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Abstract. Under a resonance condition involving a two-point boundary value prob-
lem for a fourth-order nonlinear differential equation, we show its solvability.
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1. Introduction

Let f : [0, 1]×R4 be a continuous function and e ∈ L1[0, 1]. We consider the
fourth-order differential equation

x(4)(t) = f
(
t, x(t), x′(t), x′′(t), x′′′(t)

)
+ e(t) (0 < t < 1) (1)

subject to the boundary value conditions

x′(0) = x′(1) = x′′′(0) = x′′′(1) = 0. (2)

Boundary value problems of this form were used to understand the static
equilibrium of an elastic beam supported by sliding clamps. We refer the
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reader to [11, 12] and the references therein. For example, Gupta [12] studied
the solvability of the boundary value problem

−y(4) + g(t, y(t)) = e(t) (0 < t < 1)

y′(0) = y′(π) = y′′′(0) = y′′′(π) = 0

}
.

Since (2) implies that the linear operator Lx = x(4) defined in a suitable Ba-
nach space is not invertible, we call (2) a resonance boundary value condition.
There are many other papers concerning the existence of solutions or positive
solutions of fourth-order differential equations subjected to different kind of
non-resonance boundary value conditions (see [1 - 6, 8, 10, 13, 14, 16] and the
references therein).

To the best of our knowledge, the solvability of boundary value problem
(1) - (2) has not been studied till now. The purpose of this paper is to
establish an existence result for problem (1) - (2). Our method is based on
the coincidence degree theory of Mawhin.

Now, we briefly recall some notations and an abstract existence result.
Let X and Y be Banach spaces, L : dom L ⊂ X → Y be a Fredholm operator
of index zero, P : X → X and Q : Y → Y be projectors such that

Im P = Ker L

KerQ = Im L

X = Ker L + KerP

Y = Im L + Im Q.

It follows that the reduced operator

L|dom L∩Ker P : domL ∩KerP → Im L

is invertible. We denote the inverse of that map by Kp.
If Ω is an open bounded subset of X and dom L∩Ω 6= ∅, where ∅ denotes

the empty set, the map N : X → Y will be called L-compact on Ω if QN(Ω)
is bounded and the product map Kp(I−Q)N : Ω → X is compact. The facts
we use are [15: Theorem 2.4] and [7: Theorem IV.13].

Theorem 1. Let L be a Fredholm operator of index zero and let N be
L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [
(dom L/Ker L) ∩ ∂Ω

]× (0, 1).
(ii) Nx /∈ ImL for every x ∈ Ker L ∩ ∂Ω.
(iii) deg

(
ΛQN |Ker L,Ω ∩Ker L, 0

) 6= 0, where Λ : Im L → KerL is some
isomorphism.
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Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

We use the classical spaces C3[0, 1] and L1[0, 1]. For x ∈ C3[0, 1], we use
the norms ‖x‖∞ = maxt∈[0,1] |x(t)| and

‖x‖ = max
{‖x‖∞, ‖x′‖∞, ‖x′′‖∞, ‖x′′′‖∞

}

and denote the norm in L1[0, 1] by ‖x‖1. We also use the Sobolev space
W 4,1(0, 1) defined by

W 4,1 =
{

x : [0, 1] → R
∣∣∣ x, x′, x′′, x′′′ abs. cont., x(4) ∈ L1[0, 1]

}

with its usual norm.

2. Main results

In this section, we shall prove the existence result for problem (1) - (2). Let
X = C3[0, 1] and Y = L1[0, 1]. Define L to be the linear operator from
domL ⊂ X to Y with

domL =
{

x ∈ W 4,1(0, 1)
∣∣∣ x′(0) = x′(1) = x′′′(0) = x′′′(1) = 0

}

and (Lx)(t) = x(4)(t) for x ∈ domL∩X, and we define N to be the nonlinear
operator from X to Y with

(Nx)(t) = f
(
t, x(t), x′(t), x′′(t), x′′′(t)

)
+ e(t) (0 < t < 1)

for x ∈ X. Thus problem (1) - (2) can be written as Lx = Nx. We note that if
x ∈ domL, then ‖x‖ = max{‖x‖∞, ‖x′′′‖∞}, since ‖x′‖∞ ≤ ‖x′′‖∞ ≤ ‖x′′′‖∞.

