitly. In the
one-dimensional case we can now, for the first time, investigate the necessity
of their assumption. In the following we ignore some technical differences
between the way Mingione and his collaborators define minimizers and our
definition.

Acerbi and Mingione [1] proved that the minimizer is α-Hölder continuous
for some α > 0 if p− > 1 and there exists a constant C > 0 such that

|p(x)− p(y)| ≤ C

− log |x− y|
for all |x−y| ≤ 1

2 . Our next result indicates that the second assumption might
be excessive.
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Corollary 5.1. If p: (0, 1) → [m,M ] for 1 < m ≤ M < ∞, then the
minimizer of the operator I

p(·)
a is bi-Lipschitz continuous for every a.

Proof. By Theorem 3.2, the minimizer has derivative
(

c
p(x)

) 1
p(x)−1 for

some constant c > 0. Since

0 < max
{( c

p+

) 1
p+−1

,
( c

p+

) 1
p−−1

}

≤
( c

p(x)

) 1
p(x)−1

≤ max
{
1, c

1
p−−1

}

< ∞
for all x ∈ (0, 1), it follows from the mean-value theorem that the minimizer
is bi-Lipschitz continuous

Coscia and Mingione [3] proved that the derivative of the minimizer is
α-Hölder continuous provided p− > 1 and p is β-Hölder continuous, where
α depends on β. The next result shows that we cannot expect to get much
stronger results than this.

Corollary 5.2. If p: (0, 1) → [m,M ] for 1 < m ≤ M < ∞, then the
derivative of the minimizer of the operator I

p(·)
a is α-Hölder continuous if and

only if the exponent p is α-Hölder continuous.

Proof. Let us denote F (z) = ( c
z )

1
z−1 . Then the derivative of the mini-

mizer equals F (p(x)). But F is differentiable on (1,∞), so

|F (p(x))− F (p(y))| = F ′(ξ) |p(x)− p(y)|
where ξ ∈ (p(x), p(y)), by the mean-value theorem. It is easy to see that F ′

is bounded and bounded away from 0 on [p−,∞], so that F (p(x)) possesses
the same degree of regularity as p(x)

The assumption p− > 1 has been made in all previous investigations of
energy integral minimizers [1, 3, 9]. The next result shows that if we relax this
assumption, then we are also liable to lose a lot of regularity of the minimizer.

Corollary 5.3. Let p(x) = 1+
(
log 1

x

)−1 for all x ∈ (0, 1). The minimizer
of I

p(·)
a is α-Hölder continuous for some α depending on a > 0. The derivative

of the minimizer is not even uniformly continuous for large a.

Proof. We have
∫ 1

0

c
1

p(x)−1 dx =
∫ 1

0

x− log cdx =
1

1− log c
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provided c < e, so condition (3.2) is satisfied. Therefore the derivative of the

minimizer is
(

c
p(x)

) 1
p(x)−1 for some c > 0, by Theorem 3.2. Thus we have, for

0 < y < x < 1,

|u(x)− u(y)| =
∣∣∣∣
∫ x

y

x− log cp(x)−
1

p(x)−1 dx

∣∣∣∣

≤ x1−log c − y1−log c

1− log c

≤ (x− y)1−log c

1− log c
.

We see that u is (1 − log c)-Hölder continuous. Moreover, if a is such that
c > 1, then the derivative is unbounded, hence not uniformly continuous

Example 5.4. Using the main theorem we plot some minimizers of the
energy integral for p(x) = 1 + (− log(x))−1. The number on the right is
again the second boundary value, a. The lower three curves are Lipschitz
continuous, the following two are 0.738- and 0.530-Hölder continuous.

Energy integral minimizers when p(x) = 1 + (− log(x))−1
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[15] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory.
Berlin: Springer-Verlag 2000.

[16] Samko, S.: Denseness of C∞0 (Rn) in the generalized Sobolev spaces W m,p(x)(Rn).
In: Direct and Inverse Problems of Mathematical Physics, Newark, DE, 1997
(Int. Soc. Anal. Appl. Comp.: Vol. 5; eds.: Gilbert, R., Kajiwara, J., and Xu,
Y. S.). Dordrecht: Kluwer Acad. Publ. 2000, pp. 333 – 342.

[17] Sharapudinov, I. I.: On a topology of the space Lp(t)([0; 1]) Math. Notes 26
(1979), no. 3–4, 796–806. [translation of Mat. Zametki 26 (1978), no. 4,
613–632.]



924 P. Harjulehto et al.

Received 09.07.2003


