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Abstract. We obtain A, (M)-weighted boundedness for compositions of Green’s
operator and the Laplace-Beltrami operator applied to differential forms on mani-
folds. As applications, we also prove A, (M)-weighted Sobolev-Poincaré embedding
theorems for Green’s operator and norm comparison theorems for solutions of the
A-harmonic equation on manifolds. These results can be used in developing the LP
theory of differential forms and the Hodge decomposition.
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1. Introduction

Our purpose is to study the LP theory of the Laplace-Beltrami operator
A = dd* 4+ d*d and Green’s operator GG acting upon differential forms on
manifolds. Both operators play an important role in many fields, including
partial differential equations, harmonic analysis and quasiconformal mappings
(see [9, 13, 15]). We establish some norm inequalities both for A and G and
their compositions that are applied to differential forms on a compact, ori-
entable, C*°-smooth Riemannian manifold M without boundary. We also
obtain A, (M )-weighted estimates for these compositions and prove Sobolev-
Poincaré embedding theorems for Green’s operator. As applications of our
local and global results, we derive some norm inequalities for solutions of the
non-homogeneous as well as the homogeneous A-harmonic equations. These
results will provide effective tools for studying of behavior of solutions of A-
harmonic equations and related differential systems on manifolds.
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Let eq,...,e, be the standard unit basis of R” and assume that A! =
A'(R™) is the linear space of I-vectors, generated by the exterior products
er =€, N\...NAe;,, corresponding to all ordered [-tuples I = (i1,...,4) (1<

ip < ...< i <mn;l=0,1,...,n). The Grassman algebra A = ®A! is a
graded algebra with respect to the exterior products. For a = Y ale; € A
and 8 =Y Bler € A, the inner product in A is given by (o, 8) = > of 8! with
summation over all [-tuples I = (iy,...,7;) and all integers [ =0,1,...,n. We
define the Hodge star operator x : A — A by the rule

xl=e; A---ANey

aAxf3 =B Axa = {«a, B)(x1) (o, B € A).
The norm of a € A is given by the formula
|af? = (o, @) = *(a A*a) € A =R.

The Hodge star is an isometric isomorphism on A with x : A' — A"~! and
*ok (—1)H=D AL 5 AL

Throughout this paper, we always assume that M is a Riemannian, com-
pact, oriented and C°°-smooth manifold without boundary on R™ and 2 is
an open subset of R”. We write R = R!. A differential I-form w on M is a
de Rham current (see [12]) on M with values in A'(R"). Let A'!M be the [-th
exterior power of the cotangent bundle and C'°°(A'M) be the space of smooth
I-forms on M. We use D'(M, A') to denote the space of all differential I-forms
and LP(A'M) to denote the I-forms

w(x) = Zwl(x) dry = Zwil”'iz (x)dxi, A--- Ndx,
I

on M satisfying [,, |wr[P < oo for all ordered i-tuples I. Thus LP(A'M) is a
Banach space with norm

felloar = ( [ |w<x>rpdx)% ([ (2 \w1<x>\2)§dx)%.

I

We denote the exterior derivative by
d: D'(M,A") = D'(M,A"™™)  (1=0,1,...,n).
The Hodge codifferential operator

d* . D'(M, A" — D'(M, A
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is given by d* = (—1)"*! x dx on D'(M,A"*Y) (I = 0,1,...,n), and the
Laplace-Beltrami operator A is defined by

A = dd* + d*d.

Also, we always use G to denote Green’s operator throughout this paper.
Further, we use B to denote a ball and ¢B to denote the ball with the same
center as B and with diameter diam(ocB) = o diam(B). We do not distinguish
balls from cubes in this paper.

The n-dimensional Lebesgue measure of a set £ C R™ is denoted by |E].
We call w a weight if w € Li,_(R™) and w > 0 a.e. For 0 < p < oo we denote
the weighted LP-norm of a measurable function f over E by

e = ([ |f(x)|pw(x)adm>%

where « is a real number.

