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Abstract. By means of the iteration method with weighted norms existence and
uniqueness theorems are proved for three classes of nonlinear integral equations
and first order integro-differential equations in two variables. The quadratic non-
linearity is given by the correlation-convolution integral. Existence and uniqueness
of the solutions are shown in Lebesgue spaces with mixed norms in rectangle and
strip.
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1. Introduction

The paper deals with a class of integral equations and two classes of first
order integro-differential equations in two variables with a quadratic integral
term composed by an auto-convolution with respect to one variable and an
auto-correlation with respect to the other variable. These equations generalize
integral and first order integro-differential equations in one variable with an
auto-convolution term (as appearing in equations for reflection functions in
linear wave theorie [1, 8]) on the one side and with an auto-correlation term
(as appearing in the equations of statistical mechanics [4 - 7, 9]) on the other
side. The integro-differential equations may be considered as model equations
for general partial integro-differential equations with correlation-convolution
integrals.
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In this first part of the paper, for equations in rectangle and strip the
iteration method in Banach spaces with weighted norms is used for proving
existence and uniqueness of solutions in Lebesgue spaces with mixed norms.
Also, by means of exponential weights, uniqueness of the solutions to the
equations is discussed in a direct manner. In the second part of the paper,
for equations in the quarter plane, existence and constructive formulas for
solutions will be investigated by means of methods of complex function theory.

2. Statement of equations

We deal with the integral and integro-differential equations in two variables

p(t, τ) + I0[p](t, τ) = h(t, τ) (1)
∂p

∂τ
+ µp(t, τ) + I0[p](t, τ) = h(t, τ) (2)

∂p

∂t
+ λ

∂p

∂τ
+ µp(t, τ) + I0[p](t, τ) = h(t, τ) (3)

for (t, τ) ∈ R := (0, T0)× (0, T ) with 0 < T0, T < ∞, where λ, µ ∈ R and I0 is
the quadratic correlation-convolution operator of p

I0[p](t, τ) =
∫ τ

0

∫ T0−t

0

p(s, σ)p(s + t, τ − σ) dsdσ

=
∫ τ

0

∫ T0−t

0

p(s, τ − σ)p(s + t, σ) dsdσ.

These equations are also considered for (t, τ) ∈ S := (0,∞) × (0, T ) (i.e. for
T0 = ∞), were the integral I0 is replaced by

I[p](t, τ) =
∫ τ

0

∫ ∞

0

p(s, σ)p(s + t, τ − σ) dsdσ. (4)

To equation (2) and to equation (3) with λ 6= 0 the initial condition

p(t, 0) = f(t) (t ∈ (0, t0)) (5)

is added, to equation (3) with λ ≥ 0 further the condition

p(0, τ) = ϕ(τ) (τ ∈ (0, T )). (6)
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3. Existence and uniqueness for equation (1)

In equation (1) for (t, τ) ∈ R = (0, T0)× (0, T ) we write the integral I0 in the
form

I0[p](t, τ) =
∫ T0−t

0

p(s, ·) ∗ p(s + t, ·) ds

where ∗ denotes convolution with respect to τ . This integral is the quadratic
form of the bilinear operator

B[p1, p2](t, τ) ≡ I0[p1, p2](t, τ) =
∫ T0−t

0

p1(s, ·) ∗ p2(s + t, ·) ds. (7)

For operator equations of the form p + B[p, p] = h with bilinear operator
B there exist particular existence theorems in Banach spaces with a scale
of norms which we apply in the form of [2, 3]. We use the Banach spaces
Lα,γ = Lα,γ(R) (1 ≤ α, γ ≤ ∞) with mixed norms ‖ · ‖α,γ and the scale of
exponentially weighted norms

