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Reconstructing an Analytic Function
Using

Truncated Lagrange Polynomials

D. D. Trong and T. N. Lien

Abstract. Let U be the unit disc of the complex plane. We consider the problem

of reconstructing a function f in the Hardy space H2(U) from values f(z
(m)
n ), where

{z(m)
n } (m ∈ N; 1 ≤ n ≤ m) is a given point system in U . This is an ill-posed

problem. The function f is approximated by so-called truncated Lagrange polyno-
mials. Necessary and sufficient conditions for the convergence are established and a
regularization result is given.
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lems, uniformly distributed point systems
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1. Introduction

Let U be the open unit disc of the complex plane C and let H2(U) be he
Hardy space of all functions f , analytic in U and satisfying

‖f‖ = lim
r↑1

{
1
2π

∫ 2π

0

|f(reiθ)|2dθ

} 1
2

< ∞.

We recall that, if f ∈ H2(U) has the expansion f(z) =
∑∞

k=0 αkzk, then

‖f‖ =
(∑∞

k=0 |αk|2
)1/2 (see, e.g., [10: Chapter 17]).

Let {z(m)
n } (m ∈ N; 1 ≤ n ≤ m) be a point system in U . For each m, we

assume that z
(m)
1 , ..., z

(m)
m are distinct points. In this paper, we consider the
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problem of reconstructing a function f in H2(U) such that

f(z(m)
n ) = µ(m)

n (m ∈ N; 1 ≤ n ≤ m) (1)

where {µ(m)
n } is a bounded set of complex numbers. Problem (1) has given

rise to a huge literature. The reader is referred, e.g., to the monographs [2,
3, 6, 12] and the references therein. In fact, the unknown function f is often
approximated by polynomials (especially, by Lagrange polynomials, see, e.g.,
[2, 12]) and by rational functions (see [6, 9, 12]).

On the other hand, problem (1) is ill-posed. In fact, the data µ
(m)
n in the

right-hand side of (1) are given by measurements (or by rounding). Hence,
the data are affected with errors. As a consequence, a solution of problem (1)
corresponding to noise data does not always exist. Moreover, solutions, even
when they do exist, do not depend continuously on the given data. Thus, the
problem is intractable numerically and hence one has to resort to a regular-
ization. In our recent results [1, 5, 8, 11] the ill-posedness of the problem was
considered. We also refer to [6] in which a function f in the disc algebra A(U)
is approximated by a sequence of functions constructed from noise data and
called a robustly convergence identification algorithm.

The present paper deals with a regularization of problem (1) based on an
approach of approximating (in H2(U)) the function f by polynomials

Lθ
m(ν)(z) =

∑

0≤k≤θ(m−1)

l
(m)
k zk

(
0 < θ ≤ 1; ν = (µ(m)

1 , ..., µ(m)
m )

)
. (2)

Here l
(m)
k is the coefficient of zk in the expansion of the Lagrange polynomial

Lm(ν) of degree (at most ) m− 1 satisfying

Lm(ν)(z(m)
k ) = µ

(m)
k (1 ≤ k ≤ m).

The polynomial Lθ
m(ν) is called a ”truncated” Lagrange polynomial. We note

that if θ = 1, then Lθ
m(ν) is a Lagrange polynomial.

Before giving precise definitions and main results, several remarks are in
order.

First, as is known, the convergence of Lm(ν) to f depends heavily on
properties of the point system {z(m)

n }. The Kalmár-Walsh theorem (see, e.g.,
[2: Chapter 11]) shows that Lm(ν) → f in C(U) for all f analytic in a
neighborhood of U if and only if {z(m)

n } is uniformly distributed in U , i.e.,

lim
m→∞

m

√
max|z|≤1|ωm(z)| = 1 (3)
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where
ωm(z) = (z − z

(m)
1 ) · · · (z − z(m)

m ). (4)

This fact fails if C(U) is replaced by H2(U) (see, e.g., Counterexample in
Section 2). Moreover, condition (3) is very strict. In our paper, the point
system {z(m)

n }, in general, does not satisfy (3).
Note that the present approach, to our knowledge, is new. In [1, 5],

truncated polynomials L
1
2
m(ν) are used to approximate the function f . In the

present paper, we shall study the convergence of Lθ
m(ν) for θ being in an open

interval. In fact, we shall show that there is a θ0 in (0, 1) such that Lθ
m(ν) → f

in H2(U) for 0 < θ < θ0, and that the latter result does not hold if θ0 < θ < 1.

