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Non-Analyticity in Time of Solutions
to the KdV Equation

G. ÃLysik

Abstract. It is proved that formal power series solutions to the initial value problem
∂tu = ∂3

xu + ∂x(u2), u(0, x) = ϕ(x) with analytic data ϕ belong to the Gevrey class
G2 in time. However, if ϕ(x) = 1

1+x2 , the formal solution does not belong to the

Gevrey class Gs in time for 0 ≤ s < 2, so it is not analytic in time. The proof is
based on the estimation of a double sum of products of binomial coefficients.
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1. Introduction

We consider the characteristic Cauchy problem for the Korteweg-de Vries
equation

∂tu = ∂3
xu + ∂x(u2)

u(0, x) = ϕ(x)

}
. (1)

The equation appears in the study of a number of different physical systems,
e.g. it describes the long time evolution of small amplitude dispersive waves.
Since its first derivation in a paper by D. J. Korteweg and G. de Vries in 1895
[11], it was extensively studied and numerous results have been obtained. The
reader interested in different aspects of its theory is referred to the papers by
A. Jeffrey and T. Kakutani [7], D. M. Kruskal [12], P. D. Lax [13], R. M. Miura
[15], J. Bourgain [3], C. E. Kenig, G. Ponce and L. Vega [10], N. Hayashi [6],
P. E. Zhidkov [18] and the references given there.

Here we are interested in the analyticity properties of solutions to problem
(1). The first result in this direction was obtained by E. Trubowitz who showed
that solutions with periodic real analytic data remain spatially real analytic
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for all time (see [17: Section 3, Amplification 2] and [3: Remark (iv)]. Next,
T. Kato and K. Masuda proved that if the initial data ϕ is analytic and L2 in
a strip along R, then the solution u(t, ·) has the same property for all time [8:
Remark 2.1]. An analytic smoothing effect for Gevrey data was established
by A. De Bouard, N. Hayashi and K. Kato. If ϕ belongs to the Gevrey class
of order 3, then there exists T > 0 such that for 0 < t < T the solution
u(t, ·) has an analytic continuation to the complex domain {z = x + iy ∈ C :
|x| < R, |y| < At

1
3 } with some A = A(R) > 0 [5: Theorem 1.1, Remark 1.1

(III)]. The result was obtained by using operators which commute or almost
commute with the linear part of the KdV equation. A remarkable result was
obtained by K. Kato and T. Ogawa in [9]. Namely, under the assumption that
ϕ ∈ Hs(R) (s > − 3

4 ) satisfies with some positive A

∞∑

k=0

Ak

(k!)3
‖(x∂x)kϕ‖Hs < ∞

they proved analyticity of u(t, ·) for any 0 < t < T and Gevrey regularity of
order 3 of u(·, x) for any x ∈ R. Moreover, under a stronger condition

∞∑

k=0

Ak

k!
‖(x∂x)kϕ‖Hs < ∞

(which implies analyticity except at the origin) the solution is analytic in both
variables at any point of (0, T )× R [9: Theorem 1.1 and Corollary 1.2].

However, the above results do not guarantee analyticity of solutions in
time at t = 0 even if the initial data is analytic. Indeed, if ϕ is analytic, then
problem (1) has a unique formal power series solution

u(t, x) =
∞∑

n=0

ϕn(x)tn (2)

where ϕn are given by the recurrence relations

ϕ0 = ϕ

ϕn+1 =
1

n + 1
(
∂3

xϕn + ∂xψn

)
, ψn =

∑
n1+n2=n

ϕn1ϕn2 (n ∈ N0).





. (3)

We shall prove that this formal solution belongs to the Gevrey class G2 in time,
see Definition 1. (Our definition of Gevrey order differs by one from that used
in [5] and [9], but it is consistent with the one used in the summability theory,
see [1].) Next we show that the formal solution (2) is divergent if ϕ does
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not extend to an entire function of exponential order 3
2 and has non-negative

Taylor coefficients.

Note that in the case of the linear counterpart of problem (1), ∂tu =
∂3

xu, u(0, x) = ϕ(x) the formal solution is given by (2) with ϕn(x) = 1
n!∂

3n
x ϕ(x).

Now the condition that ϕ is entire of exponential order at most 3
2 is equivalent

to (see [2: Section 2.2])

sup
x∈K

|∂3n
x ϕ(x)| ≤ C3n+1(3n)!

1
3

with some constant C < ∞. Hence the formal solution converges if and only
if ϕ is an entire function of exponential order at most 3

2 .

One could expect that the same characterization of convergence of formal
solutions holds for problem (1). It appears however that the soliton solution
of (1), u(t, x) = 6a2 cosh−2(ax + 4a2t)) (a 6= 0) is analytic on Rt × Rx but
u(0, x) = 6a2 cosh−2(ax) is not entire.

The main aim of our paper is to show the divergence of the formal solution
in the case of ϕ(x) = 1

1+x2 . This function is analytic and bounded in a strip
along R and it satisfies the conditions of Kato and Ogawa with s = 0.

Our main result reads as follows:

Theorem 1. Let ϕ(x) = c
1+x2 with c < 0 or 0 < c < 5 305

359 . Then the
formal solution (2) to the initial value problem (1) does not belong to the
Gevrey class Gs in time for 0 ≤ s < 2. Thus, the solution of problem (1) is
not analytic in time at t = 0.

In order to prove the theorem we write ϕn as a power series in x variable
and estimate its coefficients. For n even we have

ϕn(x) =
1
n!

∞∑

k=0

(−1)k+ n
2 A(n, 2k)x2k

where A(n, 2k) satisfy the recurrence relations (14) (see below). The second
term in (14) is due to the influence of the nonlinear part of the equation and
it is always non-negative. So we easily get |A(n, 2k)| ≥ (3n+2k)!

(2k)! |c| for n even

and c < 0, which implies |ϕn(0)| ≥ (3n)!
n! |c|. Hence the formal solution (2) can

not belong to Gs for 0 ≤ s < 2. In the case of positive c the proof is much
more involved since it requires a subtle estimation from above of the second
term in (14).

