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Extinction and Asymptotic Behavior
of Solutions to a

System Arising in Biology
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Abstract. A generalization to n species of a system by Bass et al. (cf. [4]), which
describes the self-organization of liver zones in a liver capillary in the case of two
species, is proposed. We establish some hypotheses on the coefficient parameters
of the system under which a part of the species is driven to extinction while the
remaining ones are attracted by the non-trivial stationary solution.
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1. The model

In their paper Bass et al. (cf. [4]) derived a model which describes the
self-organization of zones of enzymatic activity along a liver capillary lined
with cells of two kinds which contain different enzymes and compete for sites
on the wall of the capillary. This interaction between the cells arises from
consumption of oxygen from blood flowing through the liver in turn influencing
rates of division and of death of the two cell types. If we denote by ρi = ρi(t, x)
the density of the cell type i (i = 1, 2) as a function of time t and position x,
the process is modelled by the system of two integro-differential equations

∂%i

∂t
(t, x) = %i(t, x)

{
ki

(
σ − ρ1(t, x)− ρ2(t, x)

)− µi

− νi

f

∫ x

0

(
k1ρ1(t, ξ) + k2ρ2(t, ξ)

)
dξ

}
.

(1.1)
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The x-axis is taken along the blood flow in the capillary with inlet at x = 0 and
outlet at x = l. As division of cells is limited by the phenomenon of contact
inhibition, the total cell density ρ1 + ρ2 cannot exceed the fixed maximum
density σ of cell sites. In (1.1), kiρi is the rate of consumption of oxygen by
the i type cells which is transported by convection with the blood along the
capillary, f is the steady rate of blood flow through the capillary and µi is
the specific death rate of the i type cells. It is easy to see from the equations
of system (1.1) that if the growth rate kiσ is smaller than the death rate µi,
then ρi → 0 as t → ∞. The cells of type i go then to extinction everywhere
in the capillary. This leads us to suppose kiσ ≥ µi (i = 1, 2). The spatial
dependence enters in our model because death rates at each position x depend
on the cumulative oxygen consumption by all cells located upstream of x. This
competitive interaction between cells is mediated by oxygen consumption and
blood flow, and is a consequence of interplay of the unidirectional blood flow.

System (1.1) can be reduced to the simplified form (see [4, 9])

∂v1

∂t
= v1

{
1− v1 − v2 −

∫ x

0

(v1 + θv2) dξ

}

∂v2

∂t
= γv2

{
λ− v1 − v2 − η

∫ x

0

(v1 + θv2) dξ

}





(
t > 0
x ∈ (0, L)

)
(1.2)

with initial data

vi(x, 0) = vi0(x) (x ∈ [0, L], i = 1, 2) (1.3)

where v1 and v2 of system (1.2) are proportional to ρ1 and ρ2, respectively.
The coefficients λ, γ, η, θ are positive constants. The initial data vi0 are non-
negative bounded and measurable functions on [0, L] such that vi0(x) ≥ δ for
x ∈ [0, L] and some constant δ > 0. Holmåker proved in [9] that for some set
of coefficient parameters one of the two species is driven to extinction while
the other species stabilizes at its non-trivial stationary solution. As pointed
out in [4], this principle (known as principle of competitive exclusion) is the
mechanism by which these cells are self-organized in the liver capillary.

A generalization to n species and in the autonomous case of model (1.1)
was described by the same authors at the end of their paper (see [4: p. 193]).
In the present paper we propose a generalization of model (1.1) to the non-
autonomous case by considering the problem (for i = 1, ..., n)

∂ui

∂t
= ui



ai(t)−

n∑

j=1

bij(t)uj −
n∑

j=1

cij(t)
∫ x

0

uj(t, ξ) dξ





(t > 0, x ∈ [0, L])

ui(0, x) = u0i(x) (x ∈ [0, L])





(1.4)
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where [0, L] ⊂ R+.

We assume throughout this paper the following:
(i) The functions ai, bij , cij (1 ≤ i, j ≤ n) are non-negative, bounded and

continuous on (0,∞).
(ii) The initial data u0i (1 ≤ i ≤ n) are non-negative, measurable and

bounded on [0, L] such that u0i(x) ≥ δ (x ∈ [0, L]) for some constant δ > 0.

System (1.4) may be compared to similar ones such as the non-autonomous
Lotka-Volterra competitive systems (see [1, 2, 11 - 16]). As is common to
most multi-species systems of population dynamics, the basic questions to
investigate are extinction and global asymptotic stability of species of the
system. This paper provides some answers to these questions. Following
the works in [3, 12, 13, 15, 17] on competing Lotka-Volterra systems, we
derive some criterions which assure the balancing survival of the species. In
particular, we give sufficient conditions under which a part of the species is
driven to extinction everywhere in (0, L), whilst the remaining ones coexist
globally and stabilize at the non-trivial stationary solution of the system. This
result generalizes those obtained by Holmåker in [9] for some set of coefficient
parameters and extends the principle of competitive exclusion to the multi-
species case (see Corollary 2).

System (1.4) may be used as a model for a large class of processes. For
example, in the case of the distribution of certain plant species in a river with
a limited resource originating upstream (cf. [4]).