Finally, if for each m the nodes z
(m)
1 , ..., z

(m)
m are not mutually distinct

and if at these points we know not only the values of f but also the values
of higher derivatives of f , then we can use the ”truncated” Lagrange-Hermite
polynomials to approximate the function f .

The remainder of our paper is divided into two sections. In Section 2, we
shall state our main results and establish a counterexample. In Section 3, we
shall prove the results stated in Section 2.

2. Notations, main results and counterexample

We put

Lm(ν)(z) =
m∑

n=1

νk
ωm(z)

ω′m(z(m)
k )(z − z

(m)
k )

(5)

where ωm is as in (4), ν = (ν1, ..., νm) and put

σ
(m)
0 = 1

σ
(m)
k,p =

∑

1≤j1<...<jp≤m

z
(m)
j1

· · · z(m)
jp

(js 6= k, 1 ≤ s ≤ p, p = 1, ..., m− 1).

We first state necessary conditions for the convergence of truncated La-
grange polynomials in H2(U).

Theorem 1. Let 0 < θ ≤ 1. If

lim
m→∞

∥∥f − Lθ
m(Tmf)(z)

∥∥ = 0 (f ∈ H2(U)) (6)

where Lθ
m(ν) is defined in (2), (5) and

Tm(f) =
(
f(z(m)

1 ), ..., f(z(m)
m )

)
,
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then

sup
m

max
1≤k≤m

∏

j∈1,m\{k}

∣∣1− z̄
(m)
j z

(m)
k

∣∣−1


 ∑

0≤`≤θ(m−1)

|σ(m)
k,m−1−`|2




1
2

< ∞

where 1,m = {1, ...,m}.
Theorem 1 implies the following

Counterexample. We shall show that the Kalmár-Walsh theorem does
not hold if C(U) is replaced by H2(U). Indeed, putting θ = 1, for each m,
Lθ

mTmf is a Lagrange polynomial. Let z
(m)
n = 1

n+1 (m ∈ N; 1 ≤ n ≤ m). We
have

max
|z|≤1

|ωm(z)| =
(
1 +

1
2

)
· · ·

(
1 +

1
m + 1

)
.

It follows that limm→∞ m
√

max|z|≤1 |ωm(z)| = 1, i.e. the system {z(m)
n } is

uniformly distributed in U . On the other hand,

∏

j∈1,m\{m}

∣∣1− z̄
(m)
j z(m)

m

∣∣−1


 ∑

0≤`≤θ(m−1)

|σ(m)
m,m−1−`|2




1
2

≥
m−1∏

j=1

∣∣∣∣1−
1

(j + 1)(m + 1)

∣∣∣∣
−1

|σ(m)
m,1|

≥ 1
2

+ ... +
1
m

→∞

as m →∞. Hence, using Theorem 1, we can find a function f ∈ H2(U) such
that LmTmf 6→ f in H2(U) as m →∞.

To state sufficient conditions for the convergence of the truncated La-
grange polynomials, we shall consider point systems {z(m)

n } satisfying some
properties. Letting σ ∈ (0, 1), we put

Am =
{
n ∈ N| 1 ≤ n ≤ m and |z(m)

n | ≥ σ
}
.

We denote by Fσ the set of point systems {z(m)
n } in U satisfying

lim
m→∞

card Am

m
= 0 (7)

lim
m→∞

πm = 1 (8)
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where card Am is the number of elements of Am and

πm =
{

1 if Am = ∅( ∏
n∈Am

(1− |z(m)
n |))

1
m if Am 6= ∅.