‖p‖r ≡ ‖p‖α,γ;r = ‖e−rτp‖α,γ (r ≥ 0)

where, for α < ∞,

‖p‖α,γ =
( ∫ T

0
‖p‖γ

α(τ) dτ
) 1

γ (γ < ∞), ‖p‖α(τ) =
( ∫ T0

0
|p(t, τ)|αdt

) 1
α

‖p‖α,∞ = sup essτ‖p‖α(τ)

and analogously, for α = ∞, ‖p‖∞,γ (γ < ∞) and ‖p‖∞,∞ = sup essτ,t|p(t, τ)|.
We notice that we always assume T < ∞ so that the weighted norms ‖ · ‖α,γ;r

for any r ≥ 0 are equivalent norms in Lα,γ .
For operator (7) we have by Hölder’s inequality the estimates

∣∣B[p1, p2](t, τ)
∣∣ ≤

∫ τ

0

∫ T0−t

0

1 · |p1(s, σ)| |p2(s + t, τ − σ)| dsdσ

≤ (TT0)
1
β

( ∫ τ

0

∫ T0−t

0

|p1(s, σ)|α|p2(s + t, τ − σ)|αdsdσ

) 1
α

where β = α
α−1 with α ≥ 1 and hence, for γ ≥ α,

∥∥B[p1, p2]
∥∥γ

α,γ;r

≤ (TT0)
γ
β

∫ T

0

e−γrτ

[ ∫ τ

0

{ ∫ T0

0

|p1(s, σ)|αds

×
∫ T0

0

|p2(s′, τ − σ)|αds′
}

dσ

] γ
α

dτ

≤ (TT0)
γ
β ‖p1‖γ

α,γ;r‖p2‖γ
α,1;r
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by Young’s inequality with respect to τ . In view of the inequalities

‖p‖α,1;r ≤ T
1
δ ‖p‖α,γ;r

‖p‖α,1;r ≤
(

1
δr

) 1
δ ‖p‖α,γ

(8)

where δ = γ
γ−1 , applied for p = p2, this yields the desired inequalities

‖B[p1, p2]‖α,γ;r ≤ N1‖p1‖α,γ;r‖p2‖α,γ;r

‖B[p1, p2]‖α,γ;r ≤ N2(r)‖p1‖α,γ;r‖p2‖α,γ

(9)

with N1 = (TT0)
1
β T

1
δ and N2(r) = (TT0)

1
β
(

1
δr

) 1
δ , and analogously for p1 and

p2 interchanged where 1 ≤ α ≤ γ ≤ ∞, with 1
β = 0 for α = 1 and 1

δ = 0 for
γ = 1.

If γ > 1, then 1 ≤ δ < ∞, so that N2(r) → 0 as r →∞. By the existence
theorem in [2, 3] then a uniquely determined solution p ∈ Lα,γ to equation (1)
exists for any h ∈ Lα,γ . This solution can be calculated by iteration and it is
stable with respect to perturbations of h satisfying a local Lipschitz condition
of the form

‖p1 − p2‖α,γ ≤ Λ
(‖h1‖α,γ , ‖h2‖α,γ

)‖h1 − h2‖α,γ

with some continuous increasing function Λ(·, ·) [2] and

‖p1 − p2‖α,γ;r ≤ 2‖h1 − h2‖α,γ;r

for sufficiently large r and sufficiently small ‖h1−h2‖α,γ;r [3], where pj ∈ Lα,γ

are the solutions to equation (1) for hj ∈ Lα,γ (j = 1, 2).
For α = 1 the coefficients N1, N2 in (9) are independent of T0 so that the

existence theorem also holds for equation (1) with integral I from (4) in the
strip S = (0,∞)× (0, T ) in this case.

Theorem 1. Let 1 ≤ α ≤ γ, γ > 1 in the case of R = (0, T0) × (0, T )
and α = 1, γ > 1 in the case of S = (0,∞) × (0, T ). Then for any h ∈ Lα,γ

equation (1) possesses in R as well as in S a uniquely determined solution
p ∈ Lα,γ . This solution can be calculated by iteration and it is stable with
respect to a perturbation of data h in Lα,γ .