The required estimation follows by the following lemma which combina-
torial proof seems to be of independent interest.
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Main Lemma. For k, n ∈ N0 put

C(k, n) =



n∑

i=0

k+1−[i]2∑

l=0

(
n

i

)(
2k + 2
2l + [i]2

)/(
2k + 3n + 2
2l + 3i + [i]2

)
if n is even

n∑

i=0

k∑

l=0

(
n

i

)(
2k + 1
2l + [i]2

)/(
2k + 3n + 1
2l + 3i + [i]2

)
if n is odd

(4)

where [i]2 = i mod 2. Then

C(k, n) ≤
{

2 9
70 for n ∈ N0 if k = 0

k + 2 for n ∈ N0 if k ≥ 1.
(5)

The proof of the Main Lemma follows the method of the proof of a similar
result presented in [14], but it is much more involved. Namely, we represent
C(k, n) as a linear combination with positive coefficients of sequences of the
form

α
βDγ

δ (n) =
n∑

l=0

(
2n + α

2l + β

)/(
6n + γ

6l + δ

)
(6)

with some α, β, γ, δ ∈ N0. The actual form of the representation depends on
k mod 3 and n mod 2 and is given in Lemma 1. Next we prove that, for k ∈ N,
sequences α

βDγ
δ appearing in the representation are decreasing. So C(k, n) is

bounded by C(k, 0) = k + 2.
Recently, P. Byers and A. Himonas have given another examples of non-

analytic solutions to the KdV equation with analytic initial data in both the
periodic and the non-periodic case [4].

2. Gevrey estimates

In this section we study Gevrey-type estimates for formal solutions to problem
(1).

Definition 1. We say that the formal power series (2) is in the Gevrey
class Gs(Ω) in time, s ≥ 0 and Ω ⊂ R, if for any compact set K ⊂⊂ Ω one
can find L < ∞ such that

sup
n∈N0

sup
x∈K

|ϕn(x)|
Ln(n!)s

< ∞. (7)

Note that since ϕn(x) = 1
n!∂

n
t u(0, x), our Gevrey index s is less by one

from the Gevrey order used in [5, 9]. However, it agrees with the definition of
the Gevrey order commonly used in summability theory (see [1]).
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In the proof of Theorem 2 we shall need the formula

m!
m∑

j=0

(j + ν)!
j!

(m− j + µ)!
(m− j)!

=
ν!µ!(m + ν + µ + 1)!

(ν + µ + 1)!
(8)

for ν, µ,m ∈ N0 which in the equivalent form

m∑

j=0

(
j + ν

ν

)(
m− j + µ

µ

)
=

(
m + ν + µ + 1

ν + µ + 1

)

can be found in [16: Formula 4.2.5.36]

Theorem 2. Let ϕ be analytic in Ω ⊂ R. Then the formal solution (2)
to the initial value problem (1) belongs to G2(Ω) in time.

Proof. Let K be compact in Ω. Since ϕ0 = ϕ is analytic in Ω, we can
find 1 ≤ D < ∞ such that

sup
x∈K

|∂mϕ0(x)| ≤ Dm+1m! (m ∈ N0). (9)

We shall prove inductively the estimation

sup
x∈K

|∂mϕn(x)| ≤ 2nDm+3n+1 (m + 3n)!
n!

(10)

which implies (7) with s = 2 and L = 6D3. To this end observe that the
recurrence relations (3) imply

ϕn =
1
n!

(
∂3nϕ0 +

n−1∑

k=0

k!∂3n−3k−2ψk

)
(n ∈ N). (11)

Next, by the Leibniz rule, the inductive assumption and (8) we estimate

sup
x∈K

|∂mψk(x)| ≤
∑

k1+k2=k

m∑

j=0

(
m

j

)
sup
x∈K

|∂jψk1(x)| sup
x∈K

|∂m−jψk2(x)|

≤ 2kDm+3k+2
∑

k1+k2=k

m!
k1!k2!

m∑

j=0

(j + 3k1)!(m− j + 3k2)!
j!(m− j)!

= 2kDm+3k+2 (m + 3k + 1)!
(3k + 1)!

∑

k1+k2=k

(3k1)!(3k2)!
k1!k2!

≤ 2kDm+3k+2 (m + 3k + 1)!
k!
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since

k!
(3k + 1)!

∑

k1+k2=k

(3k1)!(3k2)!
k1!k2!

=
1

3k + 1

k∑

k1=0

(
k

k1

)/(
3k

3k1

)
≤ 1.

Hence, by (9) and (11) we get for n ≥ 1

sup
x∈K

|∂mϕn(x)|

≤ 1
n!

[
Dm+3n+1(m + 3n)! +

n−1∑

k=0

k! · 2kDm+3n (m + 3n− 1)!
k!

]

≤ 2nDm+3n+1 (m + 3n)!
n!

since D ≥ 1, which concludes the proof

Before formulation of the next result recall that an entire function ϕ is of
exponential order ρ > 0 if |ϕ(x)| ≤ C exp{C|x|ρ} for x ∈ C. The condition
can be expressed in terms of the growth of derivatives of ϕ at a point x0 ∈ C.
Namely, it is equivalent to (see [2: Subsection 2.2])

|∂nϕ(x0)| ≤ Dn+1(n!)1−
1
ρ (n ∈ N0).

Theorem 3. Fix ρ ≥ 3
2 . Let ϕ be analytic in Ω ⊂ R and assume that at

a point x0 ∈ Ω the Taylor coefficients of ϕ are non-negative. If ϕ does not
extend to an entire function of exponential order ρ, then the formal solution
(2) of problem (1) does not belong to Gs(Ω) in time for any 0 ≤ s ≤ 2− 3

ρ . In
particular, it is divergent.

Proof. Since ϕn are given by (11), the assumption about non-negativity
of Taylor coefficients of ϕ implies

ϕn(x0) ≥ 1
n!

∂3nϕ(x0). (12)

Next, the condition that ϕ is not an entire function of exponential order ρ is
equivalent to

lim
3n

√
∂3nϕ(x0)

(
(3n)!

) 1
ρ−1 = ∞

which together with (12) contradicts (7) for s ≤ 2− 3
ρ
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3. Proof of Theorem 1

Assuming that (2) is a formal power series solution of problem (1) we easily
get the recurrence relations (3) for ϕn. Next note that ϕn can be written in
the form

ϕn(x) =





1
n!

∞∑
k=0

(−1)k+ n
2 A(n, 2k)x2k if n is even

1
n!

∞∑
k=0

(−1)k+ n−1
2 A(n, 2k + 1)x2k+1 if n is odd

(13)

where the coefficients A(n, 2k) and A(n, 2k + 1) satisfy recurrence relations

A(0, 2k) = c

A(n + 1, 2k + 1) = (2k + 2)(2k + 3)(2k + 4)A(n, 2k + 4)

− (2k + 2)
n∑

i=0

(
n

i

)
B(i, n− i, 2k + 2) for n even

A(n + 1, 2k) = (2k + 1)(2k + 2)(2k + 3)A(n, 2k + 3)

− (2k + 1)
n∑

i=0

(
n

i

)
B(i, n− i, 2k + 1) for n odd

(14)

and, for n even or odd, respectively

B(i, n− i, 2k + 2)

=





k+1∑
l=0

A(i, 2l)A(n− i, 2k + 2− 2l) if i is even

k∑
l=0

A(i, 2l + 1)A(n− i, 2k + 1− 2l) if i is odd

B(i, n− i, 2k + 1)

=





k∑
l=0

A(i, 2l)A(n− i, 2k + 1− 2l) if i is even

k∑
l=0

A(i, 2l + 1)A(n− i, 2k − 2l) if i is odd.

