
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 23 (2004), No. 1, 115–137

Energy Form on a Closed Fractal Curve

U. R. Freiberg and M. R. Lancia

Abstract. The energy form on a closed fractal curve F is constructed. As F is
neither self-similar nor nested, it is regarded as a ”fractal manifold”. The energy is
obtained by integrating the Lagrangian on F .
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1. Introduction

In this paper we consider a closed fractal curve F , the so-called von Koch
snowflake (see, e.g., Falconer [4]) and we construct the energy form associated
to a free diffusion process on it. The main feature is that F is not a self-similar
fractal, hence it is not possible to make use of the by-now well established
theory of potential analysis (see, e.g., Kusuoka [13, 14] and Kigami [12]). In
order to define an energy form on F , we regard F as a fractal manifold and
define the energy form EF on F by integrating a local energy or Lagrangian
on F (see Fukushima, Oshima and Takeda [7], Mosco [18 - 21] and Strichartz
[22]).

Two different decompositions of F into three Koch curves Ki are possi-
ble, namely F =

⋃3
i=1 Ki or F =

⋃6
i=4 Ki (see Figures 2.a and 2.b on Page

122). It turns out that EF can also be obtained as sum of energies associated
with the three von Koch curves of which F is made by, independent of the
decomposition (see Theorem 4.6). Indeed, in [8], for a certain class of frac-
tal sets which are the finite union of nested fractals with possibly different
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Hausdorff dimensions, the energy is defined by using such sums of energies;
in this sense, the set F considered here is a particular case of those fractals
considered in [8]. Nevertheless, in the present paper the special geometry of
F requires to analyze which is the role of the ”junction points”, because they
match two ”pieces” of same ”shape” and same Hausdorff dimension. In this
context, we are able to prove – from the probabilistic point of view – that the
free diffusion process on F satisfies in the junctions points a strong reflection
principle. This explains how the free diffusion on F corresponds to the three
”reflecting” diffusion processes on K1,K2 and K3 (or on K4,K5 and K6, re-
spectively) which are associated with the energy forms on the corresponding
Koch curves.

Our Lagrangian approach can be obviously extended to more general ge-
ometries where F is the finite union of fractal sets with different Hausdorff
dimensions, but also to the more interesting case of fractals which are images
of a nested fractal under a C1-diffeomorphic mapping (see [6]).

The plan of the paper is the following. In Section 2 we recall the definition
and properties of the von Koch curve K and we define the energy form and the
Lagrangian on K. The definition of the snowflake F as a ”fractal manifold”
is given in Section 3. In Section 4 the Lagrangian on the snowflake F is
introduced as image measure of the Lagrangian on the Koch curve by using
the description of F as a ”fractal manifold”. This leads to the definition of
the energy form EF on F , and it turns out that EF is a closed, strongly local,
regular Dirichlet form defined on L2(F, µF ), where µF is proportional to the
Df -dimensional Hausdorff measure on F (see Corollary 4.11). In Section 5
the Laplacian ∆F is introduced as operator associated to the energy form
EF . We show that the Laplacian on F is ”locally” given by the Laplacian of
the corresponding von Koch curve (see Theorem 5.3). In Section 6 we give a
stochastic interpretation in terms of a strong reflection principle.

2. Preliminaries

Through this paper we are in the real plane R2, equipped with the Euclidean
distance |p− q| (p, q ∈ R2). By A we denote the closure of a set A in R2. By
C(A) we denote the space of real-valued, continuous functions on A, by C(A)′

its dual, and by C0(A) the space of continuous functions compactly supported
on A.

2.1 The von Koch curve. Let us first recall the definition and some main
properties of the von Koch curve K. This self-similar fractal belongs to the
class of so-called nested fractals introduced by Lindstrøm [17] and is obtained
as follows (see, e.g., [4]):
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Pose A = (0, 0) and B = (1, 0), remove from the segment AB the middle
(open) third and put up above this hole the two other sides of a regular
triangle. Do the same with the four segments of length 1

3 of the arising set,
and do so on (see Figure 1).