Condition (7) means that almost of points of the system {z(m)
n } concentrate

in the disc with radius σ centered at 0, and condition (8) means that {z(m)
n }

is not too close to the boundary of the unit disc. Point systems {z(m)
n } in Fσ,

in general, do not satisfy condition (3).
For 0 ≤ θ ≤ 1 we put

φ(θ) =





2σ1−θ

1−σ if 1
2 < θ ≤ 1

σ1−θ

(1−σ)θθ(1−θ)1−θ if 0 < θ ≤ 1
2

σ
1−σ if θ = 0.

We can verify that φ is continuous and strictly increasing in [0, 1]. Moreover,
φ(1) = 2(1− σ)−1 > 1 and, for σ ∈ (0, 1

2 ), φ(0) = σ(1− σ)−1 < 1. Hence, in
this case, there exists uniquely a θ0 ∈ (0, 1) such that

φ(θ0) = 1

φ(θ) < 1 (0 ≤ θ < θ0).
(9)

Now, we have

Theorem 2. Let σ ∈ (0, 1) and θ ∈ (0, 1]. Let Lθ
m(ν) be defined as in

(2), (5) and let Tm(f) be defined as in Theorem 1. Then:
(i) If 0 < σ < 1

2 , then

lim
m→∞

∥∥f − Lθ
m(Tmf)

∥∥ = 0 (f ∈ H2(U)) (10)

for every point system {z(m)
n } in Fσ and every 0 < θ < θ0. In addition, if

f ′ ∈ H2(U) and φ(θ) < δ < 1, then there exists an m(θ, δ) such that

∥∥f − Lθ
m(Tmf)(z)

∥∥2 ≤ (
[(m− 1)θ] + 1

)
δ2m‖f‖2 +

‖f ′‖2
(m− 1)2θ2

(11)

for m > m(θ, δ) where [x] is the greatest integer not exceeding x.

(ii) If 0 < σ < 1
2 , then we can find a point system {z(m)

n } in Fσ such that
(10) fails for every θ0 < θ < 1.

(iii) If 1
2 ≤ σ < 1, then we can find a point system {z(m)

n } in Fσ such that
(10) fails for every θ ∈ (0, 1).
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The theorem shows that 0 < σ < 1
2 is a crucial condition for the conver-

gence of truncated Lagrange polynomials.
Finally, to get the regularization result in the case of noisy data, we set

some notations. Namely, we put

Dm = max
1≤n≤m

(
max
|z|≤1

∣∣∣∣∣
ωm(z)

(z − z
(m)
n )ω′m(z(m)

n )

∣∣∣∣∣

)
.

Let ψ : [1,∞) → R be an increasing function satisfying

ψ(m) ≥ m(mθ + 1)Dm (m ≥ 1) (12)
lim

t→∞
ψ(t) = +∞. (13)

Finally, put
m(ε) =

[
ψ−1(ε−

1
2 )

]
.

It is clear that m(ε) →∞ as ε ↓ 0. Using the above notations, we have

Theorem 3. Let ε > 0, 0 < σ < 1
2 , 0 < θ < θ0 and φ(θ) < δ < 1.

Assume that µ = (µ(m)
n ) satisfies

sup
m

(
max

1≤n≤m

∣∣f(z(m)
n )− µ(m)

n

∣∣
)
≤ ε.

Then there is an ε0(δ, θ) such that, for every 0 < ε < ε0(δ, θ) and f, f ′ ∈
H2(U),

∥∥f − Lθ
m(ε)(Tm(ε)(µ))

∥∥ ≤ ε
1
2 + δm(ε)

√
m(ε)θ + 1 ‖f‖+

‖f ′‖
(m(ε)− 1)θ

where Tm(µ) =
(
µ

(m)
1 , ..., µ

(m)
m

)
.

3. Proofs

In this section, we shall give the proof of Theorems 1 - 3.