(15)

Indeed, ϕ0(x) =
∑∞

k=0(−1)kcx2k. Next, assuming inductively (13), by (3) we
get for n even

ϕn+1(x) =
1

n + 1

[
1
n!

∞∑

k=2

(−1)k+ n
2 2k(2k − 1)(2k − 2)A(n, 2k)x2k−3
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+
n∑

i=0
i−even

1
i!(n− i)!

∞∑

k=1

(−1)k+ n
2 2k

×
k∑

l=0

A(i, 2l)A(n− i, 2k − 2l)x2k−1

+
n∑

i=0
i−odd

1
i!(n− i)!

∞∑

k=0

(−1)k+ n−1
2 (2k + 2)

×
k∑

l=0

A(i, 2l + 1)A(n− i, 2k + 1− 2l)x2k+1

]

=
1

(n + 1)!

∞∑

k=0

(−1)k+ n
2 A(n + 1, 2k + 1)x2k+1

where A(n + 1, 2k + 1) is given by (14). Similarly we get (14) for n odd.
Now, if c < 0, we easily get (since in (14) we subtract a positive term)

A(n, 2k + [n]2) ≤ (2k + 3n + [n]2)!
(2k + [n]2)!

c (16)

where [n]2 = n mod 2. So, for n even,

|ϕn(0)| = |A(n, 0)|
n!

≥ (3n)!
n!

|c|

and taking K = {0} in Definition 1 we see that the formal solution (2) does
not belong to Gs(R) in time for 0 ≤ s < 2.

For c > 0 estimation (16) does not prove the theorem. Instead, by the
Main Lemma we show the following

Claim. Let 0 < c < 5 305
359 . Then

c
(2k + 3n + [n]2)!

(2k + [n]2)!

(
1−

n∑

i=1

ε
(
i, 2k + 3n + [n]2 − 3i

))

≤ A(n, 2k + [n]2)

≤ c
(2k + 3n + [n]2)!

(2k + [n]2)!

(17)

with ε(i, l) (i ∈ N, l ∈ N0) defined by

(l + 3i− 1)(l + 3i) ε(i, l) =
{

2 9
70 c if l = 0, i ≥ 1( l−[l]2

2 + 2
)
c if l ≥ 1, i ≥ 1.

(18)
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Furthermore,
n∑

i=1

ε
(
i, 2k + 3n + [n]2 − 3i

) ≤ 359
2100

c. (19)

Proof. First of all we show (19). To this end we derive:
for n even, n ≥ 2 and k = 0

n∑

i=1

ε(i, 2k + 3n− 3i) =

∑n/2
j=1(3n− 6j + 5) + 9

70

3n(3n− 1)
c

=
3n2 + 4n + 18

35

12n(3n− 1)
c

≤ 359
2100

c,

for n even, n ≥ 2 and k ≥ 1

n∑

i=1

ε(i, 2k + 3n− 3i) =

∑n/2
j=1(3n− 6j + 5)

(3n + 2k)(3n + 2k − 1)
c

=
3n2 + 4n

4(3n + 2k)(3n + 2k − 1)
c

≤ c

6

and finally for n odd and k ∈ N0

n∑

i=1

ε(i, 2k + 3n + 1− 3i) =
k + 2 +

∑(n−1)/2
j=1 (2k + 3n− 6j + 6)

(3n + 2k)(3n + 2k + 1)
c

=
3n2 + (4k + 6)n− 1

4(3n + 2k)(3n + 2k + 1)
c

≤ c

6
.

To prove (17) observe that it trivially holds for n = 0 since A(0, 2k) = c.
Next, if n = 1, we get by (14)

A(1, 2k + 1) = (2k + 2)(2k + 3)(2k + 4)c− (2k + 2)(k + 2) c2

≤ c
(2k + 4)!
(2k + 1)!

(
1− ε(1, 2k + 1)

)

with ε(1, 2k + 1) = c k+2
(2k+3)(2k+4) . Now fix m ∈ N and assume that (17) holds

for n ≤ m and k ∈ N0. Since A(m + 1, 2k + 1 − [m]2) is given by (14) (with
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n = m) and by (19) in (14) we subtract a positive term (since 0 < c < 5305
359 ),

we easily get the estimation from above

A(m + 1, 2k + 1− [m]2) = A(m, 2k + 4− [m]2)
4∏

l=2

(2k + l − [m]2)

≤ c
(2k + 3(m + 1) + 1− [m]2)!

(2k + 1− [m]2)!
.

To estimate A(m+1, 2k+1− [m]2) from below we need to estimate the second
term of (14) from above. By the inductive assumption, (15) and (4) we derive
for m even

m∑

i=0

(
m

i

)
B(i,m− i, 2k + 2)

≤
m∑

i=0
i−even

(
m

i

) k+1∑

l=0

c2 (2l + 3i)!
(2l)!

(2k + 2− 2l + 3m− 3i)!
(2k + 2− 2l)!

+
m∑

i=0
i−odd

(
m

i

) k∑

l=0

c2 (2l + 3i + 1)!
(2l + 1)!

(2k − 2l + 3m− 3i + 1)!
(2k − 2l + 1)!

= c2 (2k + 3m + 2)!
(2k + 2)!

· C(k, m)

and for m odd
m∑

i=0

(
m

i

)
B(i, m− i, 2k + 1)

≤
m∑

i=0
i−even

(
m

i

) k∑

l=0

c2 (2l + 3i)!
(2l)!

(2k − 2l + 3m− 3i + 1)!
(2k − 2l + 1)!

+
m∑

i=0
i−odd

(
m

i

) k∑

l=0

c2 (2l + 3i + 1)!
(2l + 1)!

(2k − 2l + 3m− 3i)!
(2k − 2l)!

= c2 (2k + 3m + 1)!
(2k + 1)!

C(k,m).

So, by the Main Lemma and (18) we get

A(m + 1, 2k + 1− [m]2)

≥ c
(2k + 3m + 4− [m]2)!

(2k + 1− [m]2)!

(
1−

m∑

i=1

ε(i, 2k + 4− [m]2 + 3m− 3i)
)

− c
(2k + 3m + 4− [m]2)!