Figure 1: Construction of the von Koch curve: first and second iteration

The limit set is the well known von Koch curve.
On the other hand, this fractal is given as unique non-empty set which is

self-similar with respect to the family of affine contractions Ψ = {ψ1, . . . , ψ4}
where the mappings are given by

ψ1(z) =
z

3

ψ2(z) =
z

3
ei π

3 +
1
3

ψ3(z) =
z

3
e−i π

3 +
1
2

+ i
√

3
6

ψ4(z) =
z + 2

3

and z denotes an element of C (for the moment we identify R2 with the
complex plane C). It is proved that there exists a unique non-empty compact
set K such that K =

⋃4
i=1 ψi(K), (i.e. K consists of smaller similar copies of

itself, hence K is self-similar; see Hutchinson [9]).
Furthermore, one can obtain K as the attractor of the dynamical system

{ψn}n≥1, where ψn denotes the nth composition of ψ with itself, the map
ψ(A) =

⋃4
i=1 ψi(A) (A ⊆ R2) acts on the Banach space of all non-empty

compact subsets of R2 equipped with the Hausdorff metric. Moreover, one has
free choice of a (non-empty) closed starting set. The choice of V0 = {A,B} –
which is just the set of essential fixed points of the iterated function system
Ψ (see [17] for details) – leads to the following approximation of K by an
increasing sequence of finite sets of isolated points.

Setting V0 = {A,B}, for arbitrary n-tuples of indices j1, ..., jn ∈ {1, ..., 4}
we define

ψj1···jn = ψj1 ◦ · · · ◦ ψjn

Vj1···jn = ψj1···jn(V0)

and

Vn =
4⋃

j1,...,jn=1

Vj1···jn .
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It is easy to see that ]Vn = 4n + 1. Every point p in Vn\{A, B} has two
neighbors q ∈ Vn, which are called n-neighbors of p, denoted in the following
by q ∼n p. We say that p, q ∈ Vn are n-neighbors, if there exists a n-tuple of
indices j1, ..., jn ∈ {1, ..., 4} such that p, q ∈ Vj1···jn . They both have distance
3−n from p. Further, we set

V∗ =
⋃

n≥0

Vn = lim
n→∞

Vn.

There holds K = V∗.
Moreover, there exists a unique Borel probability measure µ which is self-

similar with respect to the family Ψ, i.e.

µ(A) =
1
4

4∑

i=1

µ(ψ−1
i A)

for any Borel set A ⊆ R2, and supp µ = K. Note that µ is given by the
normalized Df -dimensional Hausdorff measure HDf , restricted to K, where
Df = ln 4

ln 3 (see [9]). Further, for any n ≥ 1 we define a discrete measure µn on
Vn by

µn =
1
4n

∑

p∈Vn

δ{p} (2.1)

where δ{p} denotes the Dirac measure at the point p. Note that µn(Vn) =
1 + 1

4n .
In [15] the following result is proved:

Proposition 2.1. The sequence (µn)n≥1 is weakly convergent (i.e. in
C(K)′) to the measure µ.

2.2 Energy form on the von Koch curve. In this subsection we recall
the construction of the energy form on the von Koch curve K. It is based on
finite difference schemes and follows general lines described in [14] for nested
fractals.

For any function u : V∗ → R we define

En[u] =
1
2

4n
∑

p∈Vn

∑
q∼np

(
u(p)− u(q)

)2 (2.2)

where q ∼n p means that q is an n-neighbor of p. It can be shown (see [14])
that the sequence (En[u])n≥0 is non-decreasing, the limit of the right-hand
side of (2.2) exists and the limit form

E [u] = lim
n→∞

En[u] (2.3)
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is non-trivial (E 6= ∞) with domain

D∗(E) =
{
u : V∗ → R| E [u] < ∞}

.