Corollary 1. If α ≥ 2, γ ≥ 1, then by Hölder’s and Young’s inequalities

we get inequalities (9) with N1 = T
1
β

0 T
1
δ and N2(r) = T

1
β

0 ( 1
δr )

1
δ yielding the

existence of a solution p ∈ Lα,γ to equation (1) in R under these assumptions,
too.
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4. Existence and uniqueness for equation (2)

Equation (2) with initial condition (5) is reduced to the equation

p(t, τ) + Cµ[p](t, τ) = gµ(t, τ) ((t, τ) ∈ R) (10)

where
Cµ[p](t, τ) = e−µτ ∗ I0[p](t, τ)

gµ(t, τ) = e−µτf(t) +
∫ τ

0

e−µ(τ−σ)h(t, σ) dσ

and ∗ denotes again convolution with respect to τ . The bilinear operator
corresponding to (10) has the form

Cµ[p1, p2](t, τ) = e−µτ ∗B[p1, p2](t, τ).

We again assume 1 ≤ α ≤ γ and estimate
∣∣Cµ[p1, p2](t, τ)

∣∣ ≤
∫ τ

0

1 · e−µσ
∣∣B[p1, p2](t, τ − σ)

∣∣ dσ

≤ T
1
β

( ∫ τ

0

e−αµσ
∣∣B[p1, p2](t, τ − σ)

∣∣αdσ

) 1
α

implying ∥∥Cµ[p1, p2]
∥∥γ

α,γ;r

≤ T
γ
β

∫ T

0

[ ∫ τ

0

{
e−α(r+µ)σe−αr(τ−σ)

×
∫ T0

0

∣∣B[p1, p2](t, τ − σ)
∣∣αdt

}
dσ

] γ
α

dτ

≤ T
γ
β ‖e−µτ‖γ

α,r‖B[p1, p2]‖γ
α,γ;r.

This yields the estimation
∥∥Cµ[p1, p2]

∥∥
α,γ;r

≤ T
1
β
(

1
α(r+µ)

) 1
α
∥∥B[p1, p2]

∥∥
α,γ;r

≤ T
1
β

∥∥B[p1, p2]
∥∥

α,γ;r

for r > max(1 − µ, 0). Hence by (9) we obtain analogous inequalities for Cµ

with coefficients N̂1 = T
1
β

0 T
2
β + 1

δ and N̂2(r) = T
1
β

0 T
2
β
(

1
α(r+µ)

) 1
α
(

1
δr

) 1
δ where

N̂2(r) → 0 as r →∞.
So we have existence of a unique (mild) solution p ∈ Lα,γ (1 ≤ α ≤ γ) to

equation (2) with condition (5) for any f, h with gµ ∈ Lα,γ . The last relation
holds if f ∈ Lα and h ∈ Lα,1. If also h ∈ Lα,γ , by equation (2) and inequality
(9)1 the solution p ∈ Lα,γ has a derivative ∂p

∂τ ∈ Lα,γ (strong solution).

For α = 1 the coefficients N̂1, N̂2 are again independent of T0 and the
existence theorem for equation (2) with condition (5) holds also in the strip
S = (0,∞)× (0, T ).
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Theorem 2. Let 1 ≤ α ≤ γ in the case of R = (0, T0) × (0, T ) and
1 = α ≤ γ in the case of S = (0,∞) × (0, T ). Then for any h ∈ Lα,γ

and f ∈ Lα equation (2) with condition (5) possesses in R as well as in S a
uniquely determined solution p ∈ Lα,γ with derivative ∂p

∂τ ∈ Lα,γ .

Remark. In general, ∂p
∂t does not exist. But if, in addition, f and h have

derivatives f ′ ∈ Lα and ∂h
∂t ∈ Lα,γ , differentiating (10) with respect to t yields

a linear Volterra integral equation of the second kind for the derivative ∂p
∂t ,

with summable kernel and right-hand side from Lα,γ for given p ∈ Lα,γ . From
this ∂p

∂t ∈ Lα,γ follows.

5. Equation (3) with λ = 0

Equation (3) for λ = 0 with initial condition (6) reduces to the equation

p(t, τ) + J0[p](t, τ) = h0(t, τ) ((t, τ) ∈ R) (11)

where
J0[p](t, τ) = e−µt ~ I0[p](t, τ)

h0(t, τ) = e−µtϕ(τ) +
∫ t

0

e−µ(t−s)h(s, τ)dτ

and ~ denotes convolution with respect to t. The bilinear operator corre-
sponding to (11) is given by

Dµ[p1, p2](t, τ) = e−µt ~ B[p1, p2](t, τ).