(2k + 1− [m]2)!
ε(m + 1, 2k + 1− [m]2).
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Hence (17) holds for n = m + 1

Returning to the proof of Theorem 1 take K = {0} in Definition 1. Since
for n even the Claim implies

|ϕn(0)| = A(n, 0)
n!

≥ c
(3n)!
n!

(
1−

n∑

i=1

ε(i, 3n− 3i)
)
≥ c

(
1− 359

2100
c
) (3n)!

n!

the formal solution (2) does not belong to Gs(R) in time for 0 ≤ s < 2 if
0 < c < 5305

359

4. The representation of C(k, n)

The rest of the paper is devoted to the proof of the Main Lemma. It is based
on the inequality C(k, n) ≥ C(k, n + 2). In order to prove it we represent
C(k, n) as a linear combination of sequences α

βDγ
δ (n) given by (6) with some

α, β, γ, δ ∈ N0. The actual form of the representation depends on k mod 3 and
n mod 2 and is given in Lemma 1. We shall give the proof of Lemma 1 only in
the case when n is even and k is divisible by 3. The other cases can be treated
analogously. In the next Section we prove that the sequences α

βDγ
δ appearing

in the representation are decreasing.

Lemma 1. The C(k, n) given by (4) can be represented as follows:
Case A. Let k = 3k and n = 2n with some k, n ∈ N0. Then

C(k, n) = 2
bk/2c∑

i=0

a(k, 6i) 0
0D

12i+2
6i (n + k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 2) 1
0D

12i+8
6i+2 (n + k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 3) 2
1D

12i+14
6i+6 (n + k − 2i− 2)

+ 2
bk/2−1c∑

i=0

a(k, 6i + 5) 1
0D

12i+14
6i+6 (n + k − 2i− 2)

+
bk/2c∑

i=0

b(k, 6i + 1) 2
1D

12i+8
6i+4 (n + k − 2i− 1)

+
b(k−1)/2c∑

i=0

b(k, 6i + 4) 0
0D

12i+8
6i+4 (n + k − 2i− 1)

(20A)
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where bmc denotes the integer part of m and

a(k, 3l) = 33l

(
2k + l

3l

)
for 0 ≤ l ≤ k

a(k, 3l + 2) = 33l+2

(
2k + l + 1

3l + 2

)
for 0 ≤ l ≤ k − 1

b(k, 3l + 1) =
33l(6k + 2)

3l + 1

(
2k + l

3l

)
for 0 ≤ l ≤ k.

(21A)

Case B. Let k = 3k + 1 and n = 2n with some k, n ∈ N0. Then

C(k, n) = 2
bk/2c∑

i=0

a(k, 6i) 1
0D

12i+4
6i (n + k − 2i)

+ 2
bk/2c∑

i=0

a(k, 6i + 1) 2
1D

12i+10
6i+4 (n + k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 3) 1
0D

12i+10
6i+4 (n + k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 4) 0
0D

12i+10
6i+4 (n + k − 2i− 1)

+
bk/2c∑

i=0

b(k, 6i + 2) 0
0D

12i+4
6i+2 (n + k − 2i)

+
b(k−1)/2c∑

i=0

b(k, 6i + 5) 2
1D

12i+16
6i+8 (n + k − 2i− 2)

(20B)

where

a(k, 3l) = 33l

(
2k + l + 1

3l

)
for 0 ≤ l ≤ k

a(k, 3l + 1) = 33l+1

(
2k + l + 1

3l + 1

)
for 0 ≤ l ≤ k

b(k, 3l + 2) =
33l+1(6k + 4)

3l + 2

(
2k + l + 1

3l + 1

)
for 0 ≤ l ≤ k.

(21B)

Case C. Let k = 3k + 2 and n = 2n with some k, n ∈ N0. Then

C(k, n) =
b(k+1)/2c∑

i=0

b(k, 6i) 0
0D

12i
6i (n + k − 2i + 1)



Non-Analyticity of Solutions 79

+
bk/2c∑

i=0

b(k, 6i + 3) 2
1D

12i+12
6i+6 (n + k − 2i− 1)

+ 2
bk/2c∑

i=0

a(k, 6i + 1) 1
0D

12i+6
6i+2 (n + k − 2i)

+ 2
bk/2c∑

i=0

a(k, 6i + 2) 0
0D

12i+6
6i+2 (n + k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 4) 1
0D

12i+12
6i+4 (n + k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 5) 2
1D

12i+18
6i+8 (n + k − 2i− 2)

(20C)

where

a(k, 3l + 1) = 33l+1

(
2k + l + 2

3l + 1

)
for 0 ≤ l ≤ k

a(k, 3l + 2) = 33l+2

(
2k + l + 2

3l + 2

)
for 0 ≤ l ≤ k

b(k, 0) = 1

b(k, 3l) =
33l−1(6k + 6)

3l

(
2k + l + 1

3l − 1

)
for 1 ≤ l ≤ k + 1.

(21C)

Case D. Let k = 3k and n = 2n + 1 with some k, n ∈ N0. Then

C(k, n) = 2
bk/2c∑

i=0

a(k, 6i) 1
0D

12i+4
6i (n + k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 1) 2
1D

12i+10
6i+4 (n + k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 3) 1
0D

12i+10
6i+4 (n + k − 2i− 1)

+ 2
bk/2−1c∑

i=0

a(k, 6i + 4) 0
0D

12i+10
6i+4 (n + k − 2i− 1)
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+
b(k−1)/2c∑

i=0

b(k, 6i + 2) 0
0D

12i+4
6i+2 (n + k − 2i)

+
bk/2−1c∑

i=0

b(k, 6i + 5) 2
1D

12i+16
6i+8 (n + k − 2i− 2)

(20D)

where

a(k, 3l) = 33l

(
2k + l

3l

)
for 0 ≤ l ≤ k

a(k, 3l + 1) = 33l+1

(
2k + l

3l + 1

)
for 0 ≤ l ≤ k − 1

b(k, 3l + 2) =
33l+1(6k + 1)

3l + 2

(
2k + l

3l + 1

)
for 0 ≤ l ≤ k − 1.