The paper is organized as follows. In Section 2 we prove global existence
and uniqueness of the solution. In Section 3 we establish a criterion which gives
the extinction of a part of the species in the non-autonomous case. The last
section, Section 4, is devoted to the autonomous case. We give, in particular,
a sufficient condition on the matrix coefficients to obtain global stability of
the stationary solution.

2. Existence and uniqueness

The existence and uniqueness may be proved in a standard manner. Never-
theless, for the readers convenience, we shall give below some details.

By a solution of problem (1.4) we will mean a function u = (u1, ..., un)
defined on I0 × [0, L], where I0 ⊂ R+ is some time interval containing the
initial time t = 0, u continuously differentiable in t for each fixed x ∈ [0, L],
measurable in x for each fixed t such that

∫ x

0
ui(t, ξ) dξ (i = 1, ..., n) is finite

and continuous in t for each fixed x, and satisfying (1.4).
Let X be the Banach space

X =
{

u = (u1, ..., un) : u1, ..., un measurable and bounded on (0, L)
}
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equipped with the norm ‖u‖X =
∑n

i=1 supx∈[0,L] |ui(x)|, and let the function
f = (f1, ..., fn) : R+ ×X → X be defined by

fi(t, u) = ui



ai(t)−

n∑

j=1

bij(t)uj −
n∑

j=1

cij(t)
∫ x

0

uj(ξ) dξ





for i = 1, ..., n. Consider now the Cauchy problem

du

dt
(t) = f(t, u) (t > 0)

u(0) = u0



 (2.1)

where u0 = (u01, ..., u0n) ∈ X. By a solution of this problem we mean a
strong continuously differentiable function u : I0 → X on some time interval
I0 ⊂ R+ containing the initial time t = 0, such that (2.1) is satisfied. We point
out here that any solution of problem (1.4) is a solution of problem (2.1).

Since the function f is continuous for (t, u) ∈ R+×X and locally Lipshitz
with respect to u, then by the fundamental theorem on differential equations
(cf. [7: Theorem 2.1]), problem (2.1) has a unique solution u defined on some
time interval I0 ⊂ R+. Define now the real-valued function

u(t, x) = (u(t))(x) (t ∈ I0, x ∈ [0, L]). (2.2)

We want to prove that u(t, x) defined in (2.2) is a solution of problem (1.4).

Proposition 1. The function u = u(t, x) defined in (2.2) is a positive
solution of problem (1.4). Furthermore, this solution is unique and global in
time.

Proof. It suffices to prove that u = u(t, x) is continuously differentiable
in t for each fixed x and satisfies (1.4). Let x be fixed. Since the linear form
px : X → Rn, u → u(x) is C∞(X;Rn) and

u(t, x) = px ◦ u(t), (2.3)

it follows that u is continuously differentiable in t as composition of two con-
tinuously differentiable functions t → u(t) and u → px(u). Furthermore, by
differentiating (2.3) with respect to t we obtain

∂u

∂t
(t, x) =

dpx

du
◦ du

dt
(t) = px ◦ du

dt
(t) =

du

dt
(t)(x).

Therefore u satisfies (1.4).
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The uniqueness of the solution of problem (1.4) follows from that of prob-
lem (2.1). System (1.4) may be written as ∂ui

∂t = ui(t, x)fi(t, x) (i = 1, ..., n)
for some continuous function fi in t. Therefore

ui(t, x) = u0i(x) exp
(∫ t

0

fi(s, x) ds

)
> 0

since u0i(x) > 0. We infer that ui(t, x) ≤ u0i(x) exp
( ∫ t

0
ai(s) ds

)
as long as

the solution exists. Consequently, ui is global in time

3. Extinction

In this section we shall use some comparison theorems on differential equa-
tions. Namely, solutions of our problem will be compared with those of the
non-autonomous logistic equation

dw

dt
= w(t)

{
a(t)− b(t)w(t)

}
(t > 0) (3.1)

where a and b are non-negative continuous and bounded functions on (0,∞).
To prove boundedness of solutions of system (1.4) we need the following

lemma which can be found in [14] or [16].

Lemma 1. Suppose that the coefficients a and b in (3.1) are non-negative,
continuous and bounded functions such that lim inft→∞ b(t) > 0. Then:

(1)a There is a constant M > 0 such that, for any solution w of equation
(3.1) with w(0) > 0, 0 < w(t) ≤ M for all t > 0.

(1)b If lim inft→∞ a(t) > 0, then there is a constant m > 0 such that
w(t) > m for all t > 0.

(2) Furthermore, if in addition limt→∞ a(t) = 0, then limt→∞ w(t) = 0
for any solution w of equation (3.1) such that w(0) > 0.

First let us state a result giving sufficient conditions yielding boundedness
and extinction of all the species.

Proposition 2. Assume that lim inft→∞ bii(t) > 0. Then there exist
constants Mi > 0 such that if ui is a solution of problem (1.4), then

ui(t, x) ≤ Mi (t > 0, x ∈ [0, L]).

Furthermore, if limt→∞ ai(t) = 0, then limt→∞ ui(t, x) = 0 for all x ∈
[0, L] (1 ≤ i ≤ n).
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Proof. Let us note that our solution ui satisfies ∂ui

∂t ≤ ui{ai(t)−bii(t)ui}.
We denote by wi (i = 1, ..., n) the solution of the ordinary differential system

dwi

dt
= wi{ai(t)− bii(t)wi(t)} (t > 0)

wi(0) = ‖u0i‖∞





where ‖u0i‖∞ = supx∈[0,L] u0i(x). By the monotonity property of the logistic
equation (3.1) (see, for example, [14]) we have

ui(t, x) ≤ wi(t) (t > 0, x ∈ [0, L]).