Lemma 1. The following results hold:
(i) Ker L =

{
x ∈ X : x(t) = c (0 ≤ t ≤ 1) for some c ∈ R}

.

(ii) Im L =
{
y ∈ Y :

∫ 1

0
y(s) ds = 0

}
.

(iii) L is a Fredholm operator of index zero.
(iv) If Ω is an open bounded subset such that domL ∩ Ω 6= ∅, then N is

L-compact on Ω.

Proof. (i): For x ∈ Ker L we have x4(t) = 0, thus x(t) = at3+bt2+ct+d.
On the other hand, x′(0) = x′(1) = x′′′(0) = x′′′(1) = 0 implies that a = b =
c = 0. So x(t) = d for t ∈ [0, 1]. Again, if x = d, then x ∈ Ker L. This
completes the proof of assertion (i).
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(ii): For y ∈ Im L there is x ∈ domL such that x(4) = y. So

x(t) =
∫ t

0

(t− s)3

6
y(s) ds + at3 + bt2 + ct + d.

Since x′(0) = x′(1) = x′′′(1) = x′′′(0) = 0, we get c = a = 0 and
∫ 1

0
y(s) ds =

0. Thus y ∈ {
y ∈ Y :

∫ 1

0
y(s) ds = 0

}
. On the other hand, if y ∈ Y and∫ 1

0
y(s) ds = 0, let

x(t) =
∫ t

0

(t− s)3

6
y(s) ds− t2

2

∫ 1

0

(1− s)2

2
y(s) ds.

Then x ∈ X and x′(0) = x′(1) = x′′′(0) = x′′′(1) = 0. This implies y ∈ Im L,
so assertion (ii) is valid.

(iii): Define the projector Q : Y → Y by

Qy(t) =
∫ 1

0

y(s) ds (y ∈ Y ).

It is easy to check that, for y ∈ Y , y − Qy ∈ Im L. So y = Im L + R, again
Im L∩R = {0}, hence Y = Im L⊕R. Together with that ImL is closed, thus
L is a Fredholm operator of index zero.

(iv) Let Ω be an open bounded subset in X such that Ω ∩ dom L 6= Φ.
Define the projector P : X → X by P (x) = x(0). Then the generalized
inverse Kp : Im L → domL ∩Ker P of L can be written as

(Kpy)(t) =
∫ t

0

(t− s)3

6
y(s) ds− t2

2

∫ 1

0

(1− s)2

2
y(s) ds. (4)

In fact, for y ∈ ImL we have

(LKp)y(t) = L

(∫ t

0

(t− s)3

6
y(s) ds− t2

2

∫ 1

0

(1− s)2

2
y(s) ds

)
= y(t).

Further, for x ∈ domL ∩Ker P we have

(KpLx)(t) = Kp(x(4)(t))

=
∫ t

0

(t− s)3

6
x(4)(s) ds− t2

2

∫ 1

0

(1− s)2)x(4)(s)
2

ds

=
t3

6
x′′′(0) +

t2

2
x′′(0) + tx′(0) + x(t)− x(0)− t2

2
x′′(0)

= x(t).
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This shows Kp = (L|dom L∩Ker P )−1. Furthermore, X = Ker L
⊕

Ker P . In
fact, for x ∈ X, x(t) − x(0) ∈ Ker P , so X = Ker P + Ker L, and again
KerL ∩KerP = {0}. Then X = Ker L⊕KerP . From (4) we find

‖Kpy‖∞ ≤ 1
6
‖y‖1 +

1
4
‖y‖1 =

5
12
‖y‖1

‖(Kpy)′‖∞ ≤ 1
2
‖y‖1 +

1
2
‖y‖1 = ‖y‖1

‖(Kpy)′′′‖∞ =
∥∥∥∥

∫ t

0

y(s) ds

∥∥∥∥
∞
≤ ‖y‖1.

Since (Kpy)′(0) = (Kpy)′(1) = 0, there is ξ ∈ (0, 1) such that (Kpy)′′(ξ) = 0.
Hence for t ∈ (01) we have

|(Kpy)′′(t)| = |(Kpy)′′(t)− (Kpy)′′(ξ)|
= |(Kpy)′′′(η)(t− ξ)|
≤ |(Kpy)′′′(η)|

for η ∈ (t, ξ) or η ∈ (ξ, t). So

‖(Kpy)′′‖∞ ≤ ‖(Kpy)′′′‖∞ ≤ ‖y‖1.

