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A Simple Proof
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Mountain Circle Theorem
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Abstract. In this paper we give an alternative proof of Fournier-Willem’s Mountain
Circle Theorem. Our proof, which is simpler than the original one proposed by
these authors, is based on a Lusternik-Schnirelman-type theory and some results of
elementary Brouwer degree theory.
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1. Introduction

The Mountain Circle Theorem has interesting applications to the theory of
ordinary differential equations in dynamics (see, for example, Fournier and
Willem [10]). The purpose of this note is to give an elementary proof of that
theorem due to Fournier and Willem [10]. As the name suggests, this theorem
is similar to the well-known Mountain Pass Theorem by Ambrosetti and Ra-
binowitz, but, under slightly different hypotheses, the result by Fournier and
Willem asserts the existence of at least two critical points (instead of one) of
a C1 functional. The main tool used by Fournier and Willem in their proof
is a Lusternik-Schnirelman type theory, which they introduce in [7, 8, 10],
together with some advanced techniques of cohomology theory (see [10]).

In the present paper, to prove the Mountain Circle Theorem we still use
the Lusternik-Schnirelman-type theory introduced by Fournier and Willem
but, instead of cohomology, we use some elementary results of Brouwer degree
theory.
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subject of this note.
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2. Lusternik-Schnirelman category

In this section, X will be a topological space.

Definition 2.1. A subset A of X is said to be contractible in X if there
exist a point x0 ∈ X and a homotopy h : A× [0, 1] → X such that h(·, 0) = 1A

and h(A, 1) = {x0}.
Obviously, each subset of a contractible set is contractible.
We recall that a subset A of X is said to have category n in X if n is the

least positive integer such that A can be covered by n closed sets which are
contractible in X. If A cannot be covered by a finite number of such sets,
then by definition A has category +∞, while the category of the empty set is
always set to be 0. The category of A in X is denoted by catX(A).

The following proposition shows some easy consequences of the definition
of Lusternik-Schnirelman category.

Proposition 2.1 (see, for example, Mawhin and Willem [14: Lemma
4.6]). Let A and B be subsets of a topological space X. Then:

1. If A ⊂ B ⊂ X, then catX(A) ≤ catX(B).
2. catX(A ∪B) ≤ catX(A) + catX(B).
3. If A is closed and h : A×[0, 1] → X is a homotopy such that h(x, 0) = x

for each x ∈ A, then catX(A) ≤ catX(h(A, 1)).

Obviously, the category of a set A depends on the space in which A is
considered, as the following example shows.

Example 2.1. Let A = S1 ⊂ R2. We have catR2(A) = 1 because, as R2 is
contractible in itself, A is contractible in R2. On the other hand, catA(A) = 2
since A is not contractible in itself and can be covered by two closed sets which
are contractible in A.

Definition 2.2. A normal space Xis called an absolute neighborhood re-
tract if, given any normal space Z in which X is imbedded as a closed subspace,
X is a retract of an open set in Z.

The next proposition shows the continuity property of the category on
compact subsets of metric absolute neighborhood retracts. In the following U
denotes the closure of U .

Proposition 2.2 (see, for example, Mawhin and Willem [14: Lemma 4.7]
or Palais [17: Theorem 6.3). Suppose that X is a metric absolute neighborhood
retract and A ⊂ X is compact. Then catX(A) < +∞ and there exists an open
neighborhood U of A such that catX(U) = catX(A).
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3. Fournier-Willem relative categories

In this section we will introduce two relative categories due to Fournier and
Willem [7, 10], which generalize the Lusternik-Schnirelman category and are
used to estimate the number of critical points of a C1 functional. Relative
categories play an important role in the proof of Fournier-Willem’s Mountain
Circle Theorem.

In the following, X will be a topological space and Y ⊂ X a closed subset.

Definition 3.1 (Fournier and Willem [7, 10]). A subset A of X is said
to be strongly deformable into a subset B of X relative to Y in X (denoted
by A <Y B in X) if there exists a homotopy h : A × [0, 1] → X such that
h(·, 0) = 1A, h(A, 1) ⊂ B and h(y, t) = y for every y ∈ A ∩ Y and every
t ∈ [0, 1].

Observe that, if X ⊃ A ⊃ Y , A is strongly deformable into Y relative to
Y in X if and only if Y is a strong deformation retract of A in X.