T. Iwaniec and A. Lutoborski proved the following result in [9]:

Let D C R™ be a bounded, conver domain. Then to each y € D there
corresponds a linear operator K, : C°>°(D,A!) — C>(D,A'=1) defined by

1
(Kyw)(mv 517 ce 7€l) - / tl_lw(tm +y - ty7 T — y7§17 ) 7€l—l)dt
0
and the decomposition w = d(Kyw) + K, (dw).
A homotopy operator
T: C>®(D,A") — C>(D,A'"™1)

is defined by averaging K, over all points y in D:

Tw= [ plo)Kywdy (L.1)

where ¢ € C§°(D) is normalized by [, ¢(y)dy = 1, and the norm is estimated
by
ITwlls.p < Cdiam(D) s, p- (1.2

We define the I-form wp € D'(D, A!) by

o ]D\*lwa(y)dy for [ =0
D= d(Tw) fori=1,...,n
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for all w € LP(D,A!), 1 < p < co. Then
wp =w —T(dw) (1.3)

and
[d(Tw)||s,p < [Julls,p + C|D|diam(D)||dul|s,p- (1.4)

By substituting z = tx + y — ty, (1.1) reduces to
Tw(x,§) = / w(z,((z,2 — 2),§)dz
D

where the vector function ¢ : D x R™ — R"™ is given by

C(z,h) = h/ s"7H1 4+ )" Lo(z — sh) ds.
0
Integral (1.1) defines a bounded operator
T: L¥(D,AY) - Whs (DAY (1=1,...,n)
with norm estimated by
ITullw.e(py < ClD| |ulls,p- (1.5)

2. LP-estimates and Sobolev-Poincaré
embedding theorem

We say that u € L} (A'M) has a generalized gradient if, for each coordinate
system, the pullbacks of the coordinate function of v have generalized gradient
in the familiar sense (see [14]). We write

W(A'M) = {u € Li,.(A'M) : u has generalized gradient}.
As usual, harmonic [-fields are defined by
H(A'M) = {u EW(A'M) : du=d*u=0, uc LP for some 1 < p < oo},

the orthogonal complement H* of H in L' by
HL:{UGle (u,h) =0 for all h € H}
and Greens’ operator
G: C®(A'M) - H*nC=(A'M)
by assigning G(u) the unique element of HL N C°°(A!M) satisfying Poisson’s
equation
AG(w) =w — H(w)
where H is either the harmonic projection or sometimes the harmonic part of
w.

From [13] we have the following lemma about L®-estimates for Green’s
operator G.
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Lemma 2.1. Let u € C®°(A'M) (I=0,1,...,n) and 1 < s < co. Then
there exists a constants C, independent of u, such that
ldd* G (u)lls,nr + [|d"dG (u) |5,
+dG(w)[[s,pr + [|d"G(w)ls,pr + |G lls,0r < Clluf|s, -

Theorem 2.2. Let u € C*°(A'M) (I = 0,1,...,n) and 1 < s < 00,
Then there exists a constant C, independent of u, such that

(2.1)

IA(G(W)ls,0r < Cllulls,ar-
Proof. From the definition of the Laplace-Beltrami operator A and Min-
kowski’s inequality, using (2.1) we have
JA(G ()5, = [[(dd” + d*d)G(u)|s,n1
< ||dd*G(u)ls,ar + [|[d*dG(w)||s,m
< Cillulls,ar + Collulls,ar
< Cllulls,m

and the proof is complete I

Theorem 2.3. Let u € C°(A'M) (I =0,1,...,n) and 1 < s < oc.
Then there exists a constant C, independent of u, such that

IG(AW)[s,00 < Cllulls,ar-

Proof. We know that Green’s operator G commutes with d and d* (see
[16]), that is, for any differential form u € C>°(A'M) we have

dG(u) = Gd(u)

(2.2)
d*G(u) = Gd*(u).

Using this, (2.1) and Minkowski’s inequality we obtain

1G(Av)|[s,nr = [|G(dd"™ + d*d)ul[s,m
= [|G(dd"(uv)) + G(d"d(w))|[s,m
< |G(dd*(w))[s,m + [|G(d*d(w))|s,ar
= [|dd* (G (u))||s,pr + |d*d(G ()]s, 1
< Cillu
= Csl|u

s,m + Caolluls ar

s,M -

and the proof is complete I
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Using Minkowski’s inequality and combining Theorems 2.2 and 2.3, we
obtain immediately the following

Corollary 2.4. Let u € C*(AN'M) (I = 0,1,...,n) and 1 < s < 0.
Then there exists a constant C, independent of u, such that

(GA + AG)ulls,nr < Cllulls, -
Theorem 2.5. Let u € C°(A'M) (I = 0,1,...,n) and 1 < s < oc.