Applying Young’s inequality with respect to t we obtain

∫ T0

0

∣∣Dµ[p1, p2](t, τ)
∣∣αdt =

∫ T0

0

∣∣∣∣
∫ t

0

e−µ(t−s)B[p1, p2](s, τ) ds

∣∣∣∣
α

dt

≤ ‖e−µt‖α
α

( ∫ T0

0

∣∣B[p1, p2](s, τ)
∣∣ds

)α

which yields the estimate
∥∥Dµ[p1, p2]

∥∥
α,γ;r

≤ Aα

∥∥B[p1, p2]
∥∥

1,γ;r

where

Aα =





T
1
α
0 for µ = 0

( 1
µα )

1
α for µ > 0

( 1
|µ|α )

1
α e|µ|T0 for µ < 0.



Equations with Correlation-Convolution Integral I 9

Observing (9), for 1 ≤ α ≤ γ we further have

∥∥Dµ[p1, p2]
∥∥

α,γ;r
≤ AαT

1
δ ‖p1‖1,γ;r‖p2‖1,γ;r

∥∥Dµ[p1, p2]
∥∥

α,γ;r
≤ Aα

(
1
δr

) 1
δ ‖p1‖1,γ;r‖p2‖1,γ

and analogously with interchanged p1 and p2. Finally, by Hölder’s inequality,

‖p‖1,γ;r ≤ T
1
β

0 ‖p‖α,γ;r (r ≥ 0). Therefore, inequalities (9) hold for Dµ with
the coefficients

Ñ1 = AαT
2
β

0 T
1
δ

Ñ2(r) = AαT
2
β

0

( 1
δr

) 1
δ (r > 0)

(12)

where Ñ2(r) → 0 as r →∞ if γ > 1.

So we obtain the existence of a unique (mild) solution p ∈ Lα,γ (1 ≤
α ≤ γ, γ > 1) to equation (3) for λ = 0 with condition (6) for any ϕ, h with
h0 ∈ Lα,γ in equation (11). This is fulfilled if ϕ ∈ Lγ and h ∈ L1,γ . If also
h ∈ Lα,γ , by equation (3) with λ = 0 and inequality (9)1 the solution p ∈ Lα,γ

has a derivative ∂p
∂t ∈ Lα,γ (strong solution).

In the particular case µ > 0, for α = 1 the coefficients Ñ1 and Ñ2 in (12)
are independent of T0 and the result is valid for equation (3) with λ = 0 in
the strip S = (0,∞)× (0, T ), too.

Theorem 3. Let 1 ≤ α ≤ γ, γ > 1 in the case of R = (0, T0) × (0, T )
and α = 1, γ > 1 in the case of S = (0,∞) × (0, T ). Then for any functions
h ∈ Lα,γ and ϕ ∈ Lγ equation (3) possesses, for λ = 0 with condition (6)
in R and for λ = 0, µ > 0 in S, a unique solution p ∈ Lα,γ with derivative
∂p
∂t ∈ Lα,γ .

Remark. If, in addition, the functions ϕ and h have derivatives ϕ̇ ∈ Lγ

and ∂h
∂τ ∈ Lα,γ , then also ∂p

∂τ ∈ Lα,γ .

6. Equation (3) with λ 6= 0

Equation (3) for λ > 0 in R = (0, T0)× (0, T ) with initial conditions (5) and
(6) is equivalent to the equations

p(t, τ) + J1[p](t, τ) = h1(t, τ)
(
(t, τ) ∈ R ∩ {(t, τ) : τ > λt} = R1

)

p(t, τ) + J2[p](t, τ) = h2(t, τ)
(
(t, τ) ∈ R ∩ {(t, τ) : τ < λt} = R2

) (13)
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where

J1[p](t, τ) =
∫ t

0

e−µ(t−s)I0[p](s, τ − λ[t− s]) ds

J2[p](t, τ) =
1
λ

∫ τ

0

e−
µ
λ (τ−σ)I0[p](t− 1

λ
[τ − σ], σ) dσ

(14)

and

h1(t, τ) = e−µtϕ(τ − λt) +
∫ t

0

e−µ(t−s)h
(
s, τ − λ[t− s]

)
ds

h2(t, τ) = e−
µ
λ τf(t− τ

λ
) +

1
λ

∫ τ

0

e−
µ
λ (τ−σ)h

(
t− 1

λ [τ − σ], σ
)
dσ.