Definition 3.2 (Fournier and Willem [7, 10]). A subset A of X is said to
have weak category n in X relative to Y (or to be of the n-th weak category in
X relative to Y ) if n is the least non-negative integer such that A ⊆ ⋃n

i=0 Ai,
where Ai is closed for any i ≥ 0, Ai is contractible in X for each i ≥ 1 and
A0 is strongly deformable into Y relative to Y in X.

We will denote the weak category of A in X relative to Y by catX,Y (A),
set catX,Y (A) = +∞ if A has no finite covering as above and catX,Y (∅) = 0.

Definition 3.3 (Fournier and Willem [7, 10]). A subset A of X is said to
be touch and stop deformable into a subset B of X relative to Y in X (denoted
by A ¿Y B in X) if there exists a homotopy h : A × [0, 1] → X such that
h(·, 0) = 1A, h(A, 1) ⊂ B and, if h(x, t) = y ∈ Y for some x ∈ A and t ∈ [0, 1],
then h(x, s) = y for every s ≥ t.

Definition 3.4 (Fournier and Willem [7, 10]). A subset A of X is said
to have strong category n in X relative to Y (or to be of the n-th strong
category in X relative to Y ) if n is the least non-negative integer such that
A ⊆ ⋃n

i=0 Ai, where Ai is closed for any i ≥ 0, Ai is contractible in X \ Y for
each i ≥ 1 and A0 is touch and stop deformable into Y relative to Y in X.

We denote the strong relative category by CatX,Y (A) and set CatX,Y (A) =
+∞ if A has no finite covering as above and CatX,Y (∅) = 0.

Clearly, in both Definitions 3.2 and 3.4, if A ⊂ X is closed, the inclusion
A ⊆ ⋃n

i=0 Ai can be replaced with the equality A =
⋃n

i=0 Ai. Observe also
that, from the definitions, it is easily seen that catX,Y (A) ≤ CatX,Y (A) for
every A ⊂ X.
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The next proposition will be used in the proof of the Mountain Circle
Theorem. In the papers by Fournier and Willem it is proved by using coho-
mology theory. In the present paper, we will give a simpler proof based on
Brouwer degree theory.

Before giving the result, we introduce some notation. Namely, given ρ > 0,
we will denote by B(0, ρ) ⊂ Rn the open ball of radius ρ centered at the origin
in Rn and by B(0, ρ) its closure.

The following easy consequence of finite-dimensional degree theory is cru-
cial in the proof of Proposition 3.1 below.

Lemma 3.1 (Degiovanni [4: Lemma 2.7]). If U is a bounded open set in
Rn and 0 ∈ U , then ∂U is not contractible in Rn \ {0}.

Proof. Suppose by contradiction that ∂U is contractible in Rn\{0}, with
a contraction h : ∂U × [0, 1] → Rn \ {0} such that h(∂U, 1) = {y}. Since the
topological degree is homotopy invariant and depends only on the values of
functions on the boundary (see, for example, Deimling [5: Theorem 3.1]), we
should have 0 = deg(y, U, 0) = deg(1U , U, 0) = 1, which is a contradiction

Propoposition 3.1. Let X = A = B(0, R)\B(0, r) ⊂ Rn with 0 < r < R
and Y = ∂A = ∂B(0, R) ∪ ∂B(0, r). Then CatX,Y (A) = 2.

Proof. Clearly, A can be covered by two closed sets which are contractible
in X \ Y and a closed set which is touch and stop deformable into Y relative
to Y in X. Thus CatX,Y (A) ≤ 2.

We need to show that CatX,Y (A) > 1. Suppose by contradiction A =
A0 ∪ A1, where A0 and A1 are both closed in X = A, A0 ¿Y Y and A1 is
contractible in X \Y . Without loss of generality we can suppose that A0 ⊃ Y .
So A0 must be disconnected, precisely of the form A0 = A0,r ∪A0,R with A0,r

and A0,R disjoint closed sets, A0,r ⊃ ∂B(0, r) and A0,R ⊃ ∂B(0, R). As A0,r

and A0,R are disjoint compact sets, we have dist(A0,r, A0,R) = d > 0. Fix
ε ∈ (0, d

3 ] and consider the bounded open set

Uε =
{
x ∈ Rn : dist(x,B(0, r) ∪A0,r) < ε

}
.