It follows that ‖Kpy‖ ≤ ‖y‖1 for y ∈ Y . It is easy to see that

(QNx)(t) =
∫ 1

0

(
f
(
s, x(s), x′(s), x′′(s), x′′′(s)

)
+ e(s)

)
ds

and

Kp(I −Q)Nx(t)

=
∫ t

0

(t− s)3

6

(
f
(
s, x(s), x′(s), x′′(s), x′′′(s) big) + e(s)

)
ds

− t2

2

∫ 1

0

(1− s)2

2

(
f
(
s, x(s), x′(s), x′′(s), x′′′(s)

)
+ e(s)

)
ds

−
( t4

24
+

t2

12

) ∫ 1

0

(
f
(
s, x(s), x′(s), x′′(s), x′′′(s)

)
+ e(s)

)
ds.

By using the Ascoli-Arzela theorem, we can prove that QN(Ω) is bounded
and Kp(I −Q)N : Ω → X is compact. So N is L-compact on Ω
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Theorem 2. Let f : [0, 1] × R4 → R be a continuous function. Assume
the following:

(A1) There exist functions a, b, c, d, g : [0, 1] → R and r ∈ L1[0, 1] and a
constant θ ∈ [0, 1) such that

|f(t, x, y, z, w)| ≤ a(t)|x|+ b(t)|y|+ c(t)|z|+ d(t)|w|+ g(t)|w|θ + r(t);

for all t ∈ [0, 1].

(A2) There exists a constant M > 0 such that if |w| > M , then

|f(t, x, y, z, w)| > −α|x|+ β|w| − L1

for all x, y, z ∈ R and t ∈ [0, 1], where β > α > 0 and L1 > 0 are
some constants.

(A3) There is a constant M1 > 0 such that if |x(t)| > M1 for all t ∈ [0, 1],
then ∫ 1

0

(
f
(
s, x(s), x′(s), x′′(s), x′′′(s)

)
+ e(s)

)
ds 6= 0.

(A4) lim|c|→∞
|f(t,c,0,0,0)|

|c| ∈ (0,+∞).

(A5) There is a constant M2 > 0 such that if |c| > M2, then

cf(t, c, 0, 0, 0)

{≤ 0
or
≥ 0

(0 ≤ t ≤ 1).

(A6) ‖a‖1 + ‖b‖1 + ‖c‖1 + ‖d‖1 < 1
2

(
1− α

β

)
.

Then for every e ∈ L1[0, 1] problem (1) − (2) has at least one solution in
C3[0, 1].

Proof. Let

Ω1 =
{

x ∈ domL/Ker L : Lx = λNx for some λ ∈ (0, 1)
}

.

If x ∈ Ω1, then x /∈ KerL, λ 6= 0 and Nx ∈ Im L, thus QNx = 0, i.e.

x(4)(t) = λf
(
t, x(t), x′(t), x′′(t), x′′′(t)

)
+ e(t) (t ∈ [0, 1])

x′(0) = x′(1) = x′′′(0) = x′′′(1) = 0
∫ 1

0

(
f
(
s, x(s), x′(s), x′′(s), x′′′(s)

)
+ e(s)

)
ds = 0.
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So there is t1 ∈ (0, 1) such that

f
(
t1, x(t1), x′(t1), x′′(t1), x′′′(t1)

)
= −

∫ 1

0

e(s) ds.

This yields ∣∣f(
t1, x(t1), x′(t1), x′′(t1), x′′′(t1)

)∣∣ ≤ ‖e‖1.
Again, if x ∈ domL, then (I − P )x ∈ dom L ∩ KerP and LPx = 0. Thus,
from Lemma 1,

‖(I − P )x‖ = ‖KpL(I − P )x‖ ≤ ‖L(I − P )x‖1 = ‖Lx‖1 ≤ ‖Nx‖1.

We consider two cases.
Case 1: |x′′′(t∗)| ≤ M for some t∗ ∈ [0, 1]. In this case we have

|x′′′(t)| = |x′′′(t∗)|+
∣∣∣∣
∫ t∗

t

x(4)(s) ds

∣∣∣∣ ≤ M + ‖Lx‖1 ≤ M + ‖Nx‖1.

