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Abstract. We obtain Ar(M)-weighted boundedness for compositions of Green’s
operator and the Laplace-Beltrami operator applied to differential forms on mani-
folds. As applications, we also prove Ar(M)-weighted Sobolev-Poincaré embedding
theorems for Green’s operator and norm comparison theorems for solutions of the
A-harmonic equation on manifolds. These results can be used in developing the Lp

theory of differential forms and the Hodge decomposition.
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1. Introduction

Our purpose is to study the Lp theory of the Laplace-Beltrami operator
∆ = dd? + d?d and Green’s operator G acting upon differential forms on
manifolds. Both operators play an important role in many fields, including
partial differential equations, harmonic analysis and quasiconformal mappings
(see [9, 13, 15]). We establish some norm inequalities both for ∆ and G and
their compositions that are applied to differential forms on a compact, ori-
entable, C∞-smooth Riemannian manifold M without boundary. We also
obtain Ar(M)-weighted estimates for these compositions and prove Sobolev-
Poincaré embedding theorems for Green’s operator. As applications of our
local and global results, we derive some norm inequalities for solutions of the
non-homogeneous as well as the homogeneous A-harmonic equations. These
results will provide effective tools for studying of behavior of solutions of A-
harmonic equations and related differential systems on manifolds.
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Let e1, . . . , en be the standard unit basis of Rn and assume that Λl =
Λl(Rn) is the linear space of l-vectors, generated by the exterior products
eI = ei1 ∧ . . . ∧ eil

, corresponding to all ordered l-tuples I = (i1, . . . , il) (1 ≤
i1 < . . . < il ≤ n; l = 0, 1, . . . , n). The Grassman algebra Λ = ⊕Λl is a
graded algebra with respect to the exterior products. For α =

∑
αIeI ∈ Λ

and β =
∑

βIeI ∈ Λ, the inner product in Λ is given by 〈α, β〉 =
∑

αIβI with
summation over all l-tuples I = (i1, . . . , il) and all integers l = 0, 1, . . . , n. We
define the Hodge star operator ? : Λ → Λ by the rule

?1 = e1 ∧ · · · ∧ en

α ∧ ?β = β ∧ ?α = 〈α, β〉(?1) (α, β ∈ Λ).

The norm of α ∈ Λ is given by the formula

|α|2 = 〈α, α〉 = ?(α ∧ ?α) ∈ Λ0 = R.

The Hodge star is an isometric isomorphism on Λ with ? : Λl → Λn−l and
? ? (−1)l(n−l) : Λl → Λl.

Throughout this paper, we always assume that M is a Riemannian, com-
pact, oriented and C∞-smooth manifold without boundary on Rn and Ω is
an open subset of Rn. We write R = R1. A differential l-form ω on M is a
de Rham current (see [12]) on M with values in Λl(Rn). Let ΛlM be the l-th
exterior power of the cotangent bundle and C∞(ΛlM) be the space of smooth
l-forms on M . We use D′(M, Λl) to denote the space of all differential l-forms
and Lp(ΛlM) to denote the l-forms

ω(x) =
∑

I

ωI(x) dxI =
∑

ωi1···il
(x) dxi1 ∧ · · · ∧ dxil

on M satisfying
∫

M
|ωI |p < ∞ for all ordered l-tuples I. Thus Lp(ΛlM) is a

Banach space with norm

‖ω‖p,M =
( ∫

M

|ω(x)|pdx

) 1
p

=
( ∫

M

( ∑

I

|ωI(x)|2
) p

2

dx

) 1
p

.

We denote the exterior derivative by

d : D′(M, Λl) → D′(M, Λl+1) (l = 0, 1, . . . , n).

The Hodge codifferential operator

d? : D′(M, Λl+1) → D′(M, Λl)
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is given by d? = (−1)nl+1 ? d? on D′(M,∧l+1) (l = 0, 1, . . . , n), and the
Laplace-Beltrami operator ∆ is defined by

∆ = dd? + d?d.

Also, we always use G to denote Green’s operator throughout this paper.
Further, we use B to denote a ball and σB to denote the ball with the same
center as B and with diameter diam(σB) = σ diam(B). We do not distinguish
balls from cubes in this paper.

The n-dimensional Lebesgue measure of a set E ⊆ Rn is denoted by |E|.
We call w a weight if w ∈ L1

loc(Rn) and w > 0 a.e. For 0 < p < ∞ we denote
the weighted Lp-norm of a measurable function f over E by

‖f‖p,E,wα =
( ∫

E

|f(x)|pw(x)αdx

) 1
p

where α is a real number.
T. Iwaniec and A. Lutoborski proved the following result in [9]:

Let D ⊂ Rn be a bounded, convex domain. Then to each y ∈ D there
corresponds a linear operator Ky : C∞(D, Λl) → C∞(D,Λl−1) defined by

(Kyω)(x; ξ1, . . . , ξl) =
∫ 1

0

tl−1ω
(
tx + y − ty; x− y, ξ1, . . . , ξl−1

)
dt

and the decomposition ω = d(Kyω) + Ky(dω).