(21D)

Case E. Let k = 3k + 1 and n = 2n + 1 with some k, n ∈ N0. Then

C(k, n) =
bk/2c∑

i=0

b(k, 6i) 1
0D

12i
6i (n + k − 2i + 1)

+
b(k−1)/2c∑

i=0

b(k, 6i + 3) 2
1D

12i+12
6i+6 (n + k − 2i− 1)

+ 2
bk/2c∑

i=0

a(k, 6i + 1) 1
0D

12i+6
6i+2 (n + k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 2) 0
0D

12i+6
6i+2 (n + k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 4) 1
0D

12i+12
6i+4 (n + k − 2i− 1)

+ 2
bk/2−1c∑

i=0

a(k, 6i + 5) 2
1D

12i+18
6i+8 (n + k − 2i− 2)

(20E)

where

a(k, 3l + 1) = 33l+1

(
2k + l + 1

3l + 1

)
for 0 ≤ l ≤ k

a(k, 3l + 2) = 33l+2

(
2k + l + 1

3l + 2

)
for 0 ≤ l ≤ k − 1

b(k, 0) = 1

(21E)
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b(k, 3l) =
33l−1(6k + 3)

3l

(
2k + l

3l − 1

)
for 1 ≤ l ≤ k.

Case F. Let k = 3k + 2 and n = 2n + 1 with some k, n ∈ N0. Then

C(k, n) = 2
bk/2c∑

i=0

a(k, 6i) 0
0D

12i+2
6i (n + k − 2i + 1)

+ 2
bk/2c∑

i=0

a(k, 6i + 2) 1
0D

12i+8
6i+2 (n + k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 3) 2
1D

12i+14
6i+6 (n + k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(k, 6i + 5) 1
0D

12i+14
6i+6 (n + k − 2i− 1)

+
bk/2c∑

i=0

b(k, 6i + 1) 2
1D

12i+8
6i+4 (n + k − 2i)

+
b(k−1)/2c∑

i=0

b(k, 6i + 4) 0
0D

12i+8
6i+4 (n + k − 2i)

(20F )

where

a(k, 3l) = 33l

(
2k + l + 1

3l

)
for 0 ≤ l ≤ k,

a(k, 3l + 2) = 33l+2

(
2k + l + 2

3l + 2

)
for 0 ≤ l ≤ k,

b(k, 3l + 1) =
33l(6k + 5)

3l + 1

(
2k + l + 1

3l

)
for 0 ≤ l ≤ k.

(21F )

Proof. We shall prove Lemma 1 only in Case A, since the proofs of the
other cases are analogous. So let n = 2n be even. Assuming that

(
m
i

)
= 0 if

|m− 2i| > m with m ∈ N0 and i ∈ Z, we get by (4)

C(k, n) =
n∑

i=0

k+1∑

l=0

(
2n
2i

)(
2k+2

2l

)
(
2k+6n+2

2l+6i

) +
n−1∑

i=0

k∑

l=0

(
2n

2i+1

)(
2k+2
2l+1

)
(
2k+6n+2
2l+6i+4

)

=
n+b(k+1)/3c∑

j=0

n∑
i=0

(
2n
2i

)(
2k+2
6j−6i

)
+

n−1∑
i=0

(
2n

2i+1

)(
2k+2

6j−6i−3

)

(
2k+6n+2

6j

)
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+
n+bk/3c∑

j=0

n∑
i=0

(
2n
2i

)(
2k+2

6j−6i+2

)
+

∑n−1
i=0

(
2n

2i+1

)(
2k+2

6j−6i−1

)

(
2k+6n+2

6j+2

)

+
n+b(k−1)/3c∑

j=0

n∑
i=0

(
2n
2i

)(
2k+2

6j−6i+4

)
+

∑n−1
i=0

(
2n

2i+1

)(
2k+2

6j−6i+1

)

(
2k+6n+2

6j+4

)

=
n+b(k+1)/3c∑

j=0

1(
2k+6n+2

6j

)
b(2k+2)/3c∑

l=0

(
2k + 2

3l

)(
2n

2j − l

)

+
n+bk/3c∑

j=0

1(
2k+6n+2

6j+2

)
b2k/3c∑

l=0

(
2k + 2
3l + 2

)(
2n

2j − l

)

+
n+b(k−1)/3c∑

j=0

1(
2k+6n+2

6j+4

)
b(2k+1)/3c∑

l=0

(
2k + 2
3l + 1

)(
2n

2j + 1− l

)

=: C1(k, n) + C2(k, n) + C3(k, n).

Let us first consider C3(k, n). In Case A we have k = 3k and n = 2n. So

C3(k, n) =
n+k−1∑

j=0

(
6k + 6n + 2

6j + 4

)−1 2k∑

l=0

(
6k + 2
3l + 1

)(
2n

2j + 1− l

)
.

Now we apply

2k−l2∑

l=l1

(
2k − l1 − l2

l − l1

)(
2n

2j − l

)
=

(
2n + 2k − l1 − l2

2j − l1

)
(22)

with l1 = l2 = 0 and (6) with α = 2, β = 1, γ = 8 and δ = 4 to get

C3(k, n) = b(k, 1) 2
1D

8
4(n + k − 1)

+
n+k−1∑

j=0

(
6k + 6n + 2

6j + 4

)−1

×
2k−1∑

l=1

{(
6k + 2
3l + 1

)
− b(k, 1)

(
2k

l

)}(
2n

2j + 1− l

)

where b(k, 1) =
(
6k+2

1

)
.
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In the next step we apply (22) with l1 = l2 = 1 and (6) with α = β =
0, γ = 8 and δ = 4 to get

C3(k, n) = b(k, 1) 2
1D

8
4(n + k − 1) + b(k, 4) 0

0D
8
4(n + k − 1)

+
n+k−2∑

j=1

(
6k + 6n + 2

6j + 4

)−1

×
2k−2∑

l=2

{(
6k + 2
3l + 1

)
− b(k, 1)

(
2k

l

)
− b(k, 4)

(
2k − 2
l − 1

)}

×
(

2n

2j + 1− l

)

where b(k, 4) =
(
6k+2

4

)− b(k, 1)
(
2k
1

)
. Continuing the above procedure one can

prove inductively that, for m ∈ {0, 1, ..., bk/2c+ 1},

C3(k, n) =
m−1∑

i=0

A(i) +
n+k−1−m∑

j=m

B(j) (23)

where

A(i) = b(k, 6i + 1) 2
1D

12i+8
6i+4 (n + k − 2i− 1)

+ b(k, 6i + 4) 0
0D

12i+8
6i+4 (n + k − 2i− 1)

B(j) =
(

6n + 6k + 2
6j + 4

)−1 2k−2m∑

l=2m

(
2n

2j + 1− l

){(
6k + 2
3l + 1

)

−
m−1∑

i=0

[
b(k, 6i + 1)

(
2k − 4i

l − 2i

)
+ b(k, 6i + 4)

(
2k − 4i− 2
l − 2i− 1

)]}

and the coefficients b(k, 3l + 1) (l ∈ N0) satisfy a recurrence relation

b(k, 3l + 1) =
(

6k + 2
3l + 1

)
−

l−1∑

j=0

b(k, 3j + 1)
(

2k − 2j

l − j

)
. (24)