Every function u ∈ D∗(E) can be uniquely extended to an element of C(K).
We denote this extension still by u and set

D =
{
u ∈ C(K) : E [u] < ∞}

where E [u] = E [u|V∗ ]. Hence D ⊆ C(K) ⊆ L2(K, µ), where L2(K, µ) is the
Hilbert space of square summable functions on K with respect to the self-
similar measure µ.

We now define the space D(E) as completion of D in the norm

‖u‖E =
(‖u‖2L2(K,µ) + E [u]

)1/2
. (2.4)

D(E) is injected in L2(K, µ) and is a Hilbert space with scalar product associ-
ated to norm (2.4). Then we extend E as usual on the completed space D(E).
By E(·, ·) we denote the bilinear form defined on D(E)×D(E) by polarization,
i.e.

E(u, v) =
1
2
(E [u + v]− E [u]− E [v]

) (
u, v ∈ D(E)

)
.

It is easy to see that, for any pair u, v ∈ D(E), E(u, v) is the limit of the
sequence (En(u, v)) given by

En(u, v) =
1
2

4n
∑

p∈Vn

∑
q∼np

[u(p)− u(q)] [v(p)− v(q)]. (2.5)

The form E(·, ·) with domain D(E) × D(E) is a closed Dirichlet form in the
Hilbert space L2(K, µ). It is regular and strongly local. Regularity means
that D(E)∩C(K) is dense both in C(K) with respect to the uniform norm and
in D(E) with respect to the intrinsic norm (2.4). This property implies that
D(E) is not trivial (i.e. not made by only the constant functions). Moreover,
the functions in D(E) posses a continuous representative, which is actually
Hölder continuous on K (see [15: Corollary 3.3]). In the following we will use
that D(E) ∩ C0(K) is dense in C0(K).

Proposition 2.2. The space D(E) is continuously embedded into C0,β(K),
the space of Hölder continuous functions with exponent β = ln 4

2 ln 3 = Df

2 .

In the following we identify u ∈ D(E) with its continuous representative,
still denoted by u.
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2.3 The Lagrangian on the von Koch curve. In this subsection, we con-
struct the Lagrangian on the von Koch curve. For the concept of Lagrangians
on fractals, i.e. the notion of a measure-valued local energy, we refer to [7, 18,
20] (see also [2, 21]).

We observe that the approximating energy forms En on Vn, defined in
(2.5), can be written as

En(u, v) =
∫

Vn

∇nu · ∇nv dµn (2.6)

where µn is the discrete measure given in (2.1). For every n ≥ 0, µn is a
measure on K supported on Vn, and for any p ∈ Vn the ”discrete gradient” is
given by

∇nu · ∇nv(p) =
1
2

∑
q∼np

u(p)− u(q)
|p− q|δ

v(p)− v(q)
|p− q|δ (u, v ∈ D(E))

where δ = ln 4
ln 3 (see [21]). Then there holds:

Proposition 2.3. Let A be any subset of K. For every u, v ∈ D(E), the
sequence of measures given by

L(n)
K (u, v)(A) =

∫

A∩Vn

∇nu · ∇nv dµn (n ≥ 0) (2.7)

weakly converges in C(K)′ to a signed finite Radon measure LK(u, v) on K as
n →∞, the so-called Lagrangian measure on K. Moreover,

E(u, v) =
∫

K

dLK(u, v) (u, v ∈ D(E)).

Proof. First, let us restrict ourselves to the quadratic case. Fix u ∈ D(E)
and set L(n)

K [u] = L(n)
K (u, u) (n ≥ 0). From (2.6) and (2.3) it follows that

(L(n)
K [u](K))n≥0 is a uniformly bounded sequence, because

L(n)
K [u](K) =

∫

K

dL(n)
K [u] = En[u] ≤ E [u] < ∞ (n ≥ 0).