Since lim inft→∞ bii(t) > 0, then in view of Lemma 1 there is a constant
Mi > 0 such that wi(t) ≤ Mi. Hence, ui(t, x) ≤ Mi for t > 0 and x ∈ [0, L].
The second part of the proposition follows readily from the second part of
Lemma 1

By adapting and improving the techniques introduced by Montes de Oca
et al. [12, 13] and by Teng et al. [15] on competing Lotka-Volterra systems
we can derive the following extinction result. For this let 1 ≤ r < n be an
integer and consider the following assumption:

(H1) (i) lim inft→∞ bii(t) > 0 for each 1 ≤ i ≤ n.

(ii) For each integer k > r there is an ik < k such that

lim inf
t→∞

aik
(t)

lim inf
t→∞

bikj(t)

lim inf
t→∞

cikj(t)





> 0 and
lim sup

t→∞
ak(t)
aik

(t)
< lim inf

t→∞
bkj(t)
bikj(t)

lim sup
t→∞

ak(t)
aik

(t)
< lim inf

t→∞
ckj(t)
cikj(t)

for j = 1, ..., k.

Theorem 1. Suppose there is an 1 ≤ r < n such that hypothesis (H1)
holds. Then

(a) limt→∞ ui(t, x) = 0 (x ∈ [0, L])

(b)
∫ L

0

∫∞
0

ui(t, x) dtdx < ∞
for r + 1 ≤ i ≤ n. Furthermore, the convergence in assertion (a) is exponen-
tial in X, the space of bounded and measurable functions equipped with the
supremum norm.

Proof. We prove the theorem by induction on k. First, we prove that
limt→∞ un(t, x) = 0 and

∫∞
0

un(s, x) ds < ∞. From hypothesis (H1) there
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exist real numbers αn, εn, ηn > 0 such that

ain
(t)

binj(t)

cinj(t)





> ηn,
an(t)
ain

(t)
< αn − εn,

bnj(t)
binj(t)
cnj(t)
cinj(t)





> αn

for j = 1, . . . , n and for t ≥ Tn where Tn is sufficiently large. This implies

an(t)− αnain
(t) < −εnηn =: −δn

αnbinj(t)− bnj(t) < 0

αncinj(t)− cnj(t) < 0

(3.2)

for t ≥ Tn and j = 1, ..., n. Define now the function

Vn(t, x) = un(uin)−αn (t > 0, x ∈ [0, L]).

From (1.4) and assumption (ii) in Section 1 we have

uin(t, x) = u0in(x) exp
( ∫ t

0

[
ain(s)−

n∑

j=1

binj(s)uj

−
n∑

j=1

cinj(s)
∫ x

0

uj(s, ξ) dξ

]
ds

)

≥ δ exp


−

n∑

j=1

‖binj‖∞Mjt−
n∑

j=1

L‖cinj‖∞Mjt




=: δ′in
> 0

(3.3)

where δ′in
is independent on x. The function Vn is then well defined and

differentiable with respect to t for each fixed x. Differentiation of Vn with
respect to t using (1.4) yields

∂Vn

∂t
= −αn(uin)t(uin)−αn−1un + (uin)−αn(un)t

= Vn(t, x)
{

(an − αnain) +
n∑

j=1

(αnbinj − bnj)uj

+
n∑

j=1

(αncinj − cnj)
∫ x

0

uj(t, ξ) dξ

}
.
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In view of inequalities (3.2) we get

∂Vn

∂t
≤ −δnVn(t, x) (t ≥ Tn, x ∈ [0, L]).

Then the Gronwall lemma implies

Vn(t, x) ≤ Vn(Tn, x) exp(−δn(t− Tn)) (t ≥ Tn).

We entail from (3.3) that Vn(Tn, x) ≤ Mn(δ′in
)−αn =: δ∗n where δ∗n is indepen-

dent on x and therefore Vn(t, x) ≤ δ∗n exp(−δn(t−Tn)). Back to un we deduce
that

un(t, x) ≤ (Min
)αnδ∗n exp(−δn(t− Tn)) = Rn exp(−δn(t− Tn))

for t ≥ Tn and x ∈ [0, L]. This implies limt→∞ un(t, x) = 0. Finally, inte-
grating both sides over (Tn,∞) we get

∫∞
Tn

un(s, x) ds ≤ Cn for any x ∈ [0, L]
where Cn is independent of x. Hence

∫∞
0

un(s, x) ds < ∞.
Suppose now that we have obtained

lim
t→∞

ui(t, x) = 0 and
∫ ∞

0

ui(s, x) ds < C (3.4)

for all i > k where k is such that k > r and C is independent of x. We want
to show that

lim
t→∞

uk(t, x) = 0 and
∫ ∞

0

uk(s, x) ds < ∞.

Using hypothesis (H1) once again there are ik < k, αk > 0 and δk > 0 such
that

ak(t)− αkaik
(t) < −δk

αkbikj(t)− bkj(t) < 0

αkcikj(t)− ckj(t) < 0

(3.5)

for j = 1, ..., k and t > Tk. Consider now the function

Vk(t, x) = uk(uik
)−αk (t > 0, x ∈ [0, L]).