Proof of Theorem 1. If we consider the truncated Lagrange polynomi-
als Lθ

m(Tmf) as the image of f on H2(U), then Lθ
m(Tm) (m ≥ 1) can be seen

as a sequence of linear operators on H2(U). We denote by ‖Lθ
mTm‖ the norm

of these operators. From the Banach-Steinhaus theorem, relation (6) implies
supm ‖Lθ

mTm‖ < ∞. Putting

fm(z) =
∏

j∈1,m\{k}

z − z
(m)
j

1− z̄
(m)
j z
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we have ‖fm‖ = 1. Hence, in view of the latter equality we get

‖Lθ
mTmfm‖ ≤ ‖Lθ

mTm‖ ‖fm‖ = ‖Lθ
mTm‖ < ∞. (14)

On the other hand, we have

Lm(Tmfm)(z) =
∏

j∈1,m\{k}

z − z
(m)
j

1− z̄
(m)
j z

(m)
k

.

By direct computation, one get

Lθ
m(Tmfm)(z) =

∑
0≤`≤θ(m−1)(−1)m−1−`σ

(m)
k,m−1−`z

`

∏
j∈1,m\{k}

(
1− z

(m)
j z

(m)
k

) .

It follows that

∥∥Lθ
m(Tmfm)

∥∥2 =
∏

j∈1,m\{k}

∣∣1− z̄
(m)
j z

(m)
k

∣∣−2


 ∑

0≤`≤θ(m−1)

∣∣σ(m)
k,m−1−`

∣∣2

 .

Combining the latter equality with (14) completes the proof of Theorem 1

Proof of Theorem 2. We shall give the proof of the following three
cases:

(i) 1
2 ≤ σ < 1

(ii) 0 < σ < 1
2 and θ0 < θ < 1

(iii) 0 < σ < 1
2 and 0 < θ < θ0.

(i) The Case 1
2 ≤ σ < 1. We construct a point system {z(m)

n } such that we
can find a function f ∈ H2(U) satisfying Lθ(Tmf) 6→ f in H2(U) as m →∞
for every θ ∈ (0, 1). For this let z

(m)
1 = 1 − 1

m and z
(m)
m = 1 − 1

2m . Noting
that, for ysn = 1

2 − 1
(mn+2)s ,

m−1∏

j=2

∣∣∣∣∣
ysj

1− ȳsjz
(m)
m

∣∣∣∣∣ →
(

1
1 + 1

2m

)m−2

(s →∞)

we can choose pm such that

m−1∏

j=2

∣∣∣∣∣
ypmj

1− ȳpmjz
(m)
m

∣∣∣∣∣ ≥
1
2

(
1

1 + 1
2m

)m−2

.
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We put

z(m)
n = ypmn =

1
2
− 1

(mn + 2)pm
(m ∈ N; 2 ≤ n ≤ m− 1).

For m ≥ 3, we have Am = {1, m} (cardAm = 2). Hence, the point system
{z(m)

n } satisfies (7) - (8), i.e. (z(m)
n ) ∈ Fσ. On the other hand, one has

∏

j∈1,m\{m}

∣∣1− z̄
(m)
j z(m)

m

∣∣−1


 ∑

0≤`≤θ(m−1)

∣∣σ(m)
m,m−1−`

∣∣2



1
2

≥
∣∣σ(m)

m,m−1

∣∣
m−1∏

j=1

∣∣1− z̄
(m)
j z(m)

m

∣∣−1

=
|z(m)

1 |∣∣1− z̄
(m)
1 z

(m)
m

∣∣
m−1∏

j=2

∣∣∣∣∣
z
(m)
j

1− z̄
(m)
j z

(m)
m

∣∣∣∣∣

≥ |z(m)
1 |∣∣1− z̄
(m)
1 z

(m)
m

∣∣
1
2

(
1

1 + 1
2m

)m−2

→∞

as m →∞. Hence, from Theorem 1, (10) fails as desired.
(ii) The Case 0 < σ < 1

2 and θ0 < θ < 1. We construct a point system
{z(m)

n } such that there exists f ∈ H2(U) satisfying Lθ
mTmf 6→ f in H2(U) for

every θ0 < θ < 1. In fact, we shall argue as in the foregoing case. For any
σ ∈ (0, 1