(15)

We consider equations (13) in the spaces L1 = L1,1 and L∞ = L∞,∞. For
the corresponding bilinear operator Dλ,µ we have

∥∥Dλ,µ[p1, p2]
∥∥

1,1;r
= W1 + W2

with
Wk =

∫∫

Rk

e−rτ
∣∣Jk[p1, p2](t, τ)

∣∣dtdτ (k = 1, 2)

where Jk[p1, p2] are defined by (14) with B[p1, p2] = I0[p1, p2] instead of I0[p].
We estimate

W1 ≤
∫ min(T0, T

λ )

0

∫ T

λt

e−rτ

∫ t

0

e−µ(t−s)
∣∣B[p1, p2](s, τ − λ(t− s))

∣∣dsdτdt

=
∫ min(T0, T

λ )

0

∫ T−λt

0

e−r[τ ′+λt]

∫ t

0

e−µ(t−s)
∣∣B[p1, p2](s, τ ′ + λs)

∣∣dsdτdt.

Changing the order of integration with respect to τ ′ and t and using Young’s
inequality with respect to t, for T0 ≥ T

λ we obtain

W1 ≤
∫ T

0

e−rτ ′
[ ∫ T−τ′

λ

0

e−(λr+µ)tdt

∫ T−τ′
λ

0

∣∣B[p1, p2](t, τ ′ + λt)
∣∣e−λrtdt

]
dτ ′

≤ 1
λr + µ

∫ T

0

e−rτ ′
∫ T−τ′

λ

0

∣∣B[p1, p2](t, τ ′ + λt)
∣∣e−λrtdtdτ ′

=
1

λr + µ

∫ T

0

e−rτ

∫ τ
λ

0

∣∣B[p1, p2](t, τ)
∣∣dtdτ

for r > max(0,−µ
λ ). Analogously, for T0 < T

λ we have

W1 ≤ 1
λr + µ

∫ T0

0

∫ T

λt

e−rτ
∣∣B[p1, p2](t, τ)

∣∣dτdt
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for r > max(0,−µ
λ ). Further, using now Young’s inequality with respect to τ

we get

W2 ≤ 1
λr + µ

×
{∫ T

0
e−rτ

∫ T0

τ/λ

∣∣B[p1, p2](t, τ)
∣∣dtdτ for T0 ≥ T

λ∫ T0

0

∫ λt

0
e−rτ

∣∣B[p1, p2](t, τ
∣∣dτdt for T0 < T

λ .

Therefore, in both cases the estimation

∥∥Dλ,µ[p1, p2]
∥∥

1,1;r
≤ 1

λr+µ

∥∥B[p1, p2]
∥∥

1,1;r
(16)

for r > max(0,−µ
λ ) holds. Observing inequalities (9), the desired inequalities

∥∥Dλ,µ[p1, p2]
∥∥

1,1;r
≤ N1‖p1‖1,1;r‖p2‖1,1;r∥∥Dλ,µ[p1, p2]

∥∥
1,1;r

≤ N2(r)‖p1‖1,1;r‖p2‖1,1

(17)

follow where N1 = 1 and N2(r) = 1
λr+µ

(
r > max(0, 1

λ − µ
λ )

)
.

So, for any functions h, f, ϕ with {h1, h2} ∈ L1(R) equation (3) for λ > 0
with conditions (5) and (6) has a uniquely determined solution p ∈ L1(R).
The relation {h1, h2} ∈ L1(R) is fulfilled if f ∈ L1(0, T0), ϕ ∈ L1(0, T ) and
h ∈ L1(R). For h ∈ L1(R), by equation (3) and inequality (9)1 the solution p

possesses the directional derivative ∂p
∂t + λ ∂p

∂τ ∈ L1(R). Since N1 and N2 are
independent of T0, this holds also in the strip S = (0,∞)× (0, T ).