Let n ∈ N be fixed. It can be proved by straightforward calculations that,
for every u ∈ D(E) and every ϕ ∈ D(E) ∩ C0(K), the identity

∫

Vn

ϕdL(n)
K [u] = En(ϕu, u)− 1

2
En(ϕ, u2) (2.8)
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holds. As the energy form E [u] is a Dirichlet form of diffusion type, it admits
an integral representation (see [16]): there exists a unique positive Radon
measure, which we call LK [u], such that E [u] =

∫
K

dLK [u] and which is
uniquely defined by

∫

K

ϕdLK [u] = E(ϕu, u)− 1
2
E(ϕ, u2)

(
ϕ ∈ D(E) ∩ C0(K)

)
(2.9)

(see [18]). Passing to the limit as n → ∞ in (2.8), from (2.3), taking into
account the regularity of the form, it follows that the right-hand side of (2.8)
tends to the right-hand side of (2.9). Hence we have proved that

L(n)
K [u] ⇀ LK [u] (n →∞). (2.10)

The (signed) Radon measure L(n)
K (u, v) (u, v ∈ D(E)) is given by polar-

ization:

L(n)
K (u, v) =

1
2

{
L(n)

K (u + v, u + v)− L(n)
K (u, u)− L(n)

K (v, v)
}

.

These are Radon measures on K uniquely associated with every u, v ∈ D(E).
The weak convergence of the sequence (L(n)

K (u, v))n≥0 to the (signed) Radon
measure LK(u, v) for any u, v ∈ D(E) follows from the polarization formula
and (2.10) (see [18])

Remark 2.4. The measure-valued map LK on D(E) × D(E) is bilinear,
symmetric and positive (i.e. LK [u] is a positive measure). This measure-
valued Lagrangian takes on the fractal K the role of the Euclidean Lagrangian
dL(u, v) = ∇u ·∇vdx. Note that in the case of the Koch curve the Lagrangian
LK is absolutely continuous with respect to the volume measure µ (see [3]).
On the contrary, this is not true on most fractals (see [20]).

3. The von Koch snowflake

3.1 Intuitive description. By a von Koch snowflake F we will denote the
union of three standard von Koch curves K1,K2 and K3 as shown in Figure
2a. We assume that the junction points x1, x3 and x5 are the vertices of a
regular triangle with unit side length, i.e. |x1−x3| = |x1−x5| = |x3−x5| = 1.
Obviously, F can also be seen as the union of the three other standard von
Koch curves K4, K5 and K6 (with junction points x2, x4 and x6), as shown in
Figure 2b.
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From now on we assume that a clockwise orientation is given on F .

Figure 2: a) first decomposition b) second decomposition

Remark 3.1. We observe that the points x1, x3 and x5, which are the
endpoints of K1,K2 and K3, are interior points of K4,K5 and K6, respectively;
viceversa, the points x2, x4 and x6 are interior points of K1,K2 and K3,
respectively.

By K̊i (1 ≤ i ≤ 6) we denote the curve Ki without its endpoints. Of
course, the Hausdorff dimension of the von Koch snowflake is also given by
Df = ln 4

ln 3 . But unfortunately, this fractal is no longer self-similar (and, hence,
not nested). So we cannot apply the theory of defining an energy form on
a nested – or, more general, on a post critically finite – fractal which was
developed by several authors (see, e.g., [12, 13, 17]).

One can define, in a natural way, a finite Borel measure µF supported on
F by

µF = µ1 + µ2 + µ3 (3.1)
where µi denotes the normalized Df -dimensional Hausdorff measure, restrict-
ed to Ki (i = 1, 2, 3). There holds also that µF = µ4+µ5+µ6, where µi is the
normalized Df -dimensional Hausdorff measure restricted to Ki (i = 4, 5, 6).