2 ), let z
(m)
n = σ

(
1 − 1

m3+n

)
and z

(m)
m = 1 − 1

m2 for n = 1, ..., m − 1.
We have Am = {m} (card Am = 1) for every m ≥ 2. Hence, the point system
{z(m)

n } satisfies (7) - (8), i.e. it is in Fσ. One has

∏

j∈1,m\{m}

∣∣1− z̄
(m)
j z(m)

m

∣∣−1


 ∑

0≤`≤θ(m−1)

∣∣σ(m)
m,m−1−`

∣∣2



1
2

≥
∏

j∈1,m\{m}

∣∣1− z̄
(m)
j z(m)

m

∣∣−1∣∣σ(m)
m,m−[mθ]

∣∣

=




m−1∏

j=1

1∣∣1− z
(m)
j z

(m)
m

∣∣




∣∣∣∣∣∣
∑

1≤j1<...<jm−[mθ]≤m−1

z
(m)
j1

· · · z(m)
jm−[mθ]

∣∣∣∣∣∣

≥ 1[
1− σ

(
1− 1

m3+m

) (
1− 1

m2

) ]m−1 σm−[mθ]
(
1− 1

m3 + 1

)m−[mθ]

C [mθ]
m
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where Ck
m = m!

k!(m−k)! . Using Stirling’s formula (see, e.g., [7]) we get

lim
m→∞

m
√

C [mθ]
m = lim

m→∞

(
m!

[mθ]!(m− [mθ])!

) 1
m

= lim
m→∞

m
e( [mθ]

e

) [mθ]
m

(m−[mθ]
e

)m−[mθ]
m

=
1

θθ(1− θ)1−θ
.

(15)

It follows that

lim sup
m→∞

( ∏

j∈1,m\{m}

∣∣1− z̄
(m)
j z(m)

m

∣∣−1
( ∑

0≤`≤θ(m−1)

∣∣σ(m)
m,m−1−`

∣∣2
) 1

2
) 1

m

≥ σ1−θ

(1− σ)θθ(1− θ)1−θ

= φ(θ)

> φ(θ0)

= 1.

Hence,

lim sup
m→∞

∏

j∈1,m\{m}

∣∣1− z̄
(m)
j z(m)

m

∣∣−1
( ∑

0≤`≤θ(m−1)

∣∣σ(m)
m,m−1−`

∣∣2
) 1

2

= ∞.

Using Theorem 1, we can find an f ∈ H2(U) such that Lθ
mTmf 6→ f in H2(U).

(iii) The Case 0 < σ < 1
2 and 0 < θ < θ0. Assume that

f(z) =
∞∑

k=0

αkzk,

∞∑

k=0

|αk|2 < ∞. (16)

Since Lm(Tmf) is a polynomial having degree deg Lm(Tmf) ≤ m− 1, we can
write

Lm(Tmf)(z) =
m−1∑

k=0

l
(m)
k zk (17)

where l
(m)
k are constants. Substracting (17) from (16) gives

f(z)− Lm(Tmf)(z) =
m−1∑

k=0

δ
(m)
k zk +

∞∑

k=m

αkzk (18)
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where δ
(m)
k = αk − l

(m)
k (1 ≤ k ≤ m).

On the other hand, the Hermite representation (cf. [2]) gives

f(z)− Lm(Tmf)(z) =
1

2πi

∫

∂U

ωm(z)f(ζ) dζ

ωm(ζ)(ζ − z)
. (19)

Direct computation gives

ωm(z) =
m∑

r=0

(−1)m−rσ
(m)
m−rz

r (20)

1
2πi

∫

∂U

f(ζ) dζ

ωm(ζ)(ζ − z)
=

∞∑
s=0

β(m)
s zs (21)

where

σ
(m)
0 = 1

σ(m)
r =

∑

1≤j1<...<jr≤m

z
(m)
j1

· · · z(m)
jr

(1 ≤ r ≤ m) (22)

β(m)
s =

1
2πi

∫

∂U

f(ζ) dζ

ζs+1ωm(ζ)
(s ≥ 0).