Obviously, Uε contains 0 and ∂Uε ⊂ A1. By Lemma 3.1, ∂Uε is not con-
tractible in Rn \ {0}, so a fortiori it is not contractible in X \ Y . As A1 is a
superset of ∂Uε, it is not contractible in X \ Y , and this is a contradiction

The following example shows that we may have catX,Y (A) < CatX,Y (A).

Example 3.1. Let X = A = B(0, 2) ⊂ R2 and Y = ∂B(0, 2) ∪B(0, 1) ⊂
R2. Then we have catX,Y (A) = 1 because A can be covered by two closed
subsets of X: one of these is strongly deformable into Y relative to Y in X,
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while the other is contractible in X. On the other hand, by arguing as in
Proposition 3.1 we can prove that CatX,Y (A) = 2.

Remark 3.1. By an argument similar to that of Proposition 3.1 we can
prove also that, if X = A = B(0, R) (with R > 0) and Y = ∂B(0, R) ∪ {0},
then CatX,Y (A) = 2.

The next proposition shows some of the main properties of relative cate-
gories, which are generalizations of those of the Lusternik-Schnirelman cate-
gory. In the following, we will assume that A and B are closed in X.

Proposition 3.2 (Fournier and Willem [10: Proposition 2.4]). Let X be
a topological space and A,B ⊂ X closed subsets. Then:

1. If A ⊂ B, then catX,Y (A) ≤ catX,Y (B).

2. If A <Y B, then catX,Y (A) ≤ catX,Y (B).

3. catX,Y (A ∪B) ≤ catX,Y (A) + catX(B).

4. catX,Y (A) = 0 if and only if A <Y Y .

Furthermore, in each of these properties we can replace cat by Cat, provided
we replace <Y Y by ¿Y Y and, in Assertion 3, catX(B) by catX\Y (B) with
the further condition X \ Y ⊃ B.

The next result shows the behavior of relative categories in relation to
supersets and retractions.

Proposition 3.3 (Fournier and Willem [10: Proposition 2.5]). Let X ′ ⊃
X ⊃ A, X ′ ⊃ Y ′ ⊃ Y , X ′ ⊃ A′ ⊃ A and X ⊃ Y . Then:

1. catX′,Y (A) ≤ catX,Y (A).

2. catX,Y ′(A) ≥ catX,Y (A), provided Y ′ ⊂ X and catX,Y (Y ′) = 0.

3. catX′,Y ′(A′) ≥ catX,Y (A), if there exists a retraction r : X ′ → X such
that r(A′) ⊃ A and r−1(Y ) = Y ′.

4. catX′,Y ′(A′) ≤ catX,Y (A), if A′ \A = X ′ \X = Y ′ \Y and X is closed
in X ′.

Moreover, in each of these properties it is possible to replace cat by Cat.

The next proposition holds for cat, but not for Cat.

Proposition 3.4 (Fournier and Willem [10: Proposition 2.6]) Let X ′ ⊃
X ⊃ A, X ⊃ Y and X ′ ⊃ Y ′ ⊃ Y . If there exists a retraction r : X ′ → X
such that r(Y ′) <Y Y in X, then catX′,Y ′(A′) ≥ catX,Y (A), provided A ⊂ A′.

In the following property it is not possible to replace Cat by cat.
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Proposition 3.5 (Excision property; Fournier and Willem [10: Proposi-
tion 2.7]). Given A ⊂ X and Y ⊂ X, we have

CatX,Y (A) = CatX\V,Y \V (A \ V ) = CatX∩F,Y ∩F (A ∩ F ),

for any subset V of the interior of Y and any closed set F such that X = F∪Y .

Now we give a proposition which is valid for Cat but not for cat.

Proposition 3.6 (Fournier and Willem [10: Proposition 2.8]). Suppose
{Xj}j∈J is a finite family of disjoint non-empty closed sets whose union is X.
Then

CatX,Y (A) =
∑

j∈J

CatXj ,Y ∩Xj
(A ∩Xj).

Now, let us give a critical point result by Fournier and Willem, based on
the strong relative category, which will be used to prove the Mountain Circle
Theorem. First, we recall the Palais-Smale condition.

Definition 3.5 (see, for example, Mawhin and Willem [14] or Struwe
[20]). Let X be a Banach space. A map f ∈ C1(X,R) satisfies the Palais-
Smale condition if
(P-S) Any sequence (xn) in X such that (f(xn)) is bounded and df(xn) → 0

admits a convergent subsequence.