A homotopy operator

T : C∞(D, Λl) → C∞(D,Λl−1)

is defined by averaging Ky over all points y in D:

Tω =
∫

D

ϕ(y)Kyω dy (1.1)

where ϕ ∈ C∞0 (D) is normalized by
∫

D
ϕ(y) dy = 1, and the norm is estimated

by
‖Tω‖s,D ≤ Cdiam(D)‖ω‖s,D. (1.2)

We define the l-form ωD ∈ D′(D,∧l) by

ωD =
{ |D|−1

∫
D

ω(y) dy for l = 0
d(Tω) for l = 1, . . . , n
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for all ω ∈ Lp(D,Λl), 1 ≤ p < ∞. Then

ωD = ω − T (dω) (1.3)

and
‖d(Tu)‖s,D ≤ ‖u‖s,D + C|D|diam(D)‖du‖s,D. (1.4)

By substituting z = tx + y − ty, (1.1) reduces to

Tω(x, ξ) =
∫

D

ω
(
z, ζ(z, x− z), ξ

)
dz

where the vector function ζ : D × Rn → Rn is given by

ζ(z, h) = h

∫ ∞

0

sl−1(1 + s)n−1ϕ(z − sh) ds.

Integral (1.1) defines a bounded operator

T : Ls(D,∧l) → W 1,s(D,∧l−1) (l = 1, . . . , n)

with norm estimated by

‖Tu‖W 1,s(D) ≤ C|D| ‖u‖s,D. (1.5)

2. Lp-estimates and Sobolev-Poincaré
embedding theorem

We say that u ∈ L1
loc(Λ

lM) has a generalized gradient if, for each coordinate
system, the pullbacks of the coordinate function of u have generalized gradient
in the familiar sense (see [14]). We write

W(ΛlM) =
{

u ∈ L1
loc(Λ

lM) : u has generalized gradient
}

.

As usual, harmonic l-fields are defined by

H(ΛlM) =
{

u ∈ W(ΛlM) : du = d?u = 0, u ∈ Lp for some 1 < p < ∞
}

,

the orthogonal complement H⊥ of H in L1 by

H⊥ =
{
u ∈ L1 : 〈u, h〉 = 0 for all h ∈ H}

and Greens’ operator

G : C∞(ΛlM) → H⊥ ∩ C∞(ΛlM)

by assigning G(u) the unique element of H⊥ ∩C∞(ΛlM) satisfying Poisson’s
equation

∆G(ω) = ω −H(ω)

where H is either the harmonic projection or sometimes the harmonic part of
ω.

From [13] we have the following lemma about Ls-estimates for Green’s
operator G.
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Lemma 2.1. Let u ∈ C∞(ΛlM) (l = 0, 1, . . . , n) and 1 < s < ∞. Then
there exists a constants C, independent of u, such that

‖dd?G(u)‖s,M + ‖d?dG(u)‖s,M

+‖dG(u)‖s,M + ‖d?G(u)‖s,M + ‖G(u)‖s,M ≤ C‖u‖s,M .
(2.1)

Theorem 2.2. Let u ∈ C∞(ΛlM) (l = 0, 1, . . . , n) and 1 < s < ∞.
Then there exists a constant C, independent of u, such that

‖∆(G(u))‖s,M ≤ C‖u‖s,M .

Proof. From the definition of the Laplace-Beltrami operator ∆ and Min-
kowski’s inequality, using (2.1) we have

‖∆(G(u))‖s,M = ‖(dd? + d?d)G(u)‖s,M

≤ ‖dd?G(u)‖s,M + ‖d?dG(u)‖s,M

≤ C1‖u‖s,M + C2‖u‖s,M

≤ C‖u‖s,M

and the proof is complete

Theorem 2.3. Let u ∈ C∞(ΛlM) (l = 0, 1, . . . , n) and 1 < s < ∞.
Then there exists a constant C, independent of u, such that

‖G(∆u)‖s,M ≤ C‖u‖s,M .