Then there exists a constant C, independent of u, such that

(G(w))plls,p < Cllulls,p (2.3)

for any convexr and bounded set D with D C M.

Proof. If 1 <[ < n, applying (1.4) and (2.1) we have

I(G(w)plls,p = [|d(T(G(w)))]ls.0
< [|G(w)]ls,p + C1|D|diam(D)||d(G(w))]|s,0
< Cof| G(u)ls,0
< Csllulls,p-

If I = 0, using (2.1) and the Holder inequality with 1 = % + % we find that

l@oln = ( [ 1G@)oL dx)é |
( /G ) dy da:)s

((rm/'G o) f 1)
DI [ GGy

o ([ewora) ()

= [1G(w)lls,p

< Oy

and the proof is complete I
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Corollary 2.6. Let u € C*°(A'M) (I =0,1,...,n) and 1 < s < 0.
Then for any conver and bounded set D with D C M there exists a constant
C, independent of u, such that

|G (u) = (G(w)plls,0 < Cl|G(u) = clls,p (2.4)
for any closed form c and

|G(u) = (G(u)plls,0 < Cllulls,p- (2.5)

Proof. We know that cp = c if ¢ is closed. Hence, by Theorem 2.5, we
have

|G (u) — (G(u))p

.0 < [[(Gw) —¢) = ((G(w)p —ep)||,
< |G(u) = clls,p + [(G(u) = ¢)p|ls,p
< |G(w) = clls,p + C1[|G(u) = ¢l|s,p
< C2||G(u) = lfs,p-

Hence (2.4) holds. From (2.3) and (2.1) we find that

|G (v) = (G(u)plls,p < |G()|ls,p + [(G(w)Dlls,0
S Cl”uH&D + CQHU s,D (26)
< Cs|lulls,p

which ends the proof il

We use WP (M, A') to denote the Sobolev space of I-forms which equals
LP(A'M) N LY (A'M), with norm

lwllwo(ary = diam(M) ™ wllp,ar + [[Vwllp,ar- (2.7)
Here w is the vector-valued differential form Vw = (g—a‘j’l, cee 8‘97‘*’) that consists

of differential forms % € D'(M, A", where partial differentiation is applied
to the coefficients of w. The notations W27 (M, R) and W,-?(M, A') are self-

loc loc

explanatory. For 0 < p < oo and a weight w, the weighted norm of w €
WhP(M, A') over M is denoted by

lollwr e ar),we = diam (M)~ wllpaswe + [[Vellp,a e (2.8)

where « is a real number.

Next, we prove an analogue of the Poincaré inequality for Green’s operator

G.
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Theorem 2.7. Let u € C*(A'M) (I =0,1,...,n) and 1 < s < <.
Then there exists a constant C, independent of u, such that

|G (u) = (G(w) s, < Cdiam(B)||dul/s,5 (2.9)

for all balls B with B C M.
Proof. Applying (1.3) to G(u) we find that

(G(u)p = G(u) = T(d(G(u))).
Combining this with (1.2), (2.2) and (2.1) yields

|G (u) — (G(u)Blls, = |Td(G(w))|s,B
< Cidiam(B)|[|d(G(u))]|s,5
= C1diam(B)||G(du)||s,B
< Cydiam(B)||dul|s, 5.

Thus, inequality (2.9) holds. This ends the proof B

As application of Theorem 2.7 we prove the following Sobolev-Poincaré
embedding theorem about Green’s operator G applied to a differential form
u.

Theorem 2.8. Let u € C*(A'M) (I =0,1,...,n) and 1 < s < <.
Then there exists a constant C, independent of u, such that

|G (u) = (G(w))llwre(B) < Clldulls,

for all balls B with B C M.