We have

∂Vk

∂t
= Vk(t, x)× (ak − αkaik

) + Vk(t, x)
( k∑

j=1

(αkbikj − bkj)uj

)

+ Vk(t, x)
{ k∑

j=1

(αkcikj − ckj)
∫ x

0

uj(t, ξ) dξ + fk(t, x)
}
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where fk contain the residual terms

fk(t, x) =
n∑

j=k+1

(αkbikj − bkj)uj +
n∑

j=k+1

(αkcikj − ckj)
∫ x

0

uj(t, ξ) dξ.

From inequalities (3.5) ∂Vk

∂t ≤ Vk{−δk +fk(t, x)} follows and by the induction
hypothesis (3.4)

∫ t

Tk

|fk(s, x)| ds ≤
n∑

j=k+1

(
αk‖bikj‖∞ + ‖bkj‖∞

) ∫ x

Tk

uj(t, ξ) dξ

+
n∑

j=k+1

(
αk‖cikj‖∞ + ‖ckj‖∞

) ∫ t

Tk

∫ x

0

uj dξds

< βk

where βk is independent of t and x. Then

Vk(t, x) ≤ Vk(Tk, x) exp
(− δk(t− Tk) + βk

)
(t ≥ Tk).

We deduce that

uk(t, x) ≤ Rk exp
(− δk(t− Tk) + βk

)
(t ≥ Tk).

Consequently,

lim
t→∞

uk(t, x) = 0 and
∫ ∞

0

uk(t, x) dt < ∞.

This completes the proof of Theorem 1

In the following we use the notations

f l = inf
t≥0

f(t) and fm = sup
t≥0

f(t).

Corollary 1. Let r be an integer, 1 ≤ r < n, and assume that the fol-
lowing hypothesis holds:

(H1)′ If bl
ii > 0 (1 ≤ i ≤ n) and to each k > r there corresponds ik < k

such that al
ik

, bl
ikj , c

l
ikj > 0 and

am
k

al
ik

<
bl
kj

bm
ikj

(j = 1, ..., k) (3.6)

am
k

al
ik

<
cl
kj

cm
ikj

(j = 1, ..., k), (3.7)
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then the species ur+1, ..., un go to extinction exponentially in X.

Remark 1. One can point out that the conclusion of Theorem 1 remains
true if either of bm

ikj or cm
ikj vanishes since the inequalities in (3.5) remain true.

Remark 2. If cij ≡ 0, then system (1.4) reduces to the well known non-
autonomous Lotka-Volterra competitive system

∂ui

∂t
= ui

{
ai(t)−

n∑

j=1

bij(t)uj

}
.

Hence, if (3.6) holds, then the species ur+1, ..., un go to extinction. This result
was derived in [1 - 3, 12, 13].

4. The autonomous case

In this section we consider system (1.4) with non-negative constant coefficients

∂ui

∂t
= ui



ai −

n∑

j=1

bijuj −
n∑

j=1

cij

∫ x

0

uj dξ





(1 ≤ i ≤ n, t > 0)

(4.1)

where bii > 0. We proved in Section 3 that if hypothesis (H1)′ holds, then
ur+1, ..., un are driven to extinction everywhere in [0, L].

The purpose of the present section is to establish sufficient conditions
assuring global attractivity of the non-trivial stationary solution for the re-
maining species u1, ..., ur of system (4.1), that is the solution u∗i of the system

ai −
r∑

j=1

biju
∗
j −

r∑

j=1

cij

∫ x

0

u∗jdξ = 0 (x ∈ [0, L], 1 ≤ i ≤ r). (4.2)

Before stating our next result on global asymptotic stability we first in-
troduce the concept of Volterra-Lyapunov stability of matrices (cf. [8]) and
precise some hypotheses on the coefficients.

Definition. We say that a matrix A = (αij)n
i,j=1 is Volterra-Lyapunov

stable if there is a positive diagonal matrix D = Diag(d1, ..., dn) (i.e. d1, ..., dn

> 0) and some real numbers γi > 0 verifying

1
2
ζ>(DA + A>D)ζ =

n∑

i,j=1

diαijζiζj ≥
n∑

i=1

γiζ
2
i (4.3)

for any ζ = (ζ1, ..., ζn)> ∈ Rn.

The following proposition ensures existence, uniqueness and positivity of
the stationary solution u∗i .



Extinction and Asymptotic Behavior 27

Proposition 3. Assume that there is 1 ≤ r ≤ n such that:
(i) The sub-matrix (bij)r

i,j=1 is non-singular with bii > 0 (1 ≤ i ≤ r)
and all the off-diagonal elements of the matrix B−1C are non-positive.

(ii) ai >
∑r

j=1
j 6=i

aj
bij

bjj
for 1 ≤ i ≤ r.

Then the stationary system (4.2) has a unique solution u∗i > 0 (1 ≤ i ≤ r)
which is positive and continuous on [0, L].

Proof. It is easy to check that system (4.2) is equivalent to the system

r∑

j=1

bij(u∗j )x(x) +
r∑

j=1

ciju
∗
j (x) = 0 (0 < x ≤ L)

r∑

j=1

biju
∗
j (0) = ai





.