Proof. We know that Green’s operator G commutes with d and d? (see
[16]), that is, for any differential form u ∈ C∞(∧lM) we have

dG(u) = Gd(u)

d?G(u) = Gd?(u).
(2.2)

Using this, (2.1) and Minkowski’s inequality we obtain

‖G(∆u)‖s,M = ‖G(dd? + d?d)u‖s,M

= ‖G(dd?(u)) + G(d?d(u))‖s,M

≤ ‖G(dd?(u))‖s,M + ‖G(d?d(u))‖s,M

= ‖dd?(G(u))‖s,M + ‖d?d(G(u))‖s,M

≤ C1‖u‖s,M + C2‖u‖s,M

= C3‖u‖s,M .

and the proof is complete
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Using Minkowski’s inequality and combining Theorems 2.2 and 2.3, we
obtain immediately the following

Corollary 2.4. Let u ∈ C∞(∧lM) (l = 0, 1, . . . , n) and 1 < s < ∞.
Then there exists a constant C, independent of u, such that

‖(G∆ + ∆G)u‖s,M ≤ C‖u‖s,M .

Theorem 2.5. Let u ∈ C∞(ΛlM) (l = 0, 1, . . . , n) and 1 < s < ∞.
Then there exists a constant C, independent of u, such that

‖(G(u))D‖s,D ≤ C‖u‖s,D (2.3)

for any convex and bounded set D with D ⊂ M .

Proof. If 1 ≤ l ≤ n, applying (1.4) and (2.1) we have

‖(G(u))D‖s,D = ‖d(T (G(u)))‖s,D

≤ ‖G(u)‖s,D + C1|D|diam(D)‖d(G(u))‖s,D

≤ C2‖G(u)‖s,D

≤ C3‖u‖s,D.

If l = 0, using (2.1) and the Hölder inequality with 1 = 1
s + 1

q we find that

‖(G(u))D‖s,D =
(∫

D

|(G(u))D|sdx

) 1
s

=
(∫

D

∣∣∣∣
1
|D|

∫

D

G(u(y)) dy

∣∣∣∣
s

dx

) 1
s

≤
((

1
|D|

∫

D

|G(u(y))| dy

)s ∫

D

1 dx

) 1
s

=
1
|D| |D|

1
s

∫

D

|G(u(y))| dy

≤ |D| 1s−1

(∫

D

|G(u(y))|sdy

) 1
s

(∫

D

1qdy

) 1
q

= ‖G(u)‖s,D

≤ C2‖u‖s,D

and the proof is complete
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Corollary 2.6. Let u ∈ C∞(ΛlM) (l = 0, 1, . . . , n) and 1 < s < ∞.
Then for any convex and bounded set D with D ⊂ M there exists a constant
C, independent of u, such that

‖G(u)− (G(u))D‖s,D ≤ C‖G(u)− c‖s,D (2.4)

for any closed form c and

‖G(u)− (G(u))D‖s,D ≤ C‖u‖s,D. (2.5)

Proof. We know that cD = c if c is closed. Hence, by Theorem 2.5, we
have

‖G(u)− (G(u))D‖s,D ≤ ∥∥(
G(u)− c

)− (
(G(u))D − cD

)∥∥
s,D

≤ ‖G(u)− c‖s,D + ‖(G(u)− c)D‖s,D

≤ ‖G(u)− c‖s,D + C1‖G(u)− c‖s,D

≤ C2‖G(u)− c‖s,D.

Hence (2.4) holds. From (2.3) and (2.1) we find that

‖G(u)− (G(u))D‖s,D ≤ ‖G(u)‖s,D + ‖(G(u))D‖s,D

≤ C1‖u‖s,D + C2‖u‖s,D

≤ C3‖u‖s,D

(2.6)

which ends the proof

We use W 1,p(M, Λl) to denote the Sobolev space of l-forms which equals
Lp(ΛlM) ∩ Lp

1(Λ
lM), with norm

‖ω‖W 1,p(M) = diam(M)−1‖ω‖p,M + ‖∇ω‖p,M . (2.7)

Here ω is the vector-valued differential form∇ω =
(

∂ω
∂x1

, . . . , ∂ω
∂xn

)
that consists

of differential forms ∂ω
∂xi

∈ D′(M, Λl), where partial differentiation is applied
to the coefficients of ω. The notations W 1,p

loc (M,R) and W 1,p
loc (M, Λl) are self-

explanatory. For 0 < p < ∞ and a weight w, the weighted norm of ω ∈
W 1,p(M, Λl) over M is denoted by

‖ω‖W 1,p(M),wα = diam(M)−1‖ω‖p,M,wα + ‖∇ω‖p,M,wα (2.8)

where α is a real number.
Next, we prove an analogue of the Poincaré inequality for Green’s operator

G.
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Theorem 2.7. Let u ∈ C∞(ΛlM) (l = 0, 1, . . . , n) and 1 < s < ∞.
Then there exists a constant C, independent of u, such that

‖G(u)− (G(u))B‖s,B ≤ Cdiam(B)‖du‖s,B (2.9)

for all balls B with B ⊂ M .