Proof. Since up is a closed form for any form wu, then (G(u))p is a closed
form and

la(G ) — (G@)s) ||, = (G5 (2.10)

Note that ||Vul|s,p = ||dul|s,5. Using (2.7) and (2.10) we obtain

1G(u) = (G(w)) Bllw.s(B)

diam(B) |G (u) — (G(u))lls,5 + || V(G(u) — (G(u))B) HS,B
diam(B) |G (u) — (G(w)slls + [|d(G(u) = (Gw)s)|,
dia )

(
m(B)~H|G(u) = (G(w)sls,5 + 1d(GW))lls,5-
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From here, (2.9) and (2.2) we get

1G(w) — (G(w)Bllwr=(B)
< diam(B) 7| G(u) = (G(u))Blls,5 + [|4(G(u))|s,B
< diam(B) ™' Crdiam(B) [[d(G (w)) |55 + [|d(G(u))
< Colld(G(u))l|s,5
= Cof|G(du)|s,B
< Csl|dul|s,B

s,B

and the proof is complete B

Remark. We can also prove Theorem 2.8 by applying [9: Corollary 4.1]
to du and then using (2.2) and (2.1).

3. A,.(M)-weighted norm inequalities

The study of different versions of the A-harmonic equation for differential
forms has developed rapidly in recent years. Many interesting results concern-
ing A-harmonic tensors have been established recently (see [1 - 4, 9, 11, 13]).
Early work about harmonic tensors can be found in [6]. In this section, we
prove A,.(M)-weighted norm inequalities for solutions to the non-homogeneous

A-harmonic equation
Az, g+ du) = h+d*v (3.1)

for differential forms, where g, h € D'(M,A') and A : M x AY(R™) — AY(R™)
satisfies the conditions

Az, €)] < aleP™
(A(z,8),&) > [¢]P

for almost every x € M and all £ € AY(R™). Here a > 0 is a constant and
1 < p < oo is a fixed exponent associated with (3.1).

Definition 3.1. We call v and v a pair of conjugate A-harmonic tensors
in M if v and v satisfy the conjugate A-harmonic equation

A(z,du) = d*v (3.2)

in M. Similarly, we call v an A-harmonic tensor in M if u satisfies the A-

harmonic equation
d* Az, du) = 0.

Note that du = d*v is an analogue of a Cauchy-Riemann system in R".
A differential I-form v € D’(M, A!) is called a closed form if du = 0 in M.
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Similarly, a differential (I+1)-form v € D'(M, A1) is called a coclosed form if
d*v = 0. For example, du = d*v is an analogue of a Cauchy-Riemann system
in R". Clearly, the A-harmonic equation is not affected by adding a closed
form to u and coclosed form to v. Therefore, any type of estimates between
u and v must be modulo such forms.

Throughout this paper, we always assume that % + % =1.
Definition 3.2. A weight w is called an A,-weight for some r > 1 on a

subset F C R", write w € A,.(F), if w(z) > 0 a.e. and
1

(i ) G [ (50)
sup | — [ wdx ) | — — x 00
B \|B| /B 1Bl Jp \w

for any ball B C F.

See [7] or [8] for properties of A, (E)-weights. We will need the following
generalized Holder’s inequality.

Lemma 3.3. Let0 < o, < 00 and% = é%—% If f and g are measurable
.8 < | fllaellgllg 5 for any E C R™.

We also need the following lemma [7].

Lemma 3.4. If w € A.(E), then there exist constants § > 1 and C,
independent of w, such that |w| s B < C’]B|%HwHLB for all balls B C E.

functions on R™, then ||fg

The following weak reverse Holder inequality appears in [11].

Lemma 3.5. Let u be an A-harmonic tensor in M, p > 1 and 0 < s,t <

o0o. Then there exists a constant C, independent of u, such that ||ullsz <
t—s
st

C|B|=t ||ullt,p5 for all balls or cubes B with pB C M.

Theorem 3.6. Let u € C°(A'M) (I = 1,2,...,n) be an A-harmonic
tensor on a manifold M, let p > 1, 1 < s < 0o and w € A.(M) for some
r > 1. Then there exists a constant C, independent of u, such that

1G(Au)]|s,B.we < Cllulls,ppwe- (3.3)
for any ball B C M and any real number o with 0 < o < 1.

