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Solvability of
Two-Point Boundary Value Problems
for Fourth-Order
Nonlinear Differential Equations at Resonance

Yuji Liu and Weigao Ge

Abstract. Under a resonance condition involving a two-point boundary value prob-
lem for a fourth-order nonlinear differential equation, we show its solvability.
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1. Introduction

Let f: [0,1] x R* be a continuous function and e € L'[0,1]. We consider the
fourth-order differential equation

e W(t) = f(t,x(t), 2 (1), 2" (t), 2" (t)) +e(t) (0<t<]) (1)
subject to the boundary value conditions
2'(0) = 2'(1) = 2" (0) = 2" (1) = 0. (2)

Boundary value problems of this form were used to understand the static
equilibrium of an elastic beam supported by sliding clamps. We refer the
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reader to [11, 12] and the references therein. For example, Gupta [12] studied
the solvability of the boundary value problem

—y @ + gt y(t) =e(t) (0<t<1) }
Y (0) =y (m) = 4" (0) = 4" (x) = 0 '

Since (2) implies that the linear operator Lz = 2(*) defined in a suitable Ba-
nach space is not invertible, we call (2) a resonance boundary value condition.
There are many other papers concerning the existence of solutions or positive
solutions of fourth-order differential equations subjected to different kind of
non-resonance boundary value conditions (see [1 - 6, 8, 10, 13, 14, 16] and the
references therein).

To the best of our knowledge, the solvability of boundary value problem
(1) - (2) has not been studied till now. The purpose of this paper is to
establish an existence result for problem (1) - (2). Our method is based on
the coincidence degree theory of Mawhin.

Now, we briefly recall some notations and an abstract existence result.
Let X and Y be Banach spaces, L : dom L C X — Y be a Fredholm operator
of index zero, P: X — X and Q : Y — Y be projectors such that

Im P = Ker L

Ker@ =ImL
X = Ker L + Ker P
Y=ImL+Im@Q.

It follows that the reduced operator
L|dom prkerp : dom LN Ker P — Im L

is invertible. We denote the inverse of that map by K,,.

If Q is an open bounded subset of X and dom L NQ # ), where () denotes
the empty set, the map N : X — Y will be called L-compact on Q if QN (Q)
is bounded and the product map K,(I — Q)N : Q — X is compact. The facts
we use are [15: Theorem 2.4] and [7: Theorem IV.13].

Theorem 1. Let L be a Fredholm operator of index zero and let N be
L-compact on Q. Assume that the following conditions are satisfied:
(i) Lz # ANz for every (z,\) € [(dom L/Ker L) N 09 x (0,1).
(ii) Nz ¢ Im L for every x € Ker L N 0N.

(iii) deg(AQN\KerL, QN KerlL, O) # 0, where A : Im L — Ker L is some
1somorphism.
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Then the equation Lx = Nz has at least one solution in dom L N €.

We use the classical spaces C3[0,1] and L'[0,1]. For z € C3[0, 1], we use
the norms ||z s = maxcpo 1] [2(t)| and

[} = max {[|2/loc, 12”0 12" [loc [l [loc }

and denote the norm in L'[0,1] by ||z|[;. We also use the Sobolev space
W41(0,1) defined by

w4l = {x : [0,1] — R‘ z, 2’ 2" " abs. cont.,z® e L0, 1]}

with its usual norm.

2. Main results

In this section, we shall prove the existence result for problem (1) - (2). Let
X = C3[0,1] and Y = L'0,1]. Define L to be the linear operator from
dom L C X to Y with

mmL:{xewmmﬂﬂfmpmﬂn:f%mzy%n:o}

and (Lz)(t) = ™ (t) for z € dom LN X, and we define N to be the nonlinear
operator from X to Y with

(Nz)(t) = f(t,z(t),2'(t), 2" (t),2"(t)) +e(t) (0<t<1)

for € X. Thus problem (1) - (2) can be written as Lz = Nz. We note that if
z € dom L, then [[z]] = max{[|z]|oc, [ [loc }, since [[2[| oo < (2" ][00 < [[2""||oo-
Lemma 1. The following results hold:
(i) KeL={zeX:z(t)=c (0<t<1) for some c € R}.

(i) ImL={yeY: [ y(s)ds=0}.
(iii) L is a Fredholm operator of index zero.

(iv) If Q is an open bounded subset such that dom L NQ # (), then N is
L-compact on €.