In turn, this system may take the form

(u∗)x + B−1Cu∗ = 0 (0 < x ≤ L)

u∗(0) = B−1A

}
(4.4)

because the matrix B = (bij)r
i,j=1 is non-singular. Here u∗ = (u∗1, ...,

∗
r ),

C = (cij)r
i,j=1 and A = (a1, ..., ar). By classical results on differential sys-

tems, system (4.4) has a unique solution restricted on the interval [0, L] which
is continuously differentiable on [0, L]. This leads to the existence and unique-
ness of a solution to system (4.2). Now, since ai >

∑r
j=1,j 6=i aj

bij

bjj
we can prove

(see [5: Lemma 4.1.1] or [6: p. 429]) that B−1A > 0 and thereafter u∗(0) > 0.
So, by the comparison principle for linear systems (see [5: Corollary 3.6.9]) it
follows that u∗(x) > 0 for x ∈ [0, L]

The following lemma on the persistence of Lotka-Volterra systems can be
found in [11: Theorem 3.1].

Lemma 2. Consider the autonomous competitive Lotka-Volterra system

dwi

dt
= wi

{
di −

n∑

j=1

fijwj

}
(t > 0) (4.5)

where di and fij are non-negative constants with di > 0 and fii > 0. Assume
the following:

(1) The matrix F = (fij)n
i,j=1 is non-singular and for X = (x1, ..., xn)T

the algebraic system
∑n

j=1 fijxj = di has one positive solution (x0
1, ..., x

0
n)T .
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(2) The inverse matrix F−1 = (τij)n
i,j=1 is such that τii > 0 and τij ≤ 0

for i 6= j.
Then the positive solutions of system (4.5) are persistent.

We will use the following new hypothesis

(H2) Assume that there is r (1 ≤ r ≤ n) such that:

(i) For each integer k > r there is ik < k such that aik
, bikj , cikj > 0 and

ak

aik
<

bkj

bikj
as well as ak

aik
<

ckj

cikj
for j = 1, ..., k.

(ii) bii > 0 for 1 ≤ i ≤ n and ai >
∑r

j=1,j 6=i aj
bij

bjj
for 1 ≤ i ≤ r.

(iii) The sub-matrix (bij)n
i,j=1 is Volterra-Lyapunov stable and non-singu-

lar with an inverse matrix B−1 = (βij) such that βii > 0, βij ≤ 0 for
i 6= j and the sub-matrix (cij)r

i,j=1 is diagonal.

Theorem 2. Suppose there is 1 ≤ r ≤ n such that Hypothesis (H2) holds.
Then there are constants β, ω > 0 and a large time T > 0 such that if ui is
the solution of problem (1.4), then

r∑

i=1

|ui(t, x)− u∗i (x)| ≤ βe−ωt (t > T, x ∈ [0, L]) (4.6)

while ur+1, ..., un go to extinction exponentially in X (eventually ).

Proof. The proof is based on an improvement of an idea by Holmåker [9]
using the induction principle and a Lyapunov functional. Denote

u∗i = min
x∈[0,L]

u∗i (x)

u∗i = max
x∈[0,L]

u∗i (x).
(4.7)

From Hypothesis (H2) and Proposition 3, u∗i > 0. Denote by Mi an upper
bound of ui (see Proposition 2). Since the algebraic system

r∑

j=1

bijxj =
r∑

j=1

biju
∗
j (1 ≤ i ≤ r)

has one positive solution xi = u∗i > 0, then by continuity there are ε, δ > 0
sufficiently small such that the system

r∑

j=1

bijxj =
r∑

j=1

biju
∗
j − δ

r∑

j=1

cijMj − ε (4.8)
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has one positive solution (x0
1, ..., x

0
r)T . Now divide the interval [0, L] into N

parts [xk−1, xk] (k = 1, ..., N) so that xk − xk−1 = δ and xN ≥ L.
We prove Theorem 2 by induction on k. Suppose that we have found

βk−1, ωk−1, Tk−1 > 0 such that

|ui(t, x)− u∗i (x)| ≤ βk−1e
−ωk−1t (i = 1, ..., r) (4.9)

for t > Tk−1 and x ∈ [0, xk−1]. We would like to prove that there are βk >
βk−1, ωk < ωk−1, Tk > Tk−1 such that

r∑

i=1

|ui(t, x)− u∗i (x)| ≤ βke−ωkt (t > Tk, x ∈ [0, xk]).

Let x ∈ [xk−1, xk] and write that

∂ui

∂t
= ui

{
ai −

r∑

j=1

bijuj −
r∑

j=1

cij

∫ xk−1

0

uj(t, ξ) dξ

−
r∑

j=1

cij

∫ x

xk−1

uj(t, ξ) dξ

}

− ui

{ n∑

j=r+1

bijuj +
n∑

j=r+1

cij

∫ x

0

uj(t, ξ) dξ

}

for t > Tk−1. From Hypothesis (H2)/(i) and Theorem 1 we conclude the
existence of constants C1, γ > 0 (independent of x) and of a sufficiently large
time T ′ such that

n∑

j=r+1

bijuj +
n∑

j=r+1

cij

∫ x

0

uj(t, ξ) dξ ≤ C1e
−γt (4.10)