Proof. We first show that (3.3) holds for 0 < a < 1. Let t = *~. Using
Lemma 3.3, we get

|G(AW)5e = ( /B (|G(Au)|w%)sdx)

t—s

< IG(Aw) .5 ( / wtt—_asclx) - (3.4)

— G(Au) 1.5 ( / wdx)

o |Q
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Choosing M to be a ball B in Theorem 2.3, we have
IG(Au)[.5 < Cullull:, 5. (3.5)

Choose m = 7¢—y- Then m < s. Substituting (3.5) into (3.4) and using

Lemma 3.5, we have

als
1G(AW|ls.5.we < Cillulle.s ( / wdm)
B

a/s
scumm%wmmmwB(/wM) .
B

s—m
sm

(3.6)

we have

Using Lemma 3.3 again with % = % +

1

il = ( [ Julao)
pB
= (/ (|u|w%w%)mda¢) "
pB
1 1 a(r—1)
s,pB,we (/ (—) Tldm)
pB W

for all balls B with pB C M. Substituting this into (3.6) we obtain

< flu

m—t
1G(Aw)|ls,Bwe < Co| Bl [[ulls o8 we

() (L)

Note that w € A, (M). Then

e

a H 1%
8 —
LB w T_ilva

(o) (7))
- (’pB!r (ﬁ /pde:E) (|p_1B’ /pB <$> ri1d$>rl> o

< C5|B| ™.
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Combining this with (3.7) we find that ||G(Au)||s,B,we < Cal|ulls,pB,we for all
balls B with pB C M and we have proved that (3.3) is true if 0 < o < 1.

Next, we prove that (3.3) is true for a = 1, that is, we need to show that
|G(Aw)[s,8,w < Cllulls,pB,w- (3.8)
By Lemma 3.4, there exist constants § > 1 and C5 > 0 such that
1-5
lwllg,s < C5|BI"7 |lwll1,s (3.9)

for any cube or any ball B C R™. Choose t = ;—_ﬁl Then 1 < s < t and

B = . Since I = 1 + =2 by Lemma 3.3, Theorem 2.3 and (3.9) we have

t—s” st ?

(/B |G(Au)|swdx)s
- ([ te@utya)’
< ( /B \G(Au)\tda:)% ( /B <w%>t“sdx>%s o

< Gs||G(Au)

t,BHngaB
1
< Collulles)|wl5

1-p
<cilB| ™

1
ol el

< G| B[ |lw

1
[ pllu

t,B-

Let m = f From Lemma 3.5 we find that

lulle,z < Cs|B| ™ ||ullm,pp- (3.11)

Using Lemma 3.3 yields

el = (/ (\uywzw—z)mdx>
pB
< (/ |u|swdx>
pB

N
b\
oy
VR
g
N—
3
L»—\
IS8
&
N———
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for all balls B with pB C M. Note that w € A,(M). Then

1
s

1 H 1
s —
LB||w

| 1
—1.rB

< ((/pdeﬂf) - <%> Tlldx>r_1) | (3.13)

Combining (3.10) - (3.13) we get

IGAWs. 5w < Crol B] fwlls 5Bl ™ lullmpn

L
LB =B

< Cio| B[

‘w w s,pB,w

S Cll||u||s,pB,w

for all balls B with pB C M. Hence, (3.8) follows and the proof is complete i

Using the same method developed in the proof of Theorem 3.6 we can
extend Theorem 2.2 into the following A, (M )-weighted version.

Theorem 3.7. Let u € C®°(A'M) (I = 1,2,...,n) be an A-harmonic
tensor on a manifold M, let p > 1, 1 < s < oo and w € A.(M) for some
r > 1. Then there exists a constant C, independent of u, such that

IAG @) ls,Bwe < Cllulls,pp,we

for any ball B C M and any real number o with 0 < o < 1.

Combining Theorems 3.6 and 3.7 we get the following A, (M )-weighted
inequality.

Corollary 3.8. Let u € C®°(A'M) (I =1,2,...,n) be an A-harmonic
tensor on a manifold M, let p > 1,1 < s < 0o and w € A.(M) for some
r > 1. Then there exists a constant C, independent of u, such that

[A(G(w) + G(Au) s, B,we < Cllulls,pBwe

for any ball B C M and any real number o with 0 < o < 1.