Since x′(0) = x′(1) = x′′′(0) = x′′′(1) = 0, there is ξ ∈ (0, 1) such that
x′′(ξ) = 0, thus

|x′′(t)| = |x′′(t)− x′′(ξ)| = |x′′′(η)(t− ξ)| ≤ M + ‖Nx‖1.

Also, there is η1 ∈ [0, 1] such that

|x′(t)| = |x′(t)− x′(0)| = |x′′(η1)t| ≤ M + ‖Nx‖1.

We claim that there is a t∗∗ ∈ (0, 1) such that |x(t∗∗)| ≤ M1. Otherwise, if
|x(t)| > M1 for all t ∈ [0, 1], condition (A3) implies

∫ 1

0

(
f
(
s, x(s), x′(s), x′′(s), x′′′(s)

)
+ e(s)

)
ds 6= 0.

On the other hand, since Lx ∈ Im L, we have

∫ 1

0

(
f
(
s, x(s), x′(s), x′′(s), x′′′(s)

)
+ e(s)

)
ds = 0,

which is a contradiction. Thus

|x(0)| = |x(t∗∗)|+
∣∣∣∣
∫ t∗∗

0

x′(s) ds

∣∣∣∣ ≤ M1 + M + ‖Nx‖1.
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Hence
‖Px‖ = |x(0)| ≤ ᾱ

β̄
‖x‖∞ + ‖Nx‖1 + c1

where
c1 = max

{
M1 + M, M1 +

1
β̄

(L1 + ‖e‖1)
}

.

Thus we get

‖x‖ ≤ ‖Px‖+ ‖(I − P )x‖ ≤ ᾱ

β̄
‖x‖∞ + 2‖Nx‖1 + c1.

From Property (A1) we get

‖x‖ ≤ ᾱ

β̄
‖x‖∞ + 2‖a‖1‖x‖∞ + 2‖b‖1‖x′‖∞ + 2‖c‖1‖x′′‖∞

+ 2‖d‖1‖x′′′‖∞ + 2‖g‖1‖x′′′‖θ
∞ + 2‖r‖1 + 2‖e‖1 + c1

=
(
2‖a‖1 +

ᾱ

β̄

)
‖x‖∞ + 2‖b‖1‖x′‖∞ + 2‖c‖1‖x′′‖∞

+ 2‖d‖1‖x′′′‖∞ + 2‖g‖1‖x′′′‖θ
∞ + 2‖r‖1 + 2‖e‖1 + c1

≤
(
2‖a‖1 +

ᾱ

β̄

)
‖x‖∞ +

(
2‖b‖1 + 2‖c‖1 + 2‖d‖1

)‖x′′′‖∞
+ 2‖g‖1‖x′′′‖θ

∞ + 2‖r‖1 + 2‖e‖1 + c1,

i.e.
‖x‖ ≤

(
2‖a‖1 +

ᾱ

β̄

)
‖x‖∞ +

(
2‖b‖1 + 2‖c‖1 + 2‖d‖1|

)|x′′′‖∞
+ 2‖g‖1‖x′′′‖θ

∞ + 2‖r‖1 + 2‖e‖1 + c1.

It is easy to check that ‖x′‖∞ ≤ ‖x′′‖∞ ≤ ‖x′′′‖∞. Together with ‖x‖∞ ≤
‖x‖, it follows from the above inequality that

‖x‖∞ ≤ 1
1− 2‖a‖1 − ᾱ

β̄

[
2‖b‖1‖x′‖∞ + 2‖c‖1‖x′′‖∞

+ 2‖d‖1‖x′′′‖∞ + 2‖g‖1‖x′′′‖θ
∞ + 2‖r‖1 + 2‖e‖1 + c1

]

≤ 1
1− 2‖a‖1 − ᾱ

β̄

[(
2‖b‖1 + 2‖c‖1 + 2‖d‖1

)‖x′′′‖∞

+ 2‖g‖1‖x′′′‖θ
∞ + 2‖r‖1 + 2‖e‖1 + c1

]
.