for t > T ′ and x ∈ [0, L]. If we put T ′k−1 = max(Tk−1, T
′), then from (4.2),

(4.9), (4.10) and the property of u∗j we have

∂ui

∂t
≥ ui

{
ai −

r∑

j=1

bijuj −
r∑

j=1

cij

∫ xk−1

0

u∗j (ξ) dξ

−
r∑

j=1

cijxk−1βk−1e
−ωk−1t − δ

r∑

j=1

cijMj − C1e
−γt

}

≥ ui

{ r∑

j=1

biju
∗
j − δ

r∑

j=1

cijMj −
r∑

j=1

cijxk−1βk−1e
−ωk−1t

−
r∑

j=1

bijuj − C1e
−γt

}
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for t > T ′k−1. Choose then Tk > T ′k−1 sufficiently large so that

r∑

j=1

cijxk−1βk−1e
−ωk−1t + C1e

−γt < ε

for t > Tk, where ε is defined in (4.8). We obtain

∂ui

∂t
≥ ui

{ r∑

j=1

biju
∗
j − δ

r∑

j=1

cijMj − ε−
r∑

j=1

bijuj

}
(4.11)

for t > Tk and x ∈ [xk−1, xk]. Now by (3.3) there is a constant δ′i > 0
independent of x such that ui(Tk, x) ≥ δ′ for any x ∈ [0, L]. Thus by Lemma
2 and the comparison principle (see [10]) the species ui (1 ≤ i ≤ r) are
persistent. So there are constants α′k > 0 (independent of x) such that

ui(t, x) > α′k (1 ≤ i ≤ r) (4.12)

for t > Tk and x ∈ [xk−1, xk]. As in [9] let us introduce the Lyapunov
functional

V (t) =
r∑

i=1

di

∫ xk

xk−1

{
(ui − u∗i )− u∗i ln

ui

u∗i

}
dx

where di are the coefficients of the Volterra-Lyapunov stability (see Hypothesis
(H2)/(iii)). Put wi(t, x) = ui(t, x)− u∗i (x). Since the function

f(v, v0) =
v − v0 − v0 ln v

v0

(v − v0)2
(0 < v0 6= v)

is decreasing in v for fixed v0 and decreasing in v0 for fixed v and since ui > α′k
for t > Tk, we have

0 < f(Mi, u
∗
i ) ≤ f(ui, u

∗
i ) ≤ f(α′k, u∗i ).

This implies the existence of constants ck > 0 depending on α′k and of d > 0
such that

d

r∑

i=1

γiw
2
i ≤

r∑

i=1

di

{
(ui − u∗i )− u∗i ln

ui

u∗i

}
≤ ck

r∑

i=1

γiw
2
i (t > Tk) (4.13)

where γi is as in the definition of the Volterra-Lyapunov stability. Integrating
all three sides of (4.13) over (xk−1, xk) we obtain

d

r∑

i=1

γi

∫ xk

xk−1

w2
i dx ≤ V (t) ≤ ck

r∑

i=1

γi

∫ xk

xk−1

w2
i dx. (4.14)
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A differentiation of V = V (t) with respect to t along the solution yields

V ′(t) =
r∑

i=1

∫ xk

xk−1

di(ui − u∗i )
{

ai −
r∑

j=1

bijuj −
r∑

j=1

cij

∫ x

0

uj(t, ξ) dξ

}
dx

−
r∑

i=1

∫ xk

xk−1

di(ui − u∗i )
{ n∑

j=r+1

bijuj +
n∑

j=r+1

cij

∫ x

0

uj(t, ξ) dξ

}
dx.

Using the definition of u∗i and since the matrix (cij)r
i,j=1 is diagonal, we get

V ′(t) ≤ −
∫ xk

xk−1

r∑

i,j=1

dibij(ui − u∗i )(uj − u∗j ) dx

−
r∑

i=1

dicii

∫ xk

xk−1

(ui − u∗i )
∫ xk−1

0

(ui − u∗i ) dξ

− 1
2

r∑

i=1

dicii

( ∫ xk

xk−1

(ui − u∗i ) dξ

)2

−
∫ xk

xk−1

r∑

i=1

di(ui − u∗i )
( n∑

j=r+1

bijuj

)
dx

−
∫ xk

xk−1

r∑

i=1

di(ui − u∗i )
( n∑

j=r+1

cij

∫ x

0

uj(ξ) dξ

)
dx.

Now from (4.3), (4.9), (4.10) we have

V ′(t) ≤ −
r∑

i=1

γi‖ui − u∗i ‖2L2(xk−1,xk)

+
r∑

i=1

diciiδKixk−1βk−1e
−ωk−1t + δ

r∑

i=1

diKiC1e
−γt

where the constants Ki are such that |ui− u∗i | ≤ Ki for x ∈ [0, L] and t > Tk.
Therefore, by the right-hand side inequality in (4.14),

V ′(t) ≤ − 1
ck

V (t) +
r∑

i=1

diciiδKixk−1βk−1e
−ωk−1t + δ

r∑

i=1

diKiC1e
−γt.