Proof. (i): For x € Ker L we have 24(¢) = 0, thus x(t) = at®+bt?+ct+d.
On the other hand, 2/(0) = 2/(1) = 2”/(0) = 2’’(1) = 0 implies that a = b =
¢c=0. So z(t) = d for t € [0,1]. Again, if z = d, then x € Ker L. This
completes the proof of assertion (i).
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(ii): For y € Im L there is € dom L such that z*) =y. So

Lt —s) 3 1,2

x(t) = 5 y(s)ds + at® + bt* + ct + d.
0

Since z/(0) = /(1) = 2”'(1) = 2"(0) = 0, we get ¢ = a = 0 and fol y(s)ds =

0. Thus y € {y € Y : [, y(s)ds = 0}. On the other hand, if y € ¥ and

fol y(s)ds =0, let

t(f_ )3 2 1] _ )2
x(t):/o %y(s)ds—%/o (1 5 ) y(s)ds.

Then = € X and 2/(0) = 2/(1) = 2”/(0) = 2’’(1) = 0. This implies y € Im L,
so assertion (ii) is valid.
(iii): Define the projector @ : Y — Y by

Qu(t) = / y(s)ds  (yeY).

It is easy to check that, for y € Y, y — Qy € Im L. So y = Im L + R, again
ImLNR = {0}, hence Y =Im L @ R. Together with that Im L is closed, thus
L is a Fredholm operator of index zero.

(iv) Let ©Q be an open bounded subset in X such that Q@ Ndom L # &.
Define the projector P : X — X by P(x) = z(0). Then the generalized
inverse K, : Im L — dom L N Ker P of L can be written as

t(f_ )3 2 1] _ )2
w0 = [ a5 [ 5 e @

In fact, for y € Im L we have

i =1 ([ 5 g0 - 5 [ U5 as) =

Further, for z € dom L N Ker P we have

(KpLz)(t) = Kp(z'9 (1))
=9 g B[ =92 W(s)
- e !

_ %x"’(O) + %:U”(O) + 12/ (0) + 2(t) — 2(0) — =2 (0)

= z(t).
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This shows K, = (L|dom Lnker p) "' Furthermore, X = Ker L@ Ker P. In

fact, for z € X, z(t) — x(0) € Ker P, so X = Ker P + Ker L, and again
Ker LN Ker P = {0}. Then X = Ker L @ Ker P. From (4) we find

1 1 )
K <= Syl = =
15plloe < Slyll+ 7yl = 15 lylh

1 1
I(Ep9) oo < Syl + S llyll = llylh

" = | [ s

<yl

o0

Since (K,y)'(0) = (Kpy)'(1) = 0, there is £ € (0, 1) such that (K,y)"” () = 0.
Hence for t € (01) we have

[(Epy)” ()] = [(Kpy)" (1) — (Kpy)" ()]
= [(Kpy)" (n)(t = &)
< |(Kpy)" (n)]

for n € (t,€) or n € (£,t). So

10K py) oo < I(Kpy)[loo < llylls-

It follows that ||Kpy|| < |ly|1 for y € Y. It is easy to see that

(QNz)(t) = /0 1 ( F(s,2(s),2'(s), 2" (s), 2" (s)) + e(s>)ds

and
Ky(I —Q)Nx(t)

_ /Ot (t —65)3 (f(& 2(s),2(s), 2" (s), 2" () big) + e(s))ds

_ g/ol (1 —25)2 (JC(S,x(s),x’(s),x”(s),x’"(s)) + e(s))ds
— (;;:1 + %) /01 (f(s,x(s),x’(s),ac”(s),:z;"'(s)) + e(s))ds.

By using the Ascoli-Arzela theorem, we can prove that QN (Q) is bounded

and K,(I — Q)N : Q — X is compact. So N is L-compact on ) il
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Theorem 2. Let f: [0,1] x R* — R be a continuous function. Assume

the following:
(A1) There exist functions a,b,c,d,g : [0,1] — R and r € L'[0,1] and a
constant 6 € [0,1) such that

[f(t 2.y, 2,w)] < at)]z] +b(#) |yl + c(t)|2] + d()|w] + g(t)w]” + r(t);

for allt € 0,1].
(A2) There exists a constant M > 0 such that if |w| > M, then

[t 2y, 2,w)| > —alz| + Blw| — Ly

for all x,y,z € R and t € [0,1], where 3 > @ > 0 and L; > 0 are
some constants.

(As3) There is a constant My > 0 such that if |x(t)| > My for all t € [0,1],
then

/01 (f(s,x(s), 2'(s),z"(s), 2" (s)) + e(s))ds # 0.

(A4) 11Hl|c|—>oo 1£(4.0.00)] < (07 +OO)

|l

(As) There is a constant My > 0 such that if |c| > My, then

<0

cf(t,c,0,0,0) {or (0<t<1).
>0

(Aq) llally + 116l + llelly + lldfly < 5(1 - 5).
Then for every e € L'[0,1] problem (1) — (2) has at least one solution in
C3[0,1].
Proof. Let

0 = {x € dom L/Ker L : Lz = ANz for some A € (0, 1)}.
If € O, then z ¢ Ker L, A # 0 and Nz € Im L, thus QNz = 0, i.e.
PO (1) = AF (1, a(t), 2/ (8), 2" (5, 2" (1)) + e(t) (¢ € [0,1)
2 (0)=2'(1)=2"(0)=2"(1) =0

/01 <f(s,:1:(s),x’(s),ac”(s),:v’”(s)) + e(s))ds = 0.
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So there is ¢; € (0,1) such that

[t z(ty), 2" (t1), 2" (t1), 2" (t1)) = —/O e(s)ds.