Now, we prove the following A, (M )-weighted Sobolev-Poincaré embed-
ding theorem for Green’s operator G.
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Theorem 3.9. Let G(u) € C°(A'M) (I =1,2,...,n) be an A-harmonic

tensor on a manifold M, let p > 1, 1 < s < 0o and w € A.(M) for some
r > 1. Then there exists a constant C, independent of u, such that

|G (u) = (G(w)llwr=(B)w < Clldulls,p5,w (3.14)

for all balls B with pB C M.
Proof. Applying the Poincaré inequality established in [4] to G(u) we get

1G(u) = (G(u))B

s,Bw < Crdiam(B)||d(G(w))]]s,pB,w- (3.15)
Note that (G(u))p is a closed form and

IV (@) = (Gu)p)]], . = [4(G(w) = (G))B)|, ..,

3.16
= |d(G(w)s,5,w- (3.16)

Hence, using (2.8), (3.15) - (3.16), (2.2) and (2.1) we find that

1G(u) = (G(w)Bllwrs(B)w
= diam(B) || G(u) — (G(w))8lls,B,w + IV(G(u) = (G(w))B)|s,B.w
< diam(B) ™' Crdiam(B) [d(G(w)) |5, 5,0 + [1d(G ()5, B.w
< Cil|ld(Gu)ls,B,w + [|d(G ()]s, 5w
< Co|d(G(w))]ls,B,w
< Co|G(du)|ls,,w
< Csl|dulls,B,w-

Therefore, inequality (3.14) holds

Using a method similar to that in the proof of Theorem 3.6 we can extend
inequalities (2.3) and (2.5) to the following A, (M )-weighted version.

Corollary 3.10. Let u € C*(A'M) (1 =1,2,...,n) be an A-harmonic
tensor on a manifold M, let p > 1, 1 < s < oo and w € A.(M) for some
r > 1. Then there exists a constant C, independent of u, such that

(G (w)Blls,B.we < Crllulls,pBwe
|G (u) = (G(w))Blls,Bw < Callulls,pBwe

for all balls B with pB C M and any real number o with 0 < o < 1.
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4. Applications to the A-harmonic equation

In this section, we discuss applications to the non-homogeneous as well as
homogeneous A-harmonic equations.

In order to prove global A, (M)-weighted results, we need the following
lemma about Whitney covers appearing in [11] (see [14] for more properties
of Whitney cubes).

Lemma 4.1. Each Q has a modified Whitney cover of cubes V = {Q;}

such that
Jei=2

> X 70®) < Nxal)

Qev

for all x € R™ and some N > 1, where xg s the characteristic function for
a set E. Moreover, if Q; NQ; # ¢ for i # j, then there exists a cube R (this
cube does not need to be a member of V) in Q; N Q; such that Q; UQ; C NR.
Also, if Q is d-John, then there is a distinguished cube Qg € V which can be
connected with every cube QQ € V by a chain of cubes Qp, Q1,...,Qr = Q from
V and such that Q C pQ; (i =0,1,...,k) for some p = p(n,d).

Now, we prove the following global A, (M )-weighted norm inequalities for
compositions of the Laplace-Beltrami operator A and Green’s operator GG on
the manifold M.

Theorem 4.2. Let M be a compact, orientable, C*°-smooth Riemannian
manifold without boundary, let u € C*(A'M) (I = 1,2,---,n) be an A-
harmonic tensor on M, let p > 1,1 < s < 0o and w € A,.(M) for some r > 1.
Then there exists a constant C, independent of u, such that

|G(AW) s, m,we < Cllulls,prwe
[A(G (W) |ls,p1,00 < Cllullsarwe (4.1)
HG(A(U)) + A(G(U))HS,M,UJO‘ < C||u s, M,we

for any real number o with 0 < o < 1.

Proof. Since M is compact, there is a finite coordinate chart cover

{U1,...,Un}

of M such that U;* U, = M. Note that we can give M a topology in unique
way such that each Uy is open (see [10: Chapter II]). Hence we may assume
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that all Uy are open. Applying Theorem 3.6 and Lemma 4.1 to Uy (note that
UpeyB = Ug now), we obtain

IG(A(w))

5,Up ,w® < Z ||G(A(U))||S7B,wa
Bey

S Z C(1 ||u||s,pB,w0‘
Bevy

< Y Cillulls,v e

Bey
< Cllulls, a0

Hence

NE

IGA@D) s ptwe = ) IGA@)]]s, vk we

e
I
—

<

NE

Crllulls,a,we

e
I
MR

m
S HUHS,M,wO‘ Z Ck
k=1

g CHUHS,M,wD‘-

Thus, (4.1); is true. Similarly, we can prove (4.1)2 and (4.1)3 using Lemma
4.1 and Theorem 3.7 and Corollary 3.8, respectively. The proof has been
completed B

From [5], we have the following norm comparison statement on a manifold

M.

