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A Simple Proof
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Mountain Circle Theorem
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Abstract. In this paper we give an alternative proof of Fournier-Willem’s Mountain
Circle Theorem. Our proof, which is simpler than the original one proposed by
these authors, is based on a Lusternik-Schnirelman-type theory and some results of
elementary Brouwer degree theory.
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1. Introduction

The Mountain Circle Theorem has interesting applications to the theory of
ordinary differential equations in dynamics (see, for example, Fournier and
Willem [10]). The purpose of this note is to give an elementary proof of that
theorem due to Fournier and Willem [10]. As the name suggests, this theorem
is similar to the well-known Mountain Pass Theorem by Ambrosetti and Ra-
binowitz, but, under slightly different hypotheses, the result by Fournier and
Willem asserts the existence of at least two critical points (instead of one) of
a C! functional. The main tool used by Fournier and Willem in their proof
is a Lusternik-Schnirelman type theory, which they introduce in [7, 8, 10],
together with some advanced techniques of cohomology theory (see [10]).

In the present paper, to prove the Mountain Circle Theorem we still use
the Lusternik-Schnirelman-type theory introduced by Fournier and Willem
but, instead of cohomology, we use some elementary results of Brouwer degree
theory.

We wish to thank Prof. M. Furi for a stimulating conversation on the
subject of this note.
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2. Lusternik-Schnirelman category

In this section, X will be a topological space.

Definition 2.1. A subset A of X is said to be contractible in X if there
exist a point £y € X and a homotopy h : Ax[0,1] — X such that h(-,0) =14
and h(A,1) = {xo}.

Obviously, each subset of a contractible set is contractible.

We recall that a subset A of X is said to have category n in X if n is the
least positive integer such that A can be covered by n closed sets which are
contractible in X. If A cannot be covered by a finite number of such sets,
then by definition A has category +oo, while the category of the empty set is
always set to be 0. The category of A in X is denoted by cat x (A).

The following proposition shows some easy consequences of the definition
of Lusternik-Schnirelman category.

Proposition 2.1 (see, for example, Mawhin and Willem [14: Lemma
4.6]). Let A and B be subsets of a topological space X. Then:

1. If AC B C X, then catx(A) < catx(B).
2. catx (AU B) < catx(A) + catx(B).

3. If Ais closed and h : Ax[0,1] — X is a homotopy such that h(x,0) = x
for each x € A, then catx(A) < catx(h(A,1)).

Obviously, the category of a set A depends on the space in which A is
considered, as the following example shows.

Example 2.1. Let A = S C R%. We have catp2(A) = 1 because, as R? is
contractible in itself, A is contractible in R%. On the other hand, cat(A) = 2
since A is not contractible in itself and can be covered by two closed sets which
are contractible in A.

Definition 2.2. A normal space Xis called an absolute neighborhood re-
tract if, given any normal space Z in which X is imbedded as a closed subspace,
X is a retract of an open set in Z.

The next proposition shows the continuity property of the category on
compact subsets of metric absolute neighborhood retracts. In the following U
denotes the closure of U.

Proposition 2.2 (see, for example, Mawhin and Willem [14: Lemma 4.7]
or Palais [17: Theorem 6.3). Suppose that X is a metric absolute neighborhood
retract and A C X is compact. Then catx(A) < +oo and there exists an open

neighborhood U of A such that catx (U) = catx (A).
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3. Fournier-Willem relative categories

In this section we will introduce two relative categories due to Fournier and
Willem [7, 10], which generalize the Lusternik-Schnirelman category and are
used to estimate the number of critical points of a C' functional. Relative
categories play an important role in the proof of Fournier-Willem’s Mountain
Circle Theorem.

In the following, X will be a topological space and Y C X a closed subset.

Definition 3.1 (Fournier and Willem [7, 10]). A subset A of X is said
to be strongly deformable into a subset B of X relative to Y in X (denoted
by A <y B in X) if there exists a homotopy h : A x [0,1] — X such that
h(-,0) = 14, h(A,1) C B and h(y,t) = y for every y € ANY and every
t €10,1].

Observe that, if X D A DY, A is strongly deformable into Y relative to
Y in X if and only if YV is a strong deformation retract of A in X.

Definition 3.2 (Fournier and Willem [7, 10]). A subset A of X is said to
have weak category n in X relative to Y (or to be of the n-th weak category in
X relative to Y) if n is the least non-negative integer such that A C [J;_, 4;,
where A; is closed for any ¢ > 0, A; is contractible in X for each ¢ > 1 and
Ap is strongly deformable into Y relative to Y in X.

We will denote the weak category of A in X relative to Y by catx y (A),
set catx y (A) = +oo if A has no finite covering as above and catx y () = 0.