As about C1(k, n) and C2(k, n) we follow the procedure described for
C3(k, n). In fact, noting the relation α

βDγ
δ (n) = α

α−βDγ
γ−δ(n) and the

symmetry of binomial coefficients one can prove inductively that, for m ∈
{0, 1, ..., bk/2c+ 1},

C1(k, n) = C2(k, n) =
m−1∑

i=0

A(i) +
n+k−m∑

j=m

B(j) (25)
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where

A(i) = a(k, 6i) 0
0D

12i+2
6i (n + k − 2i)

+ a(k, 6i + 2) 1
0D

12i+8
6i+2 (n + k − 2i− 1)

+ a(k, 6i + 3) 2
1D

12i+14
6i+6 (n + k − 2i− 2)

+ a(k, 6i + 5) 1
0D

12i+14
6i+6 (n + k − 2i− 2)

B(j) =
(

6n + 6k + 2
6j

)−1 2k−2m∑

l=2m

(
2n

2j − l

){(
6k + 2

3l

)

−
m−1∑

i=0

[
a(k, 6i)

(
2k − 4i

l − 2i

)
+ a(k, 6i + 2)

(
2k − 4i− 1
l − 2i− 1

)

+ a(k, 6i + 3)
(

2k − 4i− 2
l − 2i− 1

)
+ a(k, 6i + 5)

(
2k − 4i− 3
l − 2i− 2

)]}

and the coefficients a(k, 3l) and a(k, 3l+2) (l ∈ N0) satisfy recurrence relations

a(k, 3l) =
(

6k + 2
3l

)

−
l−1∑

j=0

[
a(k, 3j)

(
2k − 2j

l − j

)
+ a(k, 3j + 2)

(
2k − 2j − 1
l − j − 1

)]

a(k, 3l + 2) =
(

6k + 2
3l + 2

)
− a(k, 3l) (26)

−
l−1∑

j=0

[
a(k, 3j)

(
2k − 2j

l − j

)
+ a(k, 3j + 2)

(
2k − 2j − 1

l − j

)]
.

Finally, noting that for m = bk/2c+ 1 the second summands in (23) and
in (25) vanish, by Lemma 2 (stated below) we get (20A) and (21A), proving
Lemma 1 in Case A. The proofs of Cases B - E can be done in the same way

Lemma 2. Let a(k, 3l), a(k, 3l + 2) and b(k, 3l + 1) (k, l ∈ N0) satisfy
recurrence relations (24) and (26). Then (21A) holds.

Proof. For l = 0 we clearly have

a(k, 0) = 1

a(k, 2) =
(

6k + 2
2

)
− 1 = 32

(
2k + 1

2

)

b(k, 1) = 6k + 2.
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To prove (21A) for l ≥ 1 put 2k = k̃ and note that it is sufficient to show that

(
3k̃ + 2

3l

)
=

l∑

j=0

33j

[(
k̃ + j

3j

)(
k̃ − 2j

l − j

)

+ 9
(

k̃ + j + 1
3j + 2

)(
k̃ − 2j − 1
l − j − 1

)]
(27)

(
3k̃ + 2
3l + 2

)
=

l∑

j=0

33j

[(
k̃ + j

3j

)(
k̃ − 2j

l − j

)

+ 9
(

k̃ + j + 1
3j + 2

)(
k̃ − 2j − 1

l − j

)]
(28)

(
3k̃ + 2
3l + 1

)
=

l∑

j=0

33j(3k̃ + 2)
3j + 1

(
k̃ + j

3j

)(
k̃ − 2j

l − j

)
. (29)

To show (27) for a fixed l ∈ N we observe that the left-hand side is a
polynomial on k̃ of degree 3l, with the leading coefficient 33l

(3l)! , vanishing at

k̃ = 0, ..., l − 1 and at k̃ = − 1
3 + m and k̃ = − 2

3 + m with m = 0, ..., l − 1.
Clearly, the first two statements also hold for the right-hand side of (27). So
we only need to prove the third one. To this end we compute for j = 0, ..., l

33j

[(
k̃ + j

3j

)(
k̃ − 2j

l − j

)
+ 9

(
k̃ + j + 1
3j + 2

)(
k̃ − 2j − 1
l − j − 1

)]

= (k̃ − l + 1) · · · k̃ ×
(

1 +
9(l − j)(k̃ + j + 1)
(3j + 1)(3j + 2)

)

× 33j(k̃ − l − j + 1) · · · (k̃ − l) · (k̃ + 1) · . . . · (k̃ + j)
(l − j)!(3j)!

.

So it is sufficient to show that the polynomial

Wl(k̃) = 1 +
9l(k̃ + 1)

2
+

l∑

j=1

l!
(l − j)!

(
1 +

9(l − j)(k̃ + j + 1)
(3j + 1)(3j + 2)

)

× 33j(k̃ − l − j + 1) · · · (k̃ − l)(k̃ + 1) · . . . · (k̃ + j)
(3j)!

vanishes for k̃ = − 1
3 + m and k̃ = − 2

3 + m with m = 0, ..., l − 1. But for
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m = 0, ..., l − 1 we derive

Wl(−1
3

+ m) = 1 +
3l(3m + 2)

2

+
l∑

j=1

(−1)j l!
(l − j)!j!

(
1 +

3(l − j)(3m + 3j + 2)
(3j + 1)(3j + 2)

)

×
j−1∏

i=0

(3l − 3m + 3i + 1)(3m + 3i + 2)
(3i + 1)(3i + 2)

=
l∑

j=0

(−1)j

(
l

j

)
Pl(j)

= 0

since for m = 0, 1, ..., l − 1

Pl(j) =
(9l − 9m + 3)j + 9lm + 6l + 2

(3j + 1)(3j + 2)

×
l−m−1∏

i=0

3j + 3i + 1
3i + 1

m−1∏

i=0

3j + 3i + 2
3i + 2

is a polynomial of degree l−1 and, for such a polynomial P ,
∑l

j=0(−1)j
(

l
j

)
P (j)

= 0.
Analogously, for m = 0, ..., l − 1,

Wl(−2
3

+ m) = 1 +
3l(3m + 1)

2

+
l∑

j=1

(−1)j l!
(l − j)!j!