Obviously, K1 is the uniquely determined self-similar set with respect to
four suitable contractions ψ

(1)
1 , . . . , ψ

(1)
4 , with the same ratio 1

3 , which can be
obtained from ψ1, . . . , ψ4 by composing them with rotations and translations,
as it will be pointed out in the next section.

As before, we approximate K1 from below by a sequence of finite sets of
points. For this, set

V
(1)
0 = {x1, x3}

V
(1)
j1···jn

= ψ
(1)
j1
◦ · · · ◦ ψ

(1)
jn

(V (1)
0 )

and

V (1)
n =

4⋃

j1,...,jn=1

V
(1)
j1···jn

.
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Further, we set
V

(1)
∗ =

⋃

m≥0

V (1)
m .

There follows K1 = V
(1)
∗ . In a similar way, we approximate the von Koch

curves K2, . . . ,K6 by sequences (V (2)
m )m≥0, . . . , (V

(6)
m )m≥0 and denote their

limits by V
(2)
∗ , . . . , V

(6)
∗ , respectively.

In order to approximate F , we define the increasing sequence of finite sets
of points Vm =

⋃3
i=1 V

(i)
m =

⋃6
i=4 V

(i)
m (m ≥ 1) and V∗ =

⋃
m≥1 Vm. There

follows V∗ =
⋃3

i=1 V
(i)
∗ =

⋃6
i=4 V

(i)
∗ and F = V∗.

3.2 The von Koch snowflake as a manifold. We assume that we are
given a von Koch snowflake F as described above. For our purposes it is
convenient to regard F as a ”fractal manifold”. We cover the snowflake by
sets Ui (i ≥ 1), which are open subsets of the snowflake and which can be
mapped by a corresponding set of homeomorphisms {ϕi}i≥1 to certain ”fractal
reference sets”. Here ”open in the snowflake” means open with respect to the
trace topology on F of the Euclidean one on R2.

Because of the simple geometry of the snowflake it seems reasonable to
choose

Ui = K̊i (i = 1, . . . , 6)

(according to Figures 2a and 2b) and to define the mappings ϕi : R2 → R2 as
uniquely determined orientation preserving Euclidean motions such that every
ϕi maps the set Ki to the reference von Koch curve K defined in Subsection
2.1. Obviously, such a map ϕi is given as composition of a rotation and a
translation of the plane R2, i.e. ϕi(p) = ei θip + bi (i = 1, . . . , 6), where θi

is the rotational angle and bi ∈ R2 is a vector; obviously, ϕi(V
(i)
0 ) = V0. By

means of these functions we choose the maps ψ
(i)
j (j = 1, ..., 4; i = 1, ..., 6) as

ψ
(i)
j (·) = ϕ−1

i

(
ψj(ϕi(·))

)
.

Further, each map ϕi preserves the property of n-neighborhood:

Lemma 3.2. For any n ≥ 1 and any i = 1, . . . , 6 the following holds: p

and q are n-neighbors in V
(i)
n if and only if ϕi(p) and ϕi(q) are n-neighbors

in Vn.

Proof. Let p, q ∈ V
(i)
n be n-neighbors. Then there exists an n-tuple

j1, ..., jn such that
p = ψ

(i)
j1
◦ · · · ◦ ψ

(i)
jn

(ξ(i))

q = ψ
(i)
j1
◦ · · · ◦ ψ

(i)
jn

(η(i))
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where {ξ(i), η(i)} = V
(i)
0 . Then

ϕi(p) = ψj1 · · ·ψjn
(ϕi(ξ(i)))

ϕi(q) = ψj1 · · ·ψjn
(ϕi(η(i))),

thus the thesis follows from the properties of the functions ϕi. As the matrix
ei θi is orthogonal, |ϕi(p)− ϕi(q)| = |p− q| (p, q ∈ V

(i)
n ; i = 1, . . . , 6)

Corollary 3.3. For any n ≥ 1 and any i = 1, . . . , 6, the map ϕ−1
i : K →

Ki preserves the property of n-neighborhood on Vn.