This yields
|f (2 (t), @' (t1), 2" (tr), 2™ (1)) | < llells-

Again, if x € dom L, then (I — P)z € dom L N Ker P and LPz = 0. Thus,
from Lemma 1,

(I = P)z|| = | K, L(I = P)z|| < [|[L(I = P)z[ly = |[Lz| < [[Nz|.

We consider two cases.
Case 1: |2/"(t*)| < M for some t* € [0,1]. In this case we have

t*
/ ™ (s)ds
t

Since z/(0) = 2/(1) = 2"'(0) = z’"(1) = 0, there is £ € (0,1) such that
z"(€) = 0, thus

2" ()] = |="" ()] + <M+ |[[Lefly < M+ [[Nz|).

2" ()] = [" () = 2" ()] = [ (n)(t = O] < M + [N
Also, there is n; € [0, 1] such that
[/ (t)| = [a(t) = 2"(0)] = |=" (m)t] < M + [Ny

We claim that there is a t** € (0,1) such that |z(¢**)| < M;. Otherwise, if
|z(t)| > M, for all ¢ € [0, 1], condition (As) implies

/01 (f(s,x(s), ' (s), 2" (s),z"(s)) + e(s))ds £ 0.

On the other hand, since Lx € Im L, we have

which is a contradiction. Thus

t**
|x(0)| = |z(t™)| + ‘/ x'(s)ds| < My + M + ||[Nz|;.
0
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984
Hence _
o
W%H=Mmﬂﬁgwwm+HNﬂh+q
where 1
c1 = max{Ml + M, M1 + E(Ll + ||6||1)}
Thus we get

< Liefloe + 2N ]y + 1.

= Q1

loll < |[Pz] + |[(I — P)al
From Property (A1) we get
ol < Slefloe + 2allzloc + 200l llc + 2Nl
+ 2lldl 12" oo + 2lglh 2" 1% + 2lirlly + 2llells + ex
= (2l + 5 ) Iwlloo + 2060 l" oo + 2l
+2l[dll 12" lloe + 2lglsl2” 1% + 2lirlls + 2llells + ey
< (2lall + 5 ) Izlloc + (216l + 2liel + 2Ndll1) 12"l

+2gll 2”15 + 2lirlls + 2llelly + e1,

ie. B
«
]| < (2|Ia|!1 + =) 12[loo + (2010111 + 2llcll1 + 2lld]l1]) 2" ]| oo

+2|lgllllz"l1% + 2llrlly + 2llelly + c1.
It is easy to check that ||2']|cc < [|[2"]|o0 < [|2"||co- Together with ||z|ls <
|||, it follows from the above inequality that
2[1bll[12" oo + 2l el 12" [l

T < = [
+ 2]l dll1 |2 oo + 2llgll 2”15 + 2lirllx + 2llell + 1

2[1bll1 + 2llell + 2lld]l1) 2" ]|

S

= T afaf -5 1!
+%NN£W&+ﬂVm+ﬂMh+ﬁ}

Case 2. |z"'(t)| > M for all t € [0,1]. In this case from property (A2) we

obtain
|z (t1)| < %y:c(tm + % + %\f(tl,x(tl),x’(tl),x”(tl),x’”(tl))|
S%M@+%@Hﬁ%ﬁ
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so that

| ///( )| < |JJW |+‘/ (4)

Bllmlloo ﬁ(Ll + llelly) + [Nz

Thus similarly to the above discussion, one has a £ € (0,1) such that z'(§) = 0
and there is an n € (0,1) such that

2" ()] = |2"(t) — 2" (£)]
= [z"(n)(t —n)]

1
[ ]loo + E(Ll + llefl) + [1Vz]];.

So we get

1
|00 + E(Ll + llelln) + [Nz

From property (As), there is a t** € (0,1) such that |z(¢**)| < M;. Then,
together with (5),
[1Pz|| = [=(0)]
t**
() —/ (1) dt’
0

a 1
< My Slzlloc + Z (L A+ flell) + 1Ny

Q I

< Zl2lloo + [Nzl 4 1.

Q I

Thus &
]| < ||Pz]| + (1 — P)z|| < EHxHoo +2[|Nz|1 + e1.