(
1 +

3(l − j)(3m + 3j + 2)
(3j + 1)(3j + 2)

)

×
j−1∏

i=0

(3m + 3i + 1)(3l − 3m + 3i + 2)
(3i + 1)(3i + 2)

=
l∑

j=0

(−1)j

(
l

j

)
Pl(j)

= 0

where

Pl(j) =
(9l − 9m + 6)j + 9lm + 3l + 2

(3j + 1)(3j + 2)

×
m−1∏

i=0

3j + 3i + 1
3i + 1

l−m−1∏

i=0

3j + 3i + 2
3i + 2
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is a polynomial of degree l− 1. The proofs of (28) and (29) go along the same
lines

5. An auxiliary lemma

In the proof of the Main Lemma we shall also need

Lemma 3. Let α
βDγ

δ be given by (6). Assume one of the following cases:
Case 1◦ : α = 0, β = 0, δ ≥ 0, γ = 2δ + η with η = 0, 2.
Case 2◦ : α = 1, β = 0, δ ≥ 0, γ = 2δ + η with η = 2, 4.
Case 3◦ : α = 2, β = 1, δ ≥ 2, γ = 2δ + η with η = 0, 2.

Then, for n ≥ 2,
α
βDγ

δ (n) ≥ α
βDγ

δ (n + 1). (30)

Furthermore, (30) holds for n = 0 if δ ≥ 1, and for n = 1 except Case 1◦

with δ = γ = 0.

Proof. For n, l ∈ N0 put

α
βDγ

δ (n, l) =
(

2n + α

2l + β

)/(
6n + γ

6l + δ

)
.

Note that it is sufficient to show that for n even the following inequalities
hold:

(IN1)

{
α
βDγ

δ (n, l) ≥ α
βDγ

δ (n + 1, l)

≥ α
βDγ

δ (n + 2, l)
(l = 0, ..., n

2 − 1, n ≥ 2)

(IN2)

{
α
βDγ

δ (n, l) ≥ α
βDγ

δ (n + 1, l + 1)

≥ α
βDγ

δ (n + 2, l + 2)
(l = n

2 + 1, ..., n, n ≥ 2)

(IN3)

{
α
βDγ

δ

(
n, n

2

) ≥ α
βDγ

δ

(
n + 1, n

2

)

+ α
βDγ

δ

(
n + 1, n

2 + 1
)

( n ≥ 2
and
n = 0 if δ ≥ 1

)

(IN4)





α
βDγ

δ

(
n + 1, n

2

)
+ α

βDγ
δ

(
n + 1, n

2 + 1
)

≥ α
βDγ

δ

(
n + 2, n

2

)
+ α

βDγ
δ

(
n + 2, n

2 + 1
)

+ α
βDγ

δ

(
n + 2, n

2 + 2
)

(n ≥ 2
and
n = 0 except Case 1◦
with γ = δ = 0

)
.

Proof of inequality (IN1). Using the definition of α
βDγ

δ (n, l), expand-
ing the binomial coefficients and cancelling similar factors we see that the first
inequality in (IN1) is equivalent to

2∏

i=1

2n + α + i

2n− 2l + α− β + i

6∏

j=1

6n− 6l + γ − δ + j

6n + γ + j
≤ 1 (31)
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which in tern is implied by (since δ ≥ 0)

(
1− 6l + δ

6n + γ + 5

)3

≤ 1− 2l + β

2n + α + 1
(31a)

(
1− 6l + δ

6n + γ + 6

)3

≤ 1− 2l + β

2n + α + 2
. (31b)

To show inequality (30a) we fix l ∈ N0 and put n = 2l + 2m + 2 with some
m ∈ N0,

x =
6l + δ

12l + 12m + γ + 17
, y =

2l + β

4l + 4m + α + 5
.

Next note that since x ≥ 0 it is sufficient to show that 3x − 3x2 ≥ y. But
γ = 2δ + η with η ≥ −17 implies that x ≤ 1

2 and so 3x − 3x2 ≥ 3
2x. Now

3
2x ≥ y is equivalent to

24l2 + (24m + 12δ − 4γ + 18α− 24β + 22)l

+ (12δ − 24β)m + 3δ(α + 5)− (2γ + 34)β ≥ 0
(32a)

which in Cases 1◦ - 3◦ holds for any l ∈ N,m ∈ N0 and for l = 0,m ∈ N0

except Case 3◦ with δ = η = 2. Inequality (31b) we treat in the same way
with

x =
6l + δ

12l + 12m + γ + 18
, y =

2l + β

4l + 4m + α + 6

and (32a) replaced by

24l2 + (24m + 12δ − 4γ + 18α− 24β + 36)l

+ (12δ − 24β)m + 3δ(α + 6)− (2γ + 36)β ≥ 0.
(32b)

Finally, we directly show inequality (31) for l = 0 in the exceptional Case 3◦

with δ = 2 and γ = 6.
The second inequality in (IN1) is equivalent to

4∏

i=3

2n + α + i

2n− 2l + α− β + i

12∏

j=7

6n− 6l + γ − δ + j

6n + γ + j
≤ 1 (33)

which in tern is implied by (since δ ≥ 0)

(
1− 6l + δ

6n + γ + 11

)3

≤ 1− 2l + β

2n + α + 3
(33a)

(
1− 6l + δ

6n + γ + 12

)3

≤ 1− 2l + β

2n + α + 4
. (33b)
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To show inequality (33a) we follow the proof of inequality (31a) with

x =
6l + δ

12l + 12m + γ + 23
, y =

2l + β

4l + 4m + α + 7

and inequality (32a) replaced by

24l2 + (24m + 12δ − 4γ + 18α− 24β + 34)l

+ (12δ − 24β)m + 3δ(α + 7)− (2γ + 46)β ≥ 0
(34a)

which in Cases 1◦ - 3◦ holds for any l ∈ N,m ∈ N0 and for l = 0,m ∈ N0

except Case 3◦ with δ = η = 2. Inequality (33b) can be treated in the same
way with

x =
6l + δ

12l + 12m + γ + 24
, y =

2l + β

4l + 4m + α + 8

and inequality (34a) replaced by

24l2 + (24m + 12δ − 4γ + 18α− 24β + 48)l

+ (12δ − 24β)m + 3δ(α + 8)− (2γ + 48)β ≥ 0.
(34b)

Finally, we directly can show inequality (33) for l = 0 in the exceptional Case
3◦ with δ = 2 and γ = 6.

Proof of inequality (IN2). Note that inequality (IN2) is equivalent
to inequalities

α
α−βDγ

γ−δ(n, l) ≥ α
α−βDγ

γ−δ(n + 1, l) ≥ α
α−βDγ

γ−δ(n + 2, l)

for l = 0, ..., n
2 − 1. Hence we have to show inequality (IN1) in the following

three cases:
Case 1′ : α = 0, β = 0, δ ≥ 0, γ = 2δ + η with η = 0,−2
Case 2′ : α = 1, β = 1, δ ≥ 2, γ = 2δ + η with η = −2,−4
Case 3′ : α = 2, β = 1, δ ≥ 2, γ = 2δ + η with η = 0,−2.