(5)

Case 2. |x′′′(t)| > M for all t ∈ [0, 1]. In this case from property (A2) we
obtain

|x′′′(t1)| ≤ ᾱ

β̄
|x(t1)|+ L1

β̄
+

1
β̄

∣∣f(
t1, x(t1), x′(t1), x′′(t1), x′′′(t1)

)∣∣

≤ ᾱ

β̄
‖x‖∞ +

1
β̄

(L1 + ‖e‖1)
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so that

|x′′′(t)| ≤ |x′′′(t1)|+
∣∣∣∣
∫ t

t1

x(4)(s) ds

∣∣∣∣

≤ ᾱ

β̄
‖x‖∞ +

1
β̄

(L1 + ‖e‖1) + ‖Nx‖1.
Thus similarly to the above discussion, one has a ξ ∈ (0, 1) such that x′′(ξ) = 0
and there is an η ∈ (0, 1) such that

|x′′(t)| = |x′′(t)− x′′(ξ)|
= |x′′′(η)(t− η)|

≤ ᾱ

β̄
‖x‖∞ +

1
β̄

(L1 + ‖e‖1) + ‖Nx‖1.
So we get

|x′(t)| = |x′(t)− x′(0)|
≤ |x′′(ξ)|

≤ ᾱ

β̄
‖x‖∞ +

1
β̄

(L1 + ‖e‖1) + ‖Nx‖1.
From property (A3), there is a t∗∗ ∈ (0, 1) such that |x(t∗∗)| ≤ M1. Then,
together with (5),

‖Px‖ = |x(0)|

=
∣∣∣∣x(t∗∗)−

∫ t∗∗

0

x′(t) dt

∣∣∣∣

≤ M1 +
ᾱ

β̄
‖x‖∞ +

1
β̄

(L1 + ‖e‖1) + ‖Nx‖1

≤ ᾱ

β̄
‖x‖∞ + ‖Nx‖1 + c1.

Thus
‖x‖ ≤ ‖Px‖+ ‖(I − P )x‖ ≤ ᾱ

β̄
‖x‖∞ + 2‖Nx‖1 + c1.

So property (A1) implies

‖x′′′‖∞ ≤ ‖x‖

≤
2‖a‖1 + ᾱ

β̄

1− 2‖a‖1 − ᾱ
β̄

[(
2‖b‖1 + 2‖c‖1 + 2‖d‖1

)‖x′′′‖∞

+ 2‖g‖1‖x′′′‖θ
∞ + 2‖r‖1 + 2‖e‖1 + c1

]

+
[(

2‖b‖1 + 2‖c‖1 + 2‖d‖1
)‖x′′′‖∞

+ 2‖g‖1‖x′′′‖θ
∞ + 2‖r‖1 + 2‖e‖1 + c1

]
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=
1

1− 2‖a‖1 − ᾱ
β̄

[(
2‖b‖1 + 2‖c‖1 + 2‖d‖1

)‖x′′′‖∞

+ 2‖g‖1‖x′′′‖θ
∞ + 2‖r‖1 + 2‖e‖1 + c1

]
.

We get (5). From (5) it follows that

‖x′′′‖∞ ≤ 2‖g‖1‖x′′′‖θ
∞ + c1 + 2‖r‖1 + 2‖e‖1

1− 2‖a‖1 + 2‖b‖1 + 2‖c‖1 + 2‖d‖1 − ᾱ
β̄

(
1− 2‖a‖1 − ᾱ

β̄

)
.

Since θ ∈ [0, 1], there is M∗
1 > 0 such that

‖x′′′‖∞ ≤ M∗
1 .

Again, it is easy to prove that

‖x′′‖∞ ≤ ‖x′′′‖∞
‖x′‖∞ ≤ ‖x′′‖∞ ≤ ‖x′′′‖∞

}
≤ M∗

1 .

From property (A3) we claim that there is t∗∗ ∈ (0, 1) such that |x(t∗∗)| ≤ M1.
Thus

|x(t)| ≤
∣∣∣∣x(t∗∗)−

∫ t∗∗

t

x′(s) ds

∣∣∣∣ ≤ M1 + ‖x′‖∞.

Hence there is M∗
2 > 0 such that ‖x‖∞ ≤ M∗

2 . Hence

‖x‖ ≤ max
{‖x‖∞, ‖x′‖∞, ‖x′′‖∞, ‖x′′′‖∞

} ≤ max{M∗
1 ,M∗

2 }.

Thus Ω1 is bounded. Let

Ω2 =
{
x ∈ KerL : Nx ∈ ImL

}
.

For x ∈ Ω2, x ∈ Ker L and QNx = 0, thus

∫ 1

0

(
f(s, c, 0, 0, 0) + e(s)

)
ds = 0, i.e.