In the space L∞(R) we simpler have

e−rτ
∣∣Jk[p1, p2](t, τ)

∣∣ ≤ 1
λr + µ

sup
t,τ
ess

[
e−rτ |B[p1, p2](t, τ)|]

for r > max(0,−µ
λ ) and k = 1, 2 so that also

∥∥Dλ,µ[p1, p2]
∥∥
∞,∞;r

≤ 1
λr + µ

∥∥B[p1, p2]
∥∥
∞,∞;r

(18)

for r > max(0,−µ
λ ). Again by (9), in L∞ from (18) we obtain inequalities

analogous to (17) with coefficients N1,∞ = T0T
2 and N2,∞(r) = T0T

(λr+µ)r ,
r > max(0, 1

λ − µ
λ ). This implies existence and uniqueness of the solution p ∈

L∞(R) to equation (3) for λ > 0 with conditions (5) and (6) if f ∈ L∞(0, T0),
ϕ ∈ L∞(0, T ) and h ∈ L∞(R) ensuring {h1, h2} ∈ L∞(R). In view of h ∈
L∞(R) the solution p possesses the directional derivative ∂p

∂t +λ ∂p
∂τ ∈ L∞(R).
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Theorem 4. For any functions f ∈ L1, ϕ ∈ L1 and h ∈ L1 equation (3)
for λ > 0 with conditions (5) and (6) possesses in R = (0, T0) × (0, T ) and
S = (0,∞)× (0, T ) a unique solution p ∈ L1. For this solution the directional
derivative ∂p

∂t + λ ∂p
∂τ ∈ L1 exists.

Further, for any functions f ∈ L∞(0, T0), ϕ ∈ L∞(0, T ) and h ∈ L∞(R)
equation (3) for λ > 0 with conditions (5) and (6) possesses a unique solution
p ∈ L∞(R) satisfying ∂p

∂t + λ ∂p
∂τ ∈ L∞(R).

Corollary 2. If f ∈ C[0, T0] and ϕ ∈ C[0, T ] with f(0) = ϕ(0) and if
h ∈ C(R), then p ∈ C(R) with ∂p

∂t +λ ∂p
∂τ ∈ C(R) for the solution p of equation

(3) for λ > 0 with conditions (5) and (6).

Remark. If the functions f, ϕ, h have derivatives f ′, ϕ̇, ∂h
∂t , ∂h

∂τ in L1 or
L∞, then the solutions p have derivatives ∂p

∂t and ∂p
∂τ .

Finally, we deal with equation (3) for λ < 0 with initial condition (5) in
S = (0,∞)× (0, T ). The problem is reduced to the equation

p(t, τ) + J2[p](t, τ) = h2(t, τ) ((t, τ) ∈ S) (19)

where J2[p] and h2 are given by formulas (14) - (15). We consider equation
(19) in the space L1(S). As above we estimate

∥∥Dλ,µ[p1, p2]
∥∥

1,1;r
=

∫ T

0

∫ ∞

0

e−rτ
∣∣J2[p1, p2](t, τ)

∣∣dtdτ

by ∥∥Dλ,µ[p1, p2]
∥∥

1,1;r
≤ 1

|λ|r−µ

∥∥B[p1, p2]
∥∥

1,1;r

for r > max(0, µ
|λ| ) and obtain existence and uniqueness of the solution p ∈

L1(S) for any f ∈ L1(R+) and h ∈ L1(S). This solution possesses the direc-
tional derivative ∂p

∂t + λ ∂p
∂τ ∈ L1(S).

Theorem 5. For any functions f ∈ L1(R+) and h ∈ L1(S) equation (3)
for λ < 0 with initial condition (5) possesses a unique solution p ∈ L1(S)
satisfying ∂p

∂t + λ ∂p
∂τ ∈ L1(S).