In these cases inequalities (32a), (32b) and (34a), (34b) hold for any l,m ∈ N0

except Case 2′ with δ = 2, γ = 2 and l = 0. In this exceptional case we
directly check (31) and (33).

Proof of inequality (IN3). Expanding the binomial coefficients and
cancelling the similar factors we see that inequality (IN3) is equivalent to the
inequality

2∏

i=1

2n + α + i

n + α− β + i

6∏

j=1

3n + γ − δ + j

6n + γ + j

+
2∏

i=1

2n + α + i

n + β + i

6∏

j=1

3n + δ + j

6n + γ + j
≤ 1.

(35)
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Case 1◦. Then (35) is implied by

4 · 2n + 1
n + 2

6∏

j=1

3n + δ + η + j

6n + 2δ + η + j
≤ 1

which holds for n ≥ 2, and for n = 0 if δ ≥ 1.
Case 2◦. Then (35) takes the form

2n + 2
n + 2

· 2n + 3
n + 3

6∏

j=1

3n + δ + η + j

6n + 2δ + η + j

+2 · 2n + 3
n + 1

6∏

j=1

3n + δ + j

6n + 2δ + η + j
≤ 1

which holds for n ≥ 2, and for n = 0 if δ ≥ 1.
Case 3◦. Then (35) takes the form

2 · 2n + 3
n + 3

( 6∏

j=1

3n + δ + η + j

6n + 2δ + η + j
+

6∏

j=1

3n + δ + j

6n + 2δ + η + j

)
≤ 1

which holds for n ≥ 2, and for n = 0 if δ ≥ 1.

Proof of inequality (IN4). Expanding the binomial coefficients and
cancelling similar factors we see that inequality (IN4) is equivalent to the
inequality

4∏

i=1

2n + α + i

n + α− β + i

12∏

j=1

3n + γ − δ + j

6n + γ + j

+
4∏

i=1

2n + α + i

n + β + i

12∏

j=1

3n + δ + j

6n + γ + j

+
2∏

i=1

2n + α + i

n + α− β + i

2∏

i=1

2n + α + i + 2
n + β + i

×
6∏

j=1

3n + γ − δ + j

6n + γ + j

6∏

j=1

3n + δ + j

6n + γ + j + 6

≤
2∏

i=1

2n + α + i

n + α− β + i

6∏

j=1

3n + γ − δ + j

6n + γ + j

+
2∏

i=1

2n + α + i

n + β + i

6∏

j=1

3n + δ + j

6n + γ + j
.

(36)
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Note that, for γ = 2δ + η with 0 ≤ η ≤ 6,

2
6∏

j=1

3n + γ − δ + j

6n + γ + j

6∏

j=1

3n + δ + j

6n + γ + j + 6

≤
12∏

j=1

3n + γ − δ + j

6n + γ + j
+

12∏

j=1

3n + δ + j

6n + γ + j
.

Hence, (36) is implied by

( 4∏

i=3

2n + α + i

n + α− β + i
+

1
2

2∏

i=1

2n + α + i + 2
n + β + i

) 12∏

j=7

3n + γ − δ + j

6n + γ + j
≤ 1 (36a)

( 4∏

i=3

2n + α + i

n + β + i
+

1
2

2∏

i=1

2n + α + i + 2
n + α− β + i

) 12∏

j=7

3n + δ + j

6n + γ + j
≤ 1. (36b)

Case 1◦. Then (36b) is weaker then (36a) which takes the form

(
2n + 3
n + 3

2n + 4
n + 4

+
2n + 3
n + 1

) 12∏

j=7

3n + δ + η + j

6n + 2δ + η + j
≤ 1,

and it clearly holds for n ≥ 2, and for n = 0 if δ ≥ 4. If n = 0, we directly
check (36) for δ = 1, 2, 3, η = 0 and for δ = 0, 1, 2, 3, η = 2.

Case 2◦. Then (36a) and (36b) take the form

(
2n + 4
n + 4

· 2n + 5
n + 5

+
2n + 5
n + 1

) 12∏

j=7

3n + δ + η + j

6n + 2δ + η + j
≤ 1

(
2n + 4
n + 3

· 2n + 5
n + 4

+
2n + 5
n + 3

) 12∏

j=7

3n + δ + j

6n + 2δ + η + j
≤ 1.

Clearly, both inequalities hold for n ≥ 2, and for n = 0 if δ ≥ 8. If n = 0, we
directly check (36) for δ = 0, ..., 7, η = 2, 4.

Case 3◦. Then (36b) is weaker then (36a) which takes the form

(
2n + 5
n + 4

· 2n + 6
n + 5

+
2n + 5
n + 2

) 12∏

j=7

3n + δ + η + j

6n + 2δ + η + j
≤ 1,

and it clearly holds for n ≥ 2, and for n = 0 if δ ≥ 4. If n = 0, we directly
check (36) for δ = 1, 2, 3, η = 0, 2
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6. Proof of the Main Lemma

First of all observe that all sequences α
βDγ

δ appearing in the representation of
C(k, n) given by (20A) - (20F) fall within one of the cases of Lemma 3. Next,
the coefficients a(k, l), b(k, l) in (20A) - (20F) are given by (21A) - (21F), and
so they are non-negative. Hence, by Lemma 3 we get C(k, n) ≥ C(k, n + 2)
for n ≥ 2, for n ≥ 1 if k ≥ 2, and for n ≥ 0 if k ≥ 3. But

C(1, 0) = 3 > C(1, 2) = 2
37
105

C(1, 1) = 2
2
5

> C(1, 3) = 2
103
770

C(2, 0) = 4 > C(2, 2) = 2
67
110

.

So

C(k, n) ≥ C(k, n + 2) for
{

n ≥ 2 if k ≥ 0
n ≥ 0 if k ≥ 1.

Now, if n = 0, we easily get C(k, 0) = k + 2 for k ∈ N0. Next, if n = 1, we
derive for k ∈ N0

C(k, 1) = 2
k∑

l=0

(2l + 2)(2l + 3)(2l + 4)
(2k + 2)(2k + 3)(2k + 4)

=
(k + 2)(k + 3)

2k + 3
≤ k + 2.

Hence, C(k, n) ≤ C(k, 0) = k + 2 for n ∈ N0 if k ≥ 1. To finish the proof we
compute C(0, 2) = 2 9

70 > C(0, 3) = 2 2
70 .
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