From the Gronwall lemma, after a simple integration of this relation, we obtain
using the left-hand side inequality in (4.14) the existence of constants C ′, ω′ >
0 such that

‖ui − u∗i ‖2L2(xk−1,xk) ≤ C ′e−ω′t (t > Tk, 1 ≤ i ≤ r). (4.15)
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Let us next introduce the function

W (t, x) =
r∑

i=1

di

{
(ui − u∗i )− u∗i ln

ui

u∗i

}
. (4.16)

As in the differentiation of V (t) we find after use of (4.3) and (4.10)

∂W

∂t
≤ −

r∑

i=1

γi(ui − u∗i )
2 +

r∑

i=1

diKicii

∫ xk−1

0

|ui − u∗i | dx

+
r∑

i=1

diKicii

∫ x

xk−1

|ui − u∗i | dx +
r∑

i=1

diKiC1e
−γt

for t > Tk. Using the right side of (4.13), (4.9) and the Hölder inequality we
find

∂W

∂t
≤ − 1

ck
W (t, x) +

r∑

i=1

diKiciixk−1βk−1e
−ωk−1t

+
r∑

i=1

diKicii

√
δ‖ui − u∗i ‖L2(xk−1,xk) +

r∑

i=1

diKiC1e
−γt.

Now, from (4.15),

∂W

∂t
≤ − 1

ck
W (t, x) +

r∑

i=1

diKiciixk−1βk−1e
−ωk−1t

+
r∑

i=1

diKicii

√
δC ′e−

1
2 ω′t +

r∑

i=1

diKiC1e
−γt.

The Gronwall Lemma leads to

W (t, x) ≤ C ′′e−ω′′t (t > Tk, x ∈ [xk−1, xk]) (4.17)

for some constants C ′′, ω′′ > 0. Combining this inequality and the very left-
hand side of (4.13) we find

r∑

i=1

γiw
2
i ≤

C ′′

d
e−ω′′t.

Finally, one can choose βk > βk−1 and ωk < ωk−1 such that
r∑

i=1

|wi| ≤ βke−ωkt (t > Tk, x ∈ [xk−1, xk]).

The case k = 1 can be easily checked from the previous considerations
and steps since ui are persistent in [0, x1] for x1 sufficiently small. The proof
of the Theorem 2 is complete
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Proposition 4. Assume that there is 1 ≤ r ≤ n such that:
(i) The sub-matrix (bij)r

i,j=1 is diagonal with bii > 0.

(ii) ai > L
∑r

j=1 cij
aj

bjj
for all 1 ≤ i ≤ r.

Then system (4.2) has a unique positive solution u∗i (x) > 0 for x ∈ [0, L] and
i = 1, ..., r.

Proof. Since the matrix (bij)r
i,j=1 is diagonal, system (4.2) takes the form

biiu
∗
i +

∫ x

0

r∑

j=1

ciju
∗
j (ξ) dξ = ai (1 ≤ i ≤ r). (4.18)

Define the set

X =
{

z = (z1, ..., zr) ∈ C([0, L];Rr) : 0 ≤ zi(x) ≤ ai

bii

(
x ∈ [0, L]
1 ≤ i ≤ r

)}

and the operator

Az = (A1z, ..., Arz) : C([0, L];Rr) → C([0, L];Rr)

(Aiz)(x) =
ai

bii
− 1

bii

∫ x

0

r∑

j=1

cijzj(ξ) dξ (x ∈ [0, L]).

We can easily check that X is a closed, bounded and convex set and that A
is bounded on C([0, L];Rr). Let z ∈ X. Then Aiz ≤ ai

bii
and by assumption

(ii) of Proposition 4 we have

Aiz ≥ ai

bii
− 1

bii

∫ x

0

r∑

j=1

cij
aj

bjj
dξ ≥ ai

bii
− L

bii

r∑

j=1

cij
aj

bjj
> 0, (4.19)

so Az ∈ X. Now, since the set AX is equicontinuous, then by the Arzela-
Ascoli theorem AX has a compact closure, and by the Schauder fixed point
theorem A has a fixed point u∗ ∈ X which is the solution of system (4.18).
Further, by (4.19),

u∗i (x) = (Aiu
∗)(x) =

ai

bii
− 1

bii

∫ x

0

r∑

j=1

ciju
∗
jdξ

≥ ai

bii
− L

bii

r∑

j=1

cij
aj

bjj

> 0

for any x ∈ [0, L]. By the uniqueness property of system (4.18) (see Proposi-
tion 3) u∗ is the unique positive solution of system (4.18)
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Theorem 2 is completed by the following result.

Theorem 3. Assume that there is 1 ≤ r ≤ n such that:

(H2)′ (i) For each integer k > r there is ik < k such that aik
, bikj , cikj > 0

and ak

aik
<

bkj

bikj
as well as ak

aik
<

ckj

cikj
for j = 1, ..., k.

(ii) ai > L
∑r

j=1 cij
aj

bjj
for all i = 1, ..., r.

(iii) The sub-matrix (bij)r
i,j=1 is diagonal with bii > 0 (1 ≤ i ≤ n) and

the sub-matrix C = (cij)r
i,j=1 is symmetric and positive definite.

Then there are constants β, ω > 0 and a large time T > 0 such that

r∑

i=1

|ui(t, x)− u∗i (x)| ≤ βe−ωt (t > T , x ∈ [0, L])

while ur+1, ..., un are driven to extinction exponentially in X (eventually).