Remark. If the functions f and h have derivatives f ′ ∈ L1(R+) and
∂h
∂t , ∂h

∂τ ∈ L1(S), then the solutions p have derivatives ∂p
∂t , ∂p

∂τ ∈ L1(S).
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7. Generalizations

The above existence and uniqueness results also hold for equations (1) - (3)
with the generalized correlation-convolution integral

I1[p](t, τ) =
∫ τ

0

∫ T0−t

0

G1[p](s, σ)G2[p](s + t, τ − σ) dsdσ

instead of I0[p], where the operators Gk : Lα,γ → Lα,γ satisfy Lipschitz
conditions of the form

∥∥Gk[p1]−Gk[p2]
∥∥

α,γ;r
≤ Mk

(‖p1‖α,γ;r, ‖p2‖α,γ;r

)‖p1 − p2‖α,γ;r

with continuous increasing functions Mk(·, ·) (k = 1, 2) (cf. [2]). Also, obvi-
ously, in the correlation-convolution integral an additional bounded measur-
able kernel K = K(s, t;σ, τ) as a factor can be present.

Further, the method of weighted norms can be used to a direct investiga-
tion of the uniqueness of the solutions to equations (1) - (3). For instance, if
pj (j = 1, 2) are solutions of equation (1) in L1(S) for a fixed right-hand side
h ∈ L1(S), their difference p = p1 − p2 ∈ L1(S) obeys the equation

p(t, τ) +
∫ τ

0

∫ ∞

0

k(s, t; τ − σ)p(s, σ) dsdσ = 0 (t > 0) (20)

with the kernel

k(s, t; σ) =
{

p1(s + t, σ) + p2(s− t, σ) for s > t
p1(s + t, σ) for s < t, (21)

and the function pr(t, τ) = e−rτp(t, τ) (r ≥ 0) obeys an equation analogous
to (20) with the kernel kr(s, t; σ) = e−rσk(s, t; σ). Hence we have uniqueness
of the solution to equation (1) in L1(S) if

sup
s

∫ ∞

0

∫ T

0

e−rτ |k(s, t; τ)| dτdt < 1

for sufficiently large r > 0, which is fulfilled if

sup
s

∫ T

0

1
ργ(τ)

( ∫ ∞

0

|k(s, t; τ)| dt

)γ

dτ < ∞ (22)

with a non-negative function ρ ∈ Lδ(0, T ) with δ = γ
γ−1 for γ > 1, and with

a function ρ ∈ C0[0, T ], i.e. ρ ∈ C[0, T ] satisfying ρ(0) = 0, for γ = 1.
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In view of (21),

∫ ∞

0

|k(s, t; τ)| dt ≤
∫ ∞

0

|p1(t, τ)| dt +
∫ ∞

0

|p2(t, τ)| dt

and condition (22) is fulfilled if pj ∈ L1(S) (j = 1, 2) satisfy the inequality

∫ T

0

1
ργ(τ)

( ∫ ∞

0

|p(t, τ)| dt

)γ

dτ < ∞ (23)

for 1 ≤ γ < ∞, with ρ ∈ Lδ(0, T ) for 1 < γ < ∞ or ρ ∈ C0[0, T ] for γ = 1, or
if

sup
τ

[
1

ρ(τ)

∫ ∞

0

|p(t, τ)| dt

]
< ∞ (24)

with ρ ∈ L1(0, T ) for γ = ∞. The uniqueness criteria (23) and (24) are some
generalizations to the uniqueness assertion in Theorem 1.

In analogous manner, for equation (3) with λ = 0 and condition (6) we
obtain uniqueness of the solution p ∈ L1(S) if

∫ T

0

1
ργ(τ)

( ∫ τ

0

eκt|p(t, τ)| dt

)γ

dτ < ∞ (γ ≥ 1)

or

sup
τ

[
1

ρ(τ)

∫ ∞

0

eκt|p(t, τ)| dt

]
< ∞

with a function ρ as in (23), (24) and the parameter κ = 0 for µ > 0 and
κ > |µ| for µ ≥ 0. This generalizes the uniqueness assertion in Theorem 3.
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