From the above consideration a natural definition of n-neighbors can be
given for the points in Vm. Every p ∈ Vm has two neighbors q in the following
denoted by p ∼m q.

4. Lagrangian and energy form on the snowflake

4.1 Lagrangian on the snowflake. In this subsection, we define the La-
grangian LF on the fractal snowflake F by using its representation as a ”fractal
manifold” (see Subsection 3.2).

Let LK be the Lagrangian on the von Koch curve K introduced in Propo-
sition 2.3. To this aim, we introduce the space

DF =
{

w : F → R
∣∣∣ w ◦ ϕ−1

i ∈ D(E) ∀ i = 1, . . . , 6
}

. (4.1)

Let w, z be two given functions in DF defined on F . We want to define a
measure LF (w, z) on F .

Definition 4.1. Let A be a Borel set of Ki. We introduce the measure-
valued Lagrangian LF (u, v) of the set A as image measure (see, e.g., [5]) of
the measure LK

(
w ◦ ϕ−1

i , z ◦ ϕ−1
i

)
under the map ϕ−1

i , i.e.

LF (w, z)(A) = LK

(
w ◦ ϕ−1

i , z ◦ ϕ−1
i

)
(ϕi(A)) (A ⊆ Ki).

Remark 4.2. Due to Proposition 2.2, for any w ∈ DF the functions
w ◦ ϕ−1

i (i = 1, . . . , 6) are continuous on K. Hence, w|Ki
= w ◦ ϕ−1

i ◦ ϕi is
continuous on Ki for every i = 1, . . . , 6. From Remark 3.1 the continuity of w
on all of F follows. Thus, from now on we identify the elements of DF with
their continuous representatives.

We now show that the definition of LF (w, z) (w, z ∈ DF ) is well posed.



Energy Form on a Closed Fractal Curve 125

Proposition 4.3. The above definition of the Lagrangian LF is indepen-
dent of the choice of the sets Ki, i.e. if A ⊂ Ki ∩Kj (i, j = 1, . . . , 6; i 6= j),
then

LK

(
w ◦ ϕ−1

i , z ◦ ϕ−1
i

)
(ϕi(A)) = LK

(
w ◦ ϕ−1

j , z ◦ ϕ−1
j

)
(ϕj(A)) (4.2)

for all w, z ∈ DF .

Proof. Choose two functions w, z ∈ DF and two indices i 6= j. From
Proposition 2.3 it follows that LK is the weak limit of L(n)

K . In order to prove
(4.2) it is sufficient to show that, for any n ≥ 1 and for any p ∈ Ki ∩Kj ∩Vn,
the discrete gradients satisfy

∇n(w ◦ ϕ−1
i ) · ∇n(z ◦ ϕ−1

i )(ϕi(p)) = ∇n(w ◦ ϕ−1
j ) · ∇n(z ◦ ϕ−1

j )(ϕj(p)).

From (4.1) we have that the functions u = w ◦ ϕ−1
i and v = z ◦ ϕ−1

i , acting
from K to R, are in D(E). Set r = ϕi(p). Then r ∈ K ∩ Vn, and we have to
show that, for any n ≥ 1,

∇n(u) · ∇n(v)(r)

= ∇n

(
u ◦ (ϕi ◦ ϕ−1

j )
) · ∇n

(
v ◦ (ϕi ◦ ϕ−1

j )
)(

(ϕj ◦ ϕ−1
i )(r)

) (4.3)

holds. Setting h = ϕj ◦ ϕ−1
i , the right-hand side of (4.3) is given by

∑

q∼nh(r)