Lemma 4.3. Let M be a compact, orientable, C'°*°-smooth Riemannian
manifold without boundary, and let v € A'"'M (I = 1,...,n) and v €
ATIM (1=0,1,---,n—1) be a pair of solutions to the conjugate A-harmonic
equation (3.2). Then du € LP(M,A') if and only if d*v € LI(M,A"). More-
over, there exist constants C and Cs, independent of u and v, such that

Cilldully oy < 171G 2 < Colldully a- (4.2)

Theorem 4.4. Letu € C*®°(A'"*M) (I=1,...,n) andv € C®° (A"t M)
(1=0,1,...,n—1) be a pair of solutions to the conjugate A-harmonic equation
(3.2) on a manifold M. Then there exists a constant C, independent of u and
v, such that

|G(du) = (G(du))pll, p < Clld*vllg p

for any convex and bounded domain D with D C M.
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Proof. Applying (2.6) to du and using Lemma 3.3, we have
1G(du)) — (G(du))plly p < Cilldully p < Calld™ollg p
and the statement is proved i

We prove the following global Sobolev-Poincaré type embedding theorem
for Green’s operator G.

Theorem 4.5. Letu € C®°(A'"*M) (I=1,---,n) andv € C® (ATt M)
(1=0,1,...,n—1) be a pair of solutions to the conjugate A-harmonic equation
(3.2) on a manifold M. Then there exists a constant C, independent of u and
v, such that

|G () — (@) p 1,y < Clld™o]2
for any convex and bounded domain D with D C M.
Proof. From (1.3), (1.5), (2.2) and (2.1) we obtain
|G (w) = (G(w)pllwre(p) = TG (W) lwre(p)
< Gi[D|[|d(G(w))lp,p
< C1|D]|G(du)l[p,0
< Go| Dl |dullp.p-
Using this and (4.2) yields
1G(u) — (G(U»DH]{ZVLP(D) < C’3|D|p|]du||£7D
< Cy| DIP[|d*vllg p
< Cslld*vllg p
since D is bounded and the proof has been completed B

Theorem 4.6. Letu € C®°(A'"'M) (I=1,...,n) andv € C® (A1 M)
(1=0,1,...,n—1) be a pair of solutions to the conjugate A-harmonic equation
(3.2) on a manifold M. Then there exists a constant C, independent of u and
v, such that

IG(d"v) = (G(d™v)pllgp < Clldully p

for any convex and bounded domain D with D C M.
Proof. Using (1.3), (1.5), Lemma 2.1 and (4.2) we have
|G v) = (G(d"0))p [y = ITAGE ) 1.0
< C1 Dl d(G(d™ )G p
< Co| D|||d"vl[g p
< Cslldullp.p

since D is bounded and the proof has been completed B
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Theorem 4.7. Let M be a compact, orientable, C'°°-smooth Rieman-
nian manifold without boundary, let u € C®(A'M) (I = 1,...,n) be an
A-harmonic tensor on M and let p> 1,1 < s < o0 and w € A (M) for some
r > 1. Then there exists a constant C, independent of u, such that

ldd” G (u)l[s,ptwe + [|d"dG ()
siwe + (| d°G ()5 prwe + (G (u)

s, M ,w™

+[|dG(u) (4:3)

s, M ,we S CHUHS,M,wa-

for any real number o with 0 < o < 1.

Proof. From inequality (2.1) we have the inequalities

ldd*G(u)||s, < Cillu

(u) 5,B
|d*dG(u)lls,p < Callulls,
1dG(u)lls,B < Csllulls,5
(u)
(u)

"G (u)lls,8 < Callulls,8
1G(u)lls,8 < Csllu

s,B

for any ball B with B C M. By the same method as we used in the proof of
Theorem 3.6 we can extend the above inequalities to weighted versions. Then,
similar to the proof of Theorem 4.2, we obtain the global versions

1dd” G (W)l s,m,we < Cslu

(u)
|d*dG (u)[|s,ptwe < Crllu
1dG (u)
(u)

(u)

s, M, we

s, M, w>

s, M ,w™ S CSHU s, M ,w™

|d*G(u
IG

s, M ,w™ S CQHU s, M ,we

U ||S,M,w°‘ S C’10||u s, M,we -

Adding these inequalities we obtain (4.3) which ends the proof il
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