Definition 3.3 (Fournier and Willem [7, 10]). A subset A of X is said to
be touch and stop deformable into a subset B of X relative to Y in X (denoted
by A <y B in X) if there exists a homotopy h : A x [0,1] — X such that
h(-,0) =14, h(A,1) C B and, if h(xz,t) =y € Y for some 2z € A and t € [0, 1],
then h(z,s) =y for every s > t.

Definition 3.4 (Fournier and Willem [7, 10]). A subset A of X is said
to have strong category n in X relative to Y (or to be of the n-th strong
category in X relative to Y) if n is the least non-negative integer such that
A C !, A;, where A; is closed for any i > 0, A; is contractible in X \ Y for
each i > 1 and Ay is touch and stop deformable into Y relative to Y in X.

We denote the strong relative category by Cat x y (A) and set Catx y (A) =
+o00 if A has no finite covering as above and Catx y (0) = 0.

Clearly, in both Definitions 3.2 and 3.4, if A C X is closed, the inclusion
A C |J!,A; can be replaced with the equality A = |J;_, A;. Observe also
that, from the definitions, it is easily seen that catx y(A) < Catx y(A) for
every A C X.
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The next proposition will be used in the proof of the Mountain Circle
Theorem. In the papers by Fournier and Willem it is proved by using coho-
mology theory. In the present paper, we will give a simpler proof based on
Brouwer degree theory.

Before giving the result, we introduce some notation. Namely, given p > 0,
we will denote by B(0, p) C R™ the open ball of radius p centered at the origin
in R” and by B(0, p) its closure.

The following easy consequence of finite-dimensional degree theory is cru-
cial in the proof of Proposition 3.1 below.

Lemma 3.1 (Degiovanni [4: Lemma 2.7]). If U is a bounded open set in
R™ and 0 € U, then OU is not contractible in R™ \ {0}.

Proof. Suppose by contradiction that OU is contractible in R\ {0}, with
a contraction h : OU x [0,1] — R™ \ {0} such that A(0U,1) = {y}. Since the
topological degree is homotopy invariant and depends only on the values of
functions on the boundary (see, for example, Deimling [5: Theorem 3.1]), we
should have 0 = deg(y, U, 0) = deg(1y,U,0) = 1, which is a contradiction i

Propoposition 3.1. Let X = A= B(0, R)\B(0,7) C R™ with0 <r < R
andY = 0A = 0B(0,R) U0B(0,7). Then Catx y(A) = 2.

Proof. Clearly, A can be covered by two closed sets which are contractible
in X \ Y and a closed set which is touch and stop deformable into Y relative
to Y in X. Thus Catx y(A) < 2.

We need to show that Catx y(A) > 1. Suppose by contradiction A =
Ag U Ay, where Ag and A; are both closed in X = A, Ag <y Y and A; is
contractible in X \ Y. Without loss of generality we can suppose that 4g D Y.
So Ao must be disconnected, precisely of the form Ay = Ay, UAp r with Ag ,
and Ap r disjoint closed sets, Ag, D 0B(0,r) and A9 r D 0B(0,R). As Ag,
and Ag r are disjoint compact sets, we have dist(Ao,, Ao,r) = d > 0. Fix
e € (0, %] and consider the bounded open set

U. = {z € R" : dist(z,B(0,7) U Ag,,) < e}.

Obviously, U, contains 0 and 0U. C A;. By Lemma 3.1, QU. is not con-
tractible in R™ \ {0}, so a fortiori it is not contractible in X \ Y. As A; is a
superset of OU., it is not contractible in X \ Y, and this is a contradiction il

The following example shows that we may have catx y (A) < Catx y (A).

Example 3.1. Let X = A= B(0,2) C R? and Y = 0B(0,2) UB(0,1) C
R?. Then we have catx y(A) = 1 because A can be covered by two closed
subsets of X: one of these is strongly deformable into Y relative to Y in X,
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while the other is contractible in X. On the other hand, by arguing as in
Proposition 3.1 we can prove that Caty y (A4) = 2.

Remark 3.1. By an argument similar to that of Proposition 3.1 we can

prove also that, if X = A = B(0,R) (with R > 0) and Y = 9dB(0, R) U {0},
then Catx y(A4) = 2.

The next proposition shows some of the main properties of relative cate-
gories, which are generalizations of those of the Lusternik-Schnirelman cate-
gory. In the following, we will assume that A and B are closed in X.

Proposition 3.2 (Fournier and Willem [10: Proposition 2.4]). Let X be
a topological space and A, B C X closed subsets. Then:

1. If A C B, then catx y(A) < catx y(B).

2. If A<y B, then catx y(A) < catx y(B).

3. catx y(AUB) < catx y(A) + catx(B).

4. catx y(A) =0 if and only if A<y Y.

Furthermore, in each of these properties we can replace cat by Cat, provided
we replace <y Y by <y Y and, in Assertion 3, catx(B) by catx\y (B) with
the further condition X \'Y D B.