So property (Aj) implies

12" loo < [l

5 bl + 20l + 21 )
= T=afal - 5 )

+2lgllulla” 1% + 207l + 2llells + a1

+ [(2I|b!|1 +2[lelly + 2]ldl1) 12" [l

+2[lgll 2”15 + 2lirllx + 2llell + 1
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1
- = [ 00l + 2l + 201dlh) 2"l
1= 2]l - §

+2[lgll 2”15 + 2lirllx + 2llell + 01]'

We get (5). From (5) it follows that

"

I 2]lgllll="" 1% + e1 + 27l + 2[lellx @)‘

<
loe < T=0]all 208+ 2lell + 2l -
Since 6 € [0, 1], there is M > 0 such that
& oo < M.

Again, it is easy to prove that

1 "
mnwsmnw}SM*

1-
2 o0 < fl2" oo < fl2" [l

From property (As) we claim that there is t** € (0, 1) such that |z(¢**)| < M;.
Thus

t*:k

o(t™) — /t x'(s)ds

Hence there is M5 > 0 such that ||z||. < M;. Hence

jz(8)] < < My + [|2]l o

2] < max {[|z[lco, 12" [|oos [[2” loos [ [0 } < max{M7, My}
Thus 2 is bounded. Let
Qy={zcKerL: Nve€ImL}.

For x € Q9, x € Ker L and QNz = 0, thus

1 1 1
/ (f(s,¢,0,0,0) +e(s))ds =0, ie. / f(s,¢,0,0,0)ds = —/ e(s) ds.
0 0 0

Thus there is ¢y € (0,1) such that

1
f(t070707070) = _/ 6(8) dS, 50 |f(t070707070)’ S ||6H1
0

From property (A4) we see that there is M* > 0 such that |¢| < M*. Thus Q9
is bounded. Next, according condition (Aj), we have the following two cases.
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Case 1. Suppose for any ¢ € R, if |c¢| > Ms, then cf(¢,¢,0,0,0) < 0 for
t €10,1]. Let

Q3 = {m eKerL: —Az+ (1-MNQNz=0,\€]0, 1]}

Now, similar to the proof of [6: Lemma 2.12], we prove that {23 is bounded.
Suppose x,(t) = ¢, € Q3 and |c,,| — 00 as n — oco. Without loss of generality,
suppose that ¢, > M for all n. Then there is A, € [0, 1] such that

QN<Cn)

Cn

Ann = (1= A)@N(cpn), or A\, =(1-2X\,) (6)

Without loss of generality, suppose A\,, — Ao as n — oco. Then

1

B |Cnl

’Ql\iicn) /01 (£(8,¢1,0,0,0) + e(s))ds

1
< — [llelly + llallxlen| + ll7[l:]
|Cnl

lels +lIrllx

[cnl

= llallx +

Thus % is bounded. So A, — Ag # 1 by (6). Thus, for sufficiently large

n, A\p 7# 1. Then

1 inAn = i </01 (f(s,¢n,0,0,0) + 6(8))ds> .

From property (Ay4), for sufficiently large n, |f(t,cy,0,0,0)| > alc,| for some
a > 0. Then property (As) implies f(¢,¢,,0,0,0) < —ac,. Thus, by Fatou’s
Lemma,

1

I 1
lim sup (c_ / f(s,¢n,0,0,0)ds + . e(s) ds)
n J0O n JO

1
< lim sup —/ f(s,¢,,0,0,0)ds
Cp, 0

1
§/ lim sup f(5,¢0,0,0,0) ds
0

Cn

< -«
< 0.

This contradicts 5 ﬁ}\n > 0. Then Q3 is bounded.
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Case 2. Suppose |¢| > My. Then cf(t,c,0,0,0) > 0 for t € [0,1]. Indeed,
set
0y = {:1: €KerL: Az +(1—NQNz =0 forall A e (0, 1)}.

Like in the above argument, we can prove that {23 is bounded. In the following,
we shall prove that all conditions of Theorem 1 are satisfied. Let €2 be a
bounded open subset of X such that

By Lemma 1, L is a Fredholm operator of index zero and N is L-compact on
). By the above argument and the definition of €2, we have:

(i) Lx # ANz for (\,z) € [(dom L/Ker L) N0 x (0,1)
(ii) Nz ¢ Im L for x € Ker L N 092.
At last, we prove that condition (iii) of Theorem M is satisfied. Let

H(z,\) =+ A+ (1 - NQNzx.

By the definition of €2, we see that H(z,\) # 0 for x € 9Q2 N Ker L. Thus, by
the homotopy property of degree, we have

deg(QNKerL, QnNKerlL, O) = deg(H(-, 0),2NKer L, O)
= deg(H(-, 1),Qn KerL,O)
= deg( + A,Q ﬂKerL,O)
#0.

Thus by Theorem 1, the equation Lz = Nz has at least one solution in
dom L N 2. So problem (1) - (2) has at least one solution
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