For any c ∈ R we will denote by f c the subset of M where f ≤ c.

Theorem 3.1 (Fournier and Willem [7: Theorem 4.2]). Let X be a
Banach space and suppose f ∈ C1(X,R) satisfies the Palais-Smale condition
(P-S). Fix two numbers a, b ∈ R with a < b such that the critical sets Ka and
Kb at level a and b respectively are empty. Then the number of critical points
of f in f−1([a, b]) is at least Catfb,fa(f b).

4. The Mountain Circle Theorem

We are now ready to prove the Mountain Circle Theorem. In the following,
X will be a Banach space and f ∈ C1(M,R) a functional.

Theorem 4.1 (The Mountain Circle Theorem). Let a, b ∈ R with
a < b. Suppose f satisfies the Palais-Smale condition (P-S) in f−1([a,+∞))
and there exist 0 ≤ r1 < r2 < r3 such that

1. f(x, v) ≤ a for ‖v‖ = r1 or ‖v‖ = r3 and for any x ∈ X

2. f(x, v) > b for ‖v‖ = r2 and for any x ∈ X.
Then f has at least two critical points in (X × Rn) \ fa.
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Proof. We will use Theorem 3.1 to prove the assertion. Suppose first r1 >
0. Let us prove that, for ε > 0 small enough, we have CatX×Rn,fa+ε(X×Rn) ≥
2. For ε ∈ (0, b− a), fa+ε is disconnected. Set A = {v ∈ Rn : r1 ≤ ‖v‖ ≤ r3}.
The set fa+ε ∩ (X × A) is of the form F1 ∪ F2, where F1 and F2 are disjoint
closed sets. In fact, if we set respectively

F1 = fa+ε ∩ (X ×A) ∩ (
X ×B(0, r2)

)

F2 = fa+ε ∩ (X ×A) ∩ [
X × (Rn \B(0, r2))

]

we have easily fa+ε ∩ (X × A) = F1 ∪ F2 and F1 ∩ F2 = ∅, because fa+ε

does not meet X × ∂B(0, r2). Moreover, we have X × ∂B(0, r1) ⊂ F1 and
X × ∂B(0, r3) ⊂ F2. The homotopy

h :
(
fa+ε ∩ (X ×A)

)× [0, 1] → X ×A

defined by

h(x, v, t) =

{ (
x, (1− t)v + tr1

v
‖v‖

)
if (x, v) ∈ F1, t ∈ [0, 1](

x, (1− t)v + tr3
v
‖v‖

)
if (x, v) ∈ F2, t ∈ [0, 1]

shows that fa+ε ∩ (X ×A) is touch and stop deformable into X × ∂A relative
to X × ∂A. By Proposition 3.3 we have

CatX×Rn,fa+ε(X × Rn) ≥ CatX×Rn,fa+ε(X ×A)

= CatX×A,fa+ε∩(X×A)(X ×A)

≥ CatX×A,X×∂A(X ×A)

≥ CatA,∂A(A).

By Proposition 3.1 we have CatA,∂A(A) = 2, so the result is proved. If r1 = 0,
by applying Remark 3.1 we get also the result

References

[1] Ambrosetti, A.: Critical points and nonlinear variational problems. Cours de
la chaire Lagrange. Bull. Soc. Math. France 120 (1992), No. 2.

[2] Ambrosetti, A. and P. H. Rabinowitz.: Dual variational methods in critical
point theory and applications. J. Funct. Anal. 14 (1973), 349 – 381.

[3] Comparato, S.: Un confronto fra vari metodi variazionali di tipo Lusternik-
Schnirelman. Ph.D. Thesis. Florence (Italy): University of Florence 2001.



998 S. Comparato

[4] Degiovanni, M.: Some basic tools of critical point theory. Some notes of the
course held at the 3rd International Summer School on the Calculus of Varia-
tions, September 28 - October 3, 1998, Scuola Normale Superiore, Pisa.

[5] Deimling, K.: Nonlinear Functional Analysis. Berlin - Heidelberg: Springer-
Verlag 1985.

[6] Fournier, G., Lupo, D., Ramos, M. and M. Willem: Limit relative category and
critical point theory. Dynamics Reported 3 (1994), 1 – 24.

[7] Fournier, G. and M. Willem: Multiple solutions of the forced double pendulum
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