Multiplying (20) and (21) together and substituting the result thus obtained
into (19) we get

f(z)− Lm(Tmf)(z) =
∞∑

k=0

(
k∑

r=0

(−1)m−rσ
(m)
m−rβ

(m)
k−r

)
zk (23)

where we put σ−1 = σ−2 = ... = 0. From (18) and (23) it follows that

δ
(m)
k =

k∑
r=0

(−1)m−rσ
(m)
m−rβ

(m)
k−r (0 ≤ k ≤ m− 1). (24)

We shall estimate δ
(m)
k . We first have

|β(m)
s | =

∣∣∣∣
1

2πi

∫

∂U

f(ζ) dζ

ζs+1ωm(ζ)

∣∣∣∣ ≤
1√
2π
‖f‖

(∫ 2π

0

dϕ

|ωm(eiϕ)|2
) 1

2

.

On the other hand, |ωm(z)| ≥ ∏m
j=1(1− |z(m)

j |). Hence

|β(m)
s | ≤ ‖f‖

∏m
j=1(1− |z(m)

j |)
≤ ‖f‖

(1− σ)m−card Am
∏

j∈Am
(1− |z(m)

j |)
. (25)
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From (22), one has

|σ(m)
m−k| ≤

∑

1≤j1<...<jm−k≤m

∣∣z(m)
j1

· · · z(m)
jm−k

∣∣

≤ σm−k−card Am

∑

1≤j1<...<jm−k≤m

1

= σm−k−card AmCk
m.

It follows that, for 0 ≤ k ≤ [mθ],

|σ(m)
m−k| ≤ σm−[mθ]−card AmCk

m. (26)

We have the following lemma (which will be proved later):

Lemma 1. Under the assumptions of Theorem 2,

lim sup
m→∞

(
max

0≤k≤[mθ]
|σ(m)

m−k|
1
m

)
≤ (1− σ)φ(θ) (27)

for 0 < θ < 1.

From (24), one has

|δ(m)
k | ≤ (1 + mθ)‖f‖

(1− σ)m−card Am
∏

j∈Am
(1− |z(m)

j |)
max

0≤k≤[mθ]
|σ(m)

m−k|

for 0 ≤ k ≤ [mθ]. Combining the latter inequality with (27) and (8) gives

lim sup
m→∞

(
max

0≤k≤[mθ]

∣∣∣δ
(m)
k

‖f‖
∣∣∣

1
m

)
≤ φ(θ). (28)

Now, for 0 < θ < θ0, in view of (9) and (28) we get

lim sup
m→∞

(
max

0≤k≤[mθ]

∣∣∣δ
(m)
k

‖f‖
∣∣∣

1
m

)
≤ φ(θ) < 1. (29)

Hence, for φ(θ) < δ < 1 we can find an m(δ) > 0 such that

max
0≤k≤[mθ]

|δ(m)
k | < δm‖f‖ (m > m(δ)). (30)

From (16) - (17) one has

f(z)− Lθ
mTmf(z) =

[(m−1)θ]∑

k=0

δ
(m)
k zk +

∞∑

k=[(m−1)θ]+1

αkzk.
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It follows that

‖f − Lθ
mTmf‖2 =

[(m−1)θ]∑

k=0

|δ(m)
k |2 +

∞∑

k=[(m−1)θ]+1

|αk|2.

Hence, from (30) we get

‖f − Lθ
mTmf‖2 ≤ (

[(m− 1)θ] + 1
)
δ2m‖f‖2 +

∞∑

k=[(m−1)θ]+1

|αk|2. (31)

It follows that Lθ
mTmf → f in H2(U) as m →∞. If f ′ ∈ H2(U), then we get

f ′(z) =
∑∞

k=0 kαkzk−1 and ‖f ′‖ =
( ∑∞

k=0 k2|αk|2
)1/2. This gives

∞∑

k=[(m−1)θ]+1

|αk|2 ≤ ‖f ′‖2
(m− 1)2θ2

. (32)

Combining (31) and (32) we get

‖f − Lθ
mTmf‖2 ≤ (

[(m− 1)θ]− 1
)
δ2m‖f‖2 +

‖f ′‖2
(m− 1)2θ2

.