Proof. Applying (1.3) to G(u) we find that

(G(u))B = G(u)− T (d(G(u))).

Combining this with (1.2), (2.2) and (2.1) yields

‖G(u)− (G(u))B‖s,B = ‖Td(G(u))‖s,B

≤ C1diam(B)‖d(G(u))‖s,B

= C1diam(B)‖G(du)‖s,B

≤ C2diam(B)‖du‖s,B .

Thus, inequality (2.9) holds. This ends the proof

As application of Theorem 2.7 we prove the following Sobolev-Poincaré
embedding theorem about Green’s operator G applied to a differential form
u.

Theorem 2.8. Let u ∈ C∞(ΛlM) (l = 0, 1, . . . , n) and 1 < s < ∞.
Then there exists a constant C, independent of u, such that

‖G(u)− (G(u))B‖W 1,s(B) ≤ C‖du‖s,B

for all balls B with B ⊂ M .

Proof. Since uD is a closed form for any form u, then (G(u))B is a closed
form and ∥∥d

(
G(u)− (G(u))B

)∥∥
s,B

= ‖d(G(u))‖s,B . (2.10)

Note that ‖∇u‖s,B = ‖du‖s,B . Using (2.7) and (2.10) we obtain

‖G(u)− (G(u))B‖W 1,s(B)

= diam(B)−1‖G(u)− (G(u))B‖s,B +
∥∥∇(

G(u)− (G(u))B

)∥∥
s,B

= diam(B)−1‖G(u)− (G(u))B‖s,B +
∥∥d

(
G(u)− (G(u))B

)∥∥
s,D

= diam(B)−1‖G(u)− (G(u))B‖s,B + ‖d(G(u))‖s,B .
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From here, (2.9) and (2.2) we get

‖G(u)− (G(u))B‖W 1,s(B)

≤ diam(B)−1‖G(u)− (G(u))B‖s,B + ‖d(G(u))‖s,B

≤ diam(B)−1C1diam(B)‖d(G(u))‖s,B + ‖d(G(u))‖s,B

≤ C2‖d(G(u))‖s,B

= C2‖G(du)‖s,B

≤ C3‖du‖s,B

and the proof is complete

Remark. We can also prove Theorem 2.8 by applying [9: Corollary 4.1]
to du and then using (2.2) and (2.1).

3. Ar(M)-weighted norm inequalities

The study of different versions of the A-harmonic equation for differential
forms has developed rapidly in recent years. Many interesting results concern-
ing A-harmonic tensors have been established recently (see [1 - 4, 9, 11, 13]).
Early work about harmonic tensors can be found in [6]. In this section, we
prove Ar(M)-weighted norm inequalities for solutions to the non-homogeneous
A-harmonic equation

A(x, g + du) = h + d?v (3.1)

for differential forms, where g, h ∈ D′(M, Λl) and A : M × Λl(Rn) → Λl(Rn)
satisfies the conditions

|A(x, ξ)| ≤ a|ξ|p−1

〈A(x, ξ), ξ〉 ≥ |ξ|p

for almost every x ∈ M and all ξ ∈ Λl(Rn). Here a > 0 is a constant and
1 < p < ∞ is a fixed exponent associated with (3.1).

Definition 3.1. We call u and v a pair of conjugate A-harmonic tensors
in M if u and v satisfy the conjugate A-harmonic equation

A(x, du) = d?v (3.2)

in M . Similarly, we call u an A-harmonic tensor in M if u satisfies the A-
harmonic equation

d?A(x, du) = 0.

Note that du = d∗v is an analogue of a Cauchy-Riemann system in Rn.
A differential l-form u ∈ D′(M, Λl) is called a closed form if du = 0 in M .
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Similarly, a differential (l+1)-form v ∈ D′(M, Λl+1) is called a coclosed form if
d?v = 0. For example, du = d∗v is an analogue of a Cauchy-Riemann system
in Rn. Clearly, the A-harmonic equation is not affected by adding a closed
form to u and coclosed form to v. Therefore, any type of estimates between
u and v must be modulo such forms.

Throughout this paper, we always assume that 1
p + 1

q = 1.

Definition 3.2. A weight w is called an Ar-weight for some r > 1 on a
subset E ⊂ Rn, write w ∈ Ar(E), if w(x) > 0 a.e. and

sup
B

(
1
|B|

∫

B

w dx

)(
1
|B|

∫

B

( 1
w

) 1
r−1

dx

)r−1

< ∞

for any ball B ⊂ E.

See [7] or [8] for properties of Ar(E)-weights. We will need the following
generalized Hölder’s inequality.