∫ 1

0

f(s, c, 0, 0, 0) ds = −
∫ 1

0

e(s) ds.

Thus there is t0 ∈ (0, 1) such that

f(t0, c, 0, 0, 0) = −
∫ 1

0

e(s) ds, so |f(t0, c, 0, 0, 0)| ≤ ‖e‖1.

From property (A4) we see that there is M∗ > 0 such that |c| ≤ M∗. Thus Ω2

is bounded. Next, according condition (A5), we have the following two cases.
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Case 1. Suppose for any c ∈ R, if |c| > M2, then cf(t, c, 0, 0, 0) ≤ 0 for
t ∈ [0, 1]. Let

Ω3 =
{

x ∈ KerL : −λx + (1− λ)QNx = 0, λ ∈ [0, 1]
}

.

Now, similar to the proof of [6: Lemma 2.12], we prove that Ω3 is bounded.
Suppose xn(t) = cn ∈ Ω3 and |cn| → ∞ as n →∞. Without loss of generality,
suppose that cn > M2 for all n. Then there is λn ∈ [0, 1] such that

λncn = (1− λn)QN(cn), or λn = (1− λn)
QN(cn)

cn
. (6)

Without loss of generality, suppose λn → λ0 as n →∞. Then

∣∣∣∣
QN(cn)

cn

∣∣∣∣ =
1
|cn|

∣∣∣∣
∫ 1

0

(
f(s, cn, 0, 0, 0) + e(s)

)
ds

∣∣∣∣

≤ 1
|cn|

[‖e‖1 + ‖a‖1|cn|+ ‖r‖1
]

= ‖a‖1 +
‖e‖1 + ‖r‖1

|cn| .

Thus |QN(cn)
cn| is bounded. So λn → λ0 6= 1 by (6). Thus, for sufficiently large

n, λn 6= 1. Then

λn

1− λn
=

1
cn

(∫ 1

0

(
f(s, cn, 0, 0, 0) + e(s)

)
ds

)
.

From property (A4), for sufficiently large n, |f(t, cn, 0, 0, 0)| ≥ α|cn| for some
α > 0. Then property (A5) implies f(t, cn, 0, 0, 0) < −αcn. Thus, by Fatou’s
Lemma,

lim sup
(

1
cn

∫ 1

0

f(s, cn, 0, 0, 0) ds +
1
cn

∫ 1

0

e(s) ds
)

≤ lim sup
1
cn

∫ 1

0

f(s, cn, 0, 0, 0) ds

≤
∫ 1

0

lim sup
f(s, cn, 0, 0, 0)

cn
ds

≤ −α

< 0.

This contradicts λn

1−λn
≥ 0. Then Ω3 is bounded.
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Case 2. Suppose |c| > M2. Then cf(t, c, 0, 0, 0) ≥ 0 for t ∈ [0, 1]. Indeed,
set

Ω3 =
{

x ∈ KerL : λx + (1− λ)QNx = 0 for all λ ∈ (0, 1)
}

.

Like in the above argument, we can prove that Ω3 is bounded. In the following,
we shall prove that all conditions of Theorem 1 are satisfied. Let Ω be a
bounded open subset of X such that

t3
i=1Ωi ⊂ Ω.

By Lemma 1, L is a Fredholm operator of index zero and N is L-compact on
Ω. By the above argument and the definition of Ω, we have:

(i) Lx 6= λNx for (λ, x) ∈ [(dom L/KerL) ∩ ∂Ω]× (0, 1)
(ii) Nx 6∈ ImL for x ∈ Ker L ∩ ∂Ω.

At last, we prove that condition (iii) of Theorem M is satisfied. Let

H(x, λ) = ±λx + (1− λ)QNx.

By the definition of Ω, we see that H(x, λ) 6= 0 for x ∈ ∂Ω ∩KerL. Thus, by
the homotopy property of degree, we have

deg
(
QNKer L, Ω ∩KerL, 0

)
= deg

(
H(·, 0), Ω ∩KerL, 0

)

= deg
(
H(·, 1), Ω ∩KerL, 0

)

= deg
(± λI, Ω ∩Ker L, 0

)

6= 0.

Thus by Theorem 1, the equation Lx = Nx has at least one solution in
domL ∩ Ω. So problem (1) - (2) has at least one solution
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