This will complete the proof of Theorem 2 once Lemma 1 is proved

Proof of Lemma 1. We have to consider the cases
(i) 0 < θ < 1

2

(ii) 1
2 ≤ θ < 1.

If (i) holds, then C1
m ≤ ... ≤ C

[mθ]
m . Hence (26) implies

max
0≤k≤[mθ]

|σ(m)
m−k|

1
m ≤ σ1− [mθ]+card Am

m
m

√
C

[mθ]
m . (33)

From (33), (15) and the assumption limm→∞ card Am

m = 0 we have

lim sup
m→∞

(
max

0≤k≤[mθ]
|σ(m)

m−k|
1
m

)
≤ σ1−θ

θθ(1− θ)1−θ
= (1− σ)φ(θ).

If (ii) holds, from (26) we get

max
0≤k≤[mθ]

|σ(m)
m−k|

1
m ≤ 2σ1− [mθ]+card Am

m (34)

where we have used the identity
∑m

k=0 Ck
m = 2m. From here it follows that

lim sup
m→∞

(
max

0≤k≤[mθ]
|σ(m)

m−k|
1
m

)
≤ 2σ1−θ = (1− σ)φ(θ).

Hence, in either case, inequality (27) holds. This completes the proof of
Lemma 1 and the proof of Theorem 2
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Proof of Theorem 3. We first prove that∥∥Lθ
m(Tmf)− Lθ

m(Tµ)
∥∥
∞ ≤ εm(1 + mθ)Dm. (35)

In fact, we have

(
Lm(Tmf)− Lm(Tµ)

)
(z) =

m∑
n=0

(
f(z(m)

n )− µ(m)
n

) ωm(z)

(z − z
(m)
n )ω′m(z(m)

n )
.

By direct computation, we get∣∣(Lm(Tmf)− Lm(Tµ)
)
(z)

∣∣ ≤ εmDm (|z| ≤ 1). (36)

On the other hand, one has

(
Lm(Tmf)− Lm(Tµ)

)
(z) =

m−1∑

k=0

λ
(m)
k zk (37)

where

λ
(m)
k =

1
2πi

∫

∂U

(
Lm(Tmf)− Lm(Tµ)

)
(ζ) dζ

ζk+1
. (38)

From (36) and (38) one has

|λ(m)
k | ≤ εmDm. (39)

It follows from (37) and (39) that

∣∣Lθ
m(Tmf)(z)− Lθ

m(Tµ)(z)
∣∣ =

∣∣∣∣∣∣
∑

k≤[(m−1)θ]

λ
(m)
k zk

∣∣∣∣∣∣
≤ εm(mθ + 1)Dm,

i.e. (35) holds.
Now, we have∥∥f − Lθ

m(ε)(Tm(ε)(µ))
∥∥

≤
∥∥f − Lθ

m(ε)(Tm(ε)f)
∥∥ +

∥∥Lθ
m(ε)(Tm(ε)(µ))− Lθ

m(ε)(Tm(ε)f)
∥∥.

Thus, using Theorem 2 and (35) we get
∥∥f − Lθ

m(ε)(Tm(ε)(µ))
∥∥

≤
√

m(ε)θ + 1 δm(ε)‖f‖+
‖f ′‖

(m(ε)− 1)θ
+ εm(ε)

(
m(ε)θ + 1

)
Dm(ε).

From the definition of m(ε) we have

ε−
1
2 ≥ ψ(m(ε)) ≥ m(ε)

(
m(ε)θ + 1

)
Dm(ε).

Hence,
∥∥f − Lθ

m(ε)(Tm(ε)(µ))
∥∥ ≤ ε

1
2 +

√
m(ε)θ + 1 δm(ε)‖f‖+

‖f ′‖
(m(ε)− 1)θ

which completes the proof of Theorem 3
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