Lemma 3.3. Let 0 < α, β < ∞ and 1
s = 1

α + 1
β . If f and g are measurable

functions on Rn, then ‖fg‖s,E ≤ ‖f‖α,E‖g‖β,E for any E ⊂ Rn.

We also need the following lemma [7].

Lemma 3.4. If w ∈ Ar(E), then there exist constants β > 1 and C,
independent of w, such that ‖w‖β,B ≤ C|B| 1−β

β ‖w‖1,B for all balls B ⊂ E.

The following weak reverse Hölder inequality appears in [11].

Lemma 3.5. Let u be an A-harmonic tensor in M , ρ > 1 and 0 < s, t <
∞. Then there exists a constant C, independent of u, such that ‖u‖s,B ≤
C|B| t−s

st ‖u‖t,ρB for all balls or cubes B with ρB ⊂ M .

Theorem 3.6. Let u ∈ C∞(ΛlM) (l = 1, 2, . . . , n) be an A-harmonic
tensor on a manifold M , let ρ > 1, 1 < s < ∞ and w ∈ Ar(M) for some
r > 1. Then there exists a constant C, independent of u, such that

‖G(∆u)‖s,B,wα ≤ C‖u‖s,ρB,wα . (3.3)

for any ball B ⊂ M and any real number α with 0 < α ≤ 1.

Proof. We first show that (3.3) holds for 0 < α < 1. Let t = s
1−α . Using

Lemma 3.3, we get

‖G(∆u)‖s,B,wα =
(∫

B

(|G(∆u)|w α
s

)s
dx

) 1
s

≤ ‖G(∆u)‖t,B

(∫

B

w
tα

t−s dx

) t−s
st

= ‖G(∆u)‖t,B

(∫

B

wdx

)α
s

.

(3.4)



Integral Estimates 949

Choosing M to be a ball B in Theorem 2.3, we have

‖G(∆u)‖t,B ≤ C1‖u‖t,B . (3.5)

Choose m = s
1+α(r−1) . Then m < s. Substituting (3.5) into (3.4) and using

Lemma 3.5, we have

‖G(∆u)‖s,B,wα ≤ C1‖u‖t,B

(∫

B

wdx

)α/s

≤ C2|B|(m−t)/mt‖u‖m,ρB

(∫

B

wdx

)α/s

.

(3.6)

Using Lemma 3.3 again with 1
m = 1

s + s−m
sm , we have

‖u‖m,ρB =
(∫

ρB

|u|mdx

) 1
m

=
(∫

ρB

(|u|w α
s w−

α
s

)m
dx

) 1
m

≤ ‖u‖s,ρB,wα

(∫

ρB

( 1
w

) 1
r−1

dx

)α(r−1)
s

for all balls B with ρB ⊂ M . Substituting this into (3.6) we obtain

‖G(∆u)‖s,B,wα ≤ C2|B|
m−t
mt ‖u‖s,ρB,wα

×
(∫

B

wdx

)α
s

(∫

ρB

( 1
w

) 1
r−1

dx

)α(r−1)
s

.
(3.7)

Note that w ∈ Ar(M). Then

∥∥w
∥∥α

s

1,B

∥∥∥ 1
w

∥∥∥
α
s

1
r−1 ,ρB

≤
((∫

ρB

w dx

)(∫

ρB

( 1
w

) 1
r−1

dx

)r−1
)α

s

=

(
|ρB|r

(
1
|ρB|

∫

ρB

w dx

)(
1
|ρB|

∫

ρB

( 1
w

) 1
r−1

dx

)r−1
)α

s

≤ C3

∣∣B∣∣αr
s .
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Combining this with (3.7) we find that ‖G(∆u)‖s,B,wα ≤ C4‖u‖s,ρB,wα for all
balls B with ρB ⊂ M and we have proved that (3.3) is true if 0 < α < 1.

Next, we prove that (3.3) is true for α = 1, that is, we need to show that

‖G(∆u)‖s,B,w ≤ C‖u‖s,ρB,w. (3.8)

By Lemma 3.4, there exist constants β > 1 and C5 > 0 such that

‖w‖β,B ≤ C5|B|
1−β

β ‖w‖1,B (3.9)

for any cube or any ball B ⊂ Rn. Choose t = sβ
β−1 . Then 1 < s < t and

β = t
t−s . Since 1

s = 1
t + t−s

st , by Lemma 3.3, Theorem 2.3 and (3.9) we have

(∫

B

|G(∆u)|sw dx

) 1
s

=
(∫

B

(|G(∆u)|w 1
s

)s
dx

) 1
s

≤
(∫

B

|G(∆u)|tdx

) 1
t
(∫

B

(w
1
s )

st
t−s dx

) t−s
st

≤ C6‖G(∆u)‖t,B‖w‖
1
s

β,B

≤ C6‖u‖t,B

∥∥w
∥∥ 1

s

β,B

≤ C7

∣∣B
∣∣ 1−β

βs
∥∥w

∥∥ 1
s

1,B
‖u‖t,B

≤ C7

∣∣B
∣∣− 1

t
∥∥w

∥∥ 1
s

1,B
‖u‖t,B .