The next result shows the behavior of relative categories in relation to
supersets and retractions.

Proposition 3.3 (Fournier and Willem [10: Proposition 2.5]). Let X' D
XDA X' DY' DY, X'DA DA and X DY. Then:

1. CatX/7y(A) S CatX7y(A).
2. cath/(A) > cath(A), pTOUided Y'C X and cath(Y’) =0.

3. catx/ y/(A’") > catx y (A), if there exists a retraction r : X' — X such
that r(A’) D A and r~1(Y) =Y".

4. catx/ y(A") <catxy(A), if A\A=X'"\X=Y'\Y and X is closed
in X'.

Moreover, in each of these properties it is possible to replace cat by Cat.

The next proposition holds for cat, but not for Cat.

Proposition 3.4 (Fournier and Willem [10: Proposition 2.6]) Let X' D
XDA XDY and X' DY’ D Y. If there exists a retraction r : X' — X
such that r(Y') <y Y in X, then catx, y:(A") > catx y(A), provided A C A’.

In the following property it is not possible to replace Cat by cat.
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Proposition 3.5 (Excision property; Fournier and Willem [10: Proposi-
tion 2.7]). Given A C X andY C X, we have

Catx,y(A4) = Catx\yy\v(A\ V) = Catxnrynr(ANF),

for any subset V' of the interior of Y and any closed set F' such that X = FUY .
Now we give a proposition which is valid for Cat but not for cat.

Proposition 3.6 (Fournier and Willem [10: Proposition 2.8]). Suppose
{X;}jes is a finite family of disjoint non-empty closed sets whose union is X.
Then

Catxyy(A) = Z Ca;th,YﬂX]. (A N Xj).
JjeJ

Now, let us give a critical point result by Fournier and Willem, based on
the strong relative category, which will be used to prove the Mountain Circle
Theorem. First, we recall the Palais-Smale condition.

Definition 3.5 (see, for example, Mawhin and Willem [14] or Struwe
[20]). Let X be a Banach space. A map f € C'(X,R) satisfies the Palais-
Smale condition if

(P-S) Any sequence (z,,) in X such that (f(z,)) is bounded and df (z,) — 0
admits a convergent subsequence.

For any ¢ € R we will denote by f¢ the subset of M where f < c.

Theorem 3.1 (Fournier and Willem [7: Theorem 4.2]). Let X be a
Banach space and suppose f € C1(X,R) satisfies the Palais-Smale condition
(P-S). Fiz two numbers a,b € R with a < b such that the critical sets K, and
Ky at level a and b respectively are empty. Then the number of critical points

of fin f~'([a,b]) is at least Catpo sa(fP).

4. The Mountain Circle Theorem

We are now ready to prove the Mountain Circle Theorem. In the following,
X will be a Banach space and f € C'(M,R) a functional.

Theorem 4.1 (The Mountain Circle Theorem). Let a,b € R with
a < b. Suppose f satisfies the Palais-Smale condition (P-S) in f~!([a,+00))
and there exist 0 < ry < rq < rs such that

1. f(z,v) <a for||v|| =r1 or ||v|| =rs and for any x € X
2. f(z,v) > b for ||v|]| =ry and for any v € X.
Then f has at least two critical points in (X x R™)\ fo.
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Proof. We will use Theorem 3.1 to prove the assertion. Suppose first r; >
0. Let us prove that, for ¢ > 0 small enough, we have Cat x ygn fa+e (X xR™) >
2. For e € (0,b—a), f**¢ is disconnected. Set A ={v € R" : r; < |jv|| < rs3}.
The set f2T¢ N (X x A) is of the form Fy U Fy, where Fy and F» are disjoint
closed sets. In fact, if we set respectively

Fi=f""n(X x A)n (X x B(0,r2))
By =f""n(X x A)Nn[X xR\ B(0,r2))]
we have easily f%T° N (X x A) = F; U Fy and Fy N Fy, = (), because fot¢
does not meet X x 9dB(0,r3). Moreover, we have X x 0B(0,71) C F} and
X x 0B(0,r3) C Fy. The homotopy
he (f7N (X xA))x[0,1] - X xA

defined by

(z,(1 —t)v+tri7y) if (z,v) € Fy,t €[0,1]

h(z,v,t) = { (%(1 —t)v + trs |:) if (z,v) € Fy,t € [0,1]

|e€

v

shows that f¢T¢ N (X x A) is touch and stop deformable into X x 9A relative
to X x 0A. By Proposition 3.3 we have

Catx xgn, fate (X x R™) > Cat x ygn fate (X X A)
= Catxxa,paten(xxa)(X x A)
> Catxxa,xxoa(X x A)
> Catg 9a(A).

By Proposition 3.1 we have Cat4 p4(A) = 2, so the result is proved. If r; =0,
by applying Remark 3.1 we get also the result il
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