Proof. The proof is essentially the same as that of Theorem 2 with some
minor refinements. Since the matrix (bij)r

i,j=1 is diagonal, inequality (4.11) is
reduced to an inequality closely related to the well known Logistic equation
(3.1). Choosing δ and ε sufficiently small, by Lemma 1/(b) there exists an
α′′k > 0 such that ui > α′′k (1 ≤ i ≤ r) for t > Tk−1 and x ∈ [xk−1, xk]. Put
Tk = max(Tk−1, T

′), where T ′ is given in (4.10). Now using the functional

V (t) =
r∑

j=1

∫ xk

xk−1

{
(ui − u∗i )− u∗i ln

ui

u∗i

}
dx,

as in the proof of Theorem 2 with the help of inequality (4.10), the fact that

r∑

i,j=1

cij

∫ xk

xk−1

(
wi

∫ x

xk−1

wjdξ

)
dx

=
1
2

r∑

i,j=1

cij

( ∫ xk

xk−1

wi(t, ξ) dξ

)(∫ xk

xk−1

wj(t, ξ) dξ

)

≥ 0

and the induction hypothesis (4.9) we obtain

V ′(t) ≤ −
r∑

i=1

bii

∫ xk

xk−1

(ui − u∗i )
2dx

+
r∑

i,j=1

cij

(∫ xk−1

0

|ui − u∗i | dξ

)(∫ xk−1

0

|uj − u∗j | dξ

)
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+ δ

r∑

i=1

KiC1e
−γt

≤ −
r∑

i=1

bii

∫ xk

xk−1

(ui − u∗i )
2dx +

r∑

i,j=1

cijx
2
k−1β

2
k−1e

−2ωk−1t

+ δ

r∑

i=1

KiC1e
−γt

(4.20)

for t > Tk. By the property of the function f(ui, u
∗
i ) we can find constants

d′, c′k > 0 (depending on α′′k) such that

d′
r∑

i=1

biiw
2
i ≤

r∑

i=1

{
(ui − u∗i )− u∗i ln

ui

u∗i

}
≤ c′k

r∑

i=1

biiw
2
i . (4.21)

Integrating all sides herein over (xk−1, xk) we find

d′
r∑

i=1

bii

∫ xk

xk−1

w2
i dx ≤ V (t) ≤ c′k

r∑

i=1

bii

∫ xk

xk−1

w2
i dx (4.22)

by (4.20) and the right side of (4.22) as

V ′(t) ≤ − 1
c′k

V (t) +
r∑

i,j=1

cijx
2
k−1β

2
k−1e

−2ωk−1t + δ

r∑

i=1

KiC1e
−γt.

The Gronwall Lemma and the left-side inequality in (4.22) allow us to entail
that

‖ui − u∗i ‖2L2(xk−1,xk) ≤ C2e
−ω1t (t > Tk, 1 ≤ i ≤ r) (4.23)

for some constants C2, ω1 > 0. Calculating the derivative ∂W
∂t , where W =

W (t, x) is defined as in the proof of Theorem 2 with di = 1, taking into
account that the matrix (bij)r

i,j=1 is diagonal, we get after use of (4.21), of
the Hölder inequality and of relations (4.23) and (4.9) that

∂W

∂t
≤ −

r∑

i=1

bii(ui − u∗i )
2 +

r∑

i,j=1

cijKixk−1βk−1e
−ωk−1t

+
r∑

i,j=1

cijKi

√
L‖uj − u∗j‖L2(xk−1,xk) +

r∑

i=1

KiC1e
−γt

≤ − 1
c′k

W +
r∑

i,j=1

cijKixk−1βk−1e
−ωk−1t +

r∑

i,j=1

cijKi

√
LC2e

− 1
2 ω1t

+
r∑

i=1

KiC1e
−γt.
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Using Gronwall’s lemma once again and the left-hand side of (4.21) we infer
the existence of positive constants βk > βk−1 and ωk < ωk−1 such that

r∑

i=1

|wi| ≤ βke−ωkt (t > Tk, x ∈ [xk−1, xk]).

This completes the proof of Theorem 3

In the particular case when r = 1, Theorem 2 leads to the following

Corollary 2.

(i) Assume that bii > 0 (1 ≤ i ≤ n), a1, b1j , c1j > 0 (j = 1, ..., n) and
that

ak

a1
<

bkj

b1j
,
ckj

c1j
(j = 1, ..., n). (4.24)

Then the species u2, ..., un are driven to extinction exponentially in X, while
u1 → u∗1(x) = a1

b11
e−

c11
b11

x in X as t →∞.

(ii) If there is a permutation φ of the indices {1, ..., n} under which the co-
efficients ai, bij , cij satisfy (4.24), then uφ−1(1) → u∗φ−1(1), while the remaining
species are driven to extinction exponentially in X.

The following example (see [9]) is a particular case of Corollary 2.

Example. Back to system (1.2)− (1.3), we have the following assertions:

(1) If λ < min(1, η), then limt→∞ v1(t, x) = e−x and limt→∞ v2(t, x) = 0
for x ∈ [0, L].

(2) If λ > max(1, η), then limt→∞ v1(t, x) = 0 and limt→∞ v2(t, x) =
λe−ηθx for x ∈ [0, L].

Indeed, since λ < min(1, η), then (4.24) holds (n = 2). So, by Corol-
lary 2/(i), limt→∞ v1(t, x) = e−x and limt→∞ v2(t, x) = 0 for any x ∈ [0, L].
Further, assertion (2) follows from Corollary 2/(ii) by use of the permutation
φ(1) = 2, φ(2) = 1.
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