(3.10)

Let m = s
r . From Lemma 3.5 we find that

‖u‖t,B ≤ C8

∣∣B
∣∣m−t

mt ‖u‖m,ρB . (3.11)

Using Lemma 3.3 yields

‖u‖m,ρB =
(∫

ρB

(|u|w 1
s w−

1
s

)m
dx

) 1
m

≤
(∫

ρB

|u|sw dx

) 1
s

(∫

ρB

( 1
w

) 1
r−1

dx

) r−1
s

(3.12)
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for all balls B with ρB ⊂ M . Note that w ∈ Ar(M). Then

∥∥w
∥∥ 1

s

1,B

∥∥∥ 1
w

∥∥∥
1
s

1
r−1 ,ρB

≤
((∫

ρB

w dx

)(∫

ρB

( 1
w

) 1
r−1

dx

)r−1
) 1

s

=

(
|ρB|r

(
1
|ρB|

∫

ρB

w dx

)(
1
|ρB|

∫

ρB

( 1
w

) 1
r−1

dx

)r−1
) 1

s

≤ C9|B| r
s .

(3.13)

Combining (3.10) - (3.13) we get

‖G(∆u)‖s,B,w ≤ C10

∣∣B
∣∣− 1

t
∥∥w

∥∥ 1
s

1,B

∣∣B
∣∣m−t

mt ‖u‖m,ρB

≤ C10

∣∣B∣∣− 1
m

∥∥w
∥∥ 1

s

1,B

∥∥∥ 1
w

∥∥∥
1
s

1
r−1 ,ρB

‖u‖s,ρB,w

≤ C11‖u‖s,ρB,w

for all balls B with ρB ⊂ M . Hence, (3.8) follows and the proof is complete

Using the same method developed in the proof of Theorem 3.6 we can
extend Theorem 2.2 into the following Ar(M)-weighted version.

Theorem 3.7. Let u ∈ C∞(ΛlM) (l = 1, 2, . . . , n) be an A-harmonic
tensor on a manifold M , let ρ > 1, 1 < s < ∞ and w ∈ Ar(M) for some
r > 1. Then there exists a constant C, independent of u, such that

‖∆(G(u))‖s,B,wα ≤ C‖u‖s,ρB,wα

for any ball B ⊂ M and any real number α with 0 < α ≤ 1.

Combining Theorems 3.6 and 3.7 we get the following Ar(M)-weighted
inequality.

Corollary 3.8. Let u ∈ C∞(ΛlM) (l = 1, 2, . . . , n) be an A-harmonic
tensor on a manifold M , let ρ > 1, 1 < s < ∞ and w ∈ Ar(M) for some
r > 1. Then there exists a constant C, independent of u, such that

‖∆(G(u)) + G(∆u)‖s,B,wα ≤ C‖u‖s,ρB,wα

for any ball B ⊂ M and any real number α with 0 < α ≤ 1.

Now, we prove the following Ar(M)-weighted Sobolev-Poincaré embed-
ding theorem for Green’s operator G.
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Theorem 3.9. Let G(u) ∈ C∞(ΛlM) (l = 1, 2, . . . , n) be an A-harmonic
tensor on a manifold M , let ρ > 1, 1 < s < ∞ and w ∈ Ar(M) for some
r > 1. Then there exists a constant C, independent of u, such that

‖G(u)− (G(u))B‖W 1,s(B),w ≤ C‖du‖s,ρB,w (3.14)

for all balls B with ρB ⊂ M .

Proof. Applying the Poincaré inequality established in [4] to G(u) we get

‖G(u)− (G(u))B‖s,B,w ≤ C1diam(B)‖d(G(u))‖s,ρB,w. (3.15)

Note that (G(u))B is a closed form and

∥∥∇(
G(u)− (G(u))B

)∥∥
s,B,w

=
∥∥d

(
G(u)− (G(u))B

)∥∥
s,B,w

= ‖d(G(u))‖s,B,w.
(3.16)

Hence, using (2.8), (3.15) - (3.16), (2.2) and (2.1) we find that

‖G(u)− (G(u))B‖W 1,s(B),w

= diam(B)−1‖G(u)− (G(u))B‖s,B,w + ‖∇(G(u)− (G(u))B)‖s,B,w

≤ diam(B)−1C1diam(B)‖d(G(u))‖s,B,w + ‖d(G(u))‖s,B,w

≤ C1‖d(G(u))‖s,B,w + ‖d(G(u))‖s,B,w

≤ C2‖d(G(u))‖s,B,w

≤ C2‖G(du)‖s,B,w

≤ C3‖du‖s,B,w.

Therefore, inequality (3.14) holds

Using a method similar to that in the proof of Theorem 3.6 we can extend
inequalities (2.3) and (2.5) to the following Ar(M)-weighted version.

Corollary 3.10. Let u ∈ C∞(ΛlM) (l = 1, 2, . . . , n) be an A-harmonic
tensor on a manifold M , let ρ > 1, 1 < s < ∞ and w ∈ Ar(M) for some
r > 1. Then there exists a constant C, independent of u, such that

‖(G(u))B‖s,B,wα ≤ C1‖u‖s,ρB,wα

‖G(u)− (G(u))B‖s,B,wα ≤ C2‖u‖s,ρB,wα

for all balls B with ρB ⊂ M and any real number α with 0 < α ≤ 1.
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4. Applications to the A-harmonic equation

In this section, we discuss applications to the non-homogeneous as well as
homogeneous A-harmonic equations.

In order to prove global Ar(M)-weighted results, we need the following
lemma about Whitney covers appearing in [11] (see [14] for more properties
of Whitney cubes).

Lemma 4.1. Each Ω has a modified Whitney cover of cubes V = {Qi}
such that ⋃

i

Qi = Ω

∑

Q∈V
χ√ 5

4 Q
(x) ≤ NχΩ(x)

for all x ∈ Rn and some N > 1, where χE is the characteristic function for
a set E. Moreover, if Qi ∩Qj 6= φ for i 6= j, then there exists a cube R (this
cube does not need to be a member of V) in Qi ∩Qj such that Qi ∪Qj ⊂ NR.
Also, if Ω is δ-John, then there is a distinguished cube Q0 ∈ V which can be
connected with every cube Q ∈ V by a chain of cubes Q0, Q1, . . . , Qk = Q from
V and such that Q ⊂ ρQi (i = 0, 1, . . . , k) for some ρ = ρ(n, δ).

Now, we prove the following global Ar(M)-weighted norm inequalities for
compositions of the Laplace-Beltrami operator ∆ and Green’s operator G on
the manifold M .

Theorem 4.2. Let M be a compact, orientable, C∞-smooth Riemannian
manifold without boundary, let u ∈ C∞(ΛlM) (l = 1, 2, · · · , n) be an A-
harmonic tensor on M , let ρ > 1, 1 < s < ∞ and w ∈ Ar(M) for some r > 1.
Then there exists a constant C, independent of u, such that

‖G(∆(u))‖s,M,wα ≤ C‖u‖s,M,wα

‖∆(G(u))‖s,M,wα ≤ C‖u‖s,M,wα

‖G(∆(u)) + ∆(G(u))‖s,M,wα ≤ C‖u‖s,M,wα

(4.1)

for any real number α with 0 < α ≤ 1.

Proof. Since M is compact, there is a finite coordinate chart cover

{U1, . . . , Um}

of M such that ∪m
k=1Uk = M . Note that we can give M a topology in unique

way such that each Uk is open (see [10: Chapter II]). Hence we may assume
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that all Uk are open. Applying Theorem 3.6 and Lemma 4.1 to Uk (note that
∪B∈VB = Uk now), we obtain

‖G(∆(u))‖s,Uk,wα ≤
∑

B∈V
‖G(∆(u))‖s,B,wα

≤
∑

B∈V
C1‖u‖s,ρB,wα

≤
∑

B∈V
C1‖u‖s,Uk,wα

≤ Ck‖u‖s,M,wα .

Hence

‖G(∆(u))‖s,M,wα =
m∑

k=1

‖G(∆(u))‖s,Uk,wα

≤
m∑

k=1

Ck‖u‖s,M,wα

≤ ‖u‖s,M,wα

m∑

k=1

Ck

≤ C‖u‖s,M,wα .

Thus, (4.1)1 is true. Similarly, we can prove (4.1)2 and (4.1)3 using Lemma
4.1 and Theorem 3.7 and Corollary 3.8, respectively. The proof has been
completed

From [5], we have the following norm comparison statement on a manifold
M .

Lemma 4.3. Let M be a compact, orientable, C∞-smooth Riemannian
manifold without boundary, and let u ∈ Λl−1M (l = 1, . . . , n) and v ∈
Λl+1M (l = 0, 1, · · · , n−1) be a pair of solutions to the conjugate A-harmonic
equation (3.2). Then du ∈ Lp(M, Λl) if and only if d?v ∈ Lq(M, Λl). More-
over, there exist constants C1 and C2, independent of u and v, such that

C1‖du‖p
p,M ≤ ‖d?v‖q

q,M ≤ C2‖du‖p
p,M . (4.2)

Theorem 4.4. Let u ∈ C∞(Λl−1M) (l = 1, . . . , n) and v ∈ C∞(Λl+1M)
(l = 0, 1, . . . , n−1) be a pair of solutions to the conjugate A-harmonic equation
(3.2) on a manifold M . Then there exists a constant C, independent of u and
v, such that

‖G(du)− (G(du))D‖p
p,D ≤ C‖d?v‖q

q,D

for any convex and bounded domain D with D ⊂ M .
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Proof. Applying (2.6) to du and using Lemma 3.3, we have

‖G(du))− (G(du))D‖p
p,D ≤ C1‖du‖p

p,D ≤ C2‖d?v‖q
q,D

and the statement is proved

We prove the following global Sobolev-Poincaré type embedding theorem
for Green’s operator G.

Theorem 4.5. Let u ∈ C∞(Λl−1M) (l = 1, · · · , n) and v ∈ C∞(Λl+1M)
(l = 0, 1, . . . , n−1) be a pair of solutions to the conjugate A-harmonic equation
(3.2) on a manifold M . Then there exists a constant C, independent of u and
v, such that

‖G(u)− (G(u))D‖p
W 1,p(D) ≤ C‖d?v‖q

q,D

for any convex and bounded domain D with D ⊂ M .

Proof. From (1.3), (1.5), (2.2) and (2.1) we obtain

‖G(u)− (G(u))D‖W 1,p(D) = ‖Td(G(u))‖W 1,p(D)

≤ C1|D| ‖d(G(u))‖p,D

≤ C1|D| ‖G(du)‖p,D

≤ C2|D| ‖du‖p,D.

Using this and (4.2) yields

‖G(u)− (G(u))D‖p
W 1,p(D) ≤ C3|D|p‖du‖p

p,D

≤ C4|D|p‖d?v‖q
q,D

≤ C5‖d?v‖q
q,D

since D is bounded and the proof has been completed

Theorem 4.6. Let u ∈ C∞(Λl−1M) (l = 1, . . . , n) and v ∈ C∞(Λl+1M)
(l = 0, 1, . . . , n−1) be a pair of solutions to the conjugate A-harmonic equation
(3.2) on a manifold M . Then there exists a constant C, independent of u and
v, such that

‖G(d?v)− (G(d?v))D‖q
q,D ≤ C‖du‖p

p,D

for any convex and bounded domain D with D ⊂ M .

Proof. Using (1.3), (1.5), Lemma 2.1 and (4.2) we have

‖G(d?v)− (G(d?v))D‖q
W 1,q(D) = ‖Td(G(d?v))‖q

W 1,q(D)

≤ C1|D|q‖d(G(d?v))‖q
q,D

≤ C2|D|q‖d?v‖q
q,D

≤ C3‖du‖p,D

since D is bounded and the proof has been completed
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Theorem 4.7. Let M be a compact, orientable, C∞-smooth Rieman-
nian manifold without boundary, let u ∈ C∞(ΛlM) (l = 1, . . . , n) be an
A-harmonic tensor on M and let ρ > 1, 1 < s < ∞ and w ∈ Ar(M) for some
r > 1. Then there exists a constant C, independent of u, such that

‖dd?G(u)‖s,M,wα + ‖d?dG(u)‖s,M,wα

+‖dG(u)‖s,M,wα + ‖d?G(u)‖s,M,wα + ‖G(u)‖s,M,wα ≤ C‖u‖s,M,wα .
(4.3)

for any real number α with 0 < α ≤ 1.

Proof. From inequality (2.1) we have the inequalities

‖dd?G(u)‖s,B ≤ C1‖u‖s,B

‖d?dG(u)‖s,B ≤ C2‖u‖s,B

‖dG(u)‖s,B ≤ C3‖u‖s,B

‖d?G(u)‖s,B ≤ C4‖u‖s,B

‖G(u)‖s,B ≤ C5‖u‖s,B

for any ball B with B ⊂ M . By the same method as we used in the proof of
Theorem 3.6 we can extend the above inequalities to weighted versions. Then,
similar to the proof of Theorem 4.2, we obtain the global versions

‖dd?G(u)‖s,M,wα ≤ C6‖u‖s,M,wα

‖d?dG(u)‖s,M,wα ≤ C7‖u‖s,M,wα

‖dG(u)‖s,M,wα ≤ C8‖u‖s,M,wα

‖d?G(u)‖s,M,wα ≤ C9‖u‖s,M,wα

‖G(u)‖s,M,wα ≤ C10‖u‖s,M,wα .

Adding these inequalities we obtain (4.3) which ends the proof
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