(u ◦ h−1)(h(r))− (u ◦ h−1)(q)
|h(r)− q|δ

(v ◦ h−1)(h(r))− (v ◦ h−1)(q)
|h(r)− q|δ

=
∑

q′:h(q′)∼nh(r)

u(r)− u(q′)
|h(r)− h(q′)|δ

v(r)− v(q′)
|h(r)− h(q′)|δ

=
∑

q′∼nr

u(r)− u(q′)
|r − q′|δ

v(r)− v(q′)
|r − q′|δ

where the last two equalities follow from Corollary 3.3. The last sum equals
to the left-hand side of (4.3)

Definition 4.4. If B is an arbitrary Borel subset of F , it can be regarded
as disjoint union of sets B1, . . . , B6 defined by Bi = B ∩Ci,i+1 (i = 1, . . . , 5)
and B6 = B ∩ C6,1, where Ci,i+1 denotes the set of all points of F located
between xi and xi+1, including xi and excluding xi+1, and C6,1 denotes the
set of all points between x6 and x1, including x6 and excluding x1. Then any
of the sets Bi is contained in one of the sets K1, . . . ,K6, and we define

LF (w, z)(B) =
6∑

i=1

LF (w, z)(Bi).

LF is defined on DF ×DF .

We define the energy form on the fractal snowflake F in terms of its local
energy measure LF .
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Definition 4.5. We introduce on DF ×DF the symmetric bilinear form

EF (u, v) =
∫

F

dLF (u, v) (u, v ∈ DF ). (4.4)

We note that

EF (u, v) =
3∑

i=1

∫

Ki

dLF (u, v) =
6∑

i=4

∫

Ki

dLF (u, v)

as follows from Remark 2.4 in this simpler situation and from [1: Theorem
5.2] in the more general case of post critically finite fractals.

4.2 An alternative definition of the energy form on the snowflake. In
this subsection, we give a definition of an energy form on the fractal snowflake
which does not make use of the notion of the Lagrangian. Later we will see
that both approaches are equivalent. Here we refer to the set F no longer as
a manifold but as union of three von Koch curves (see Figures 2a and 2b; see
also [8]).

In order to introduce some notations, we recall the definition of the energy
form on one of these curves, say K1 (according to Subsection 2.2). For any
function u : V

(1)
∗ → R we define the non-decreasing sequence (E(1)

m [u])m≥1 by

E(1)
m [u] =

1
2

4m
∑

p∈V
(1)

m

∑
q∼mp

(
u(p)− u(q)

)2
.

On
D∗(E(1)) =

{
u : V

(1)
∗ → R

∣∣∣ lim
m→∞

E(1)
m [u] < ∞

}

we set
E(1)[u] = lim

m→∞
E(1)

m [u].

As explained in Subsection 2.2, we identify each D∗(E(1))-function by its con-
tinuous extension on K1. Proceeding as in Subsection 2.2 we have that
(E(1),D(E(1))) is a strongly local Dirichlet form on L2(K1, µ1) and D(E(1))
is a Hilbert space equipped with the norm

(‖ · ‖2L2(K1,µ1)
+ E(1)[·])1/2.

We proceed analogously for the von Koch curves K2, . . . ,K6. We de-
note the corresponding energy forms by E(2), . . . , E(6), obtained as limits of
sequences (E(2)

m )m≥1, . . . , (E(6)
m )m≥1, respectively. Finally, we denote the do-

mains of these strongly local Dirichlet forms by D(E(2)), . . . ,D(E(6)) and the
corresponding Lagrangian on Ki by LKi [·] (see Proposition 2.3).
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In order to define the energy form on F , we proceed as follows. For any
function u : V∗ → R we define

Ẽm[u] =
1
2

4m
∑

p∈Vm

∑
q∼mp

(
u(p)− u(q)

)2 (m ≥ 1).

(Ẽm[u])m≥1 is a sequence non-decreasing in m. Further, we introduce the
domain

D̃ =
{

u ∈ C(F )
∣∣∣ ẼF [u] := lim

m→∞
Ẽm[u] < ∞

}
.

Hence, D̃ ⊆ C(F ) ⊆ L2(F, µF ), where µF is defined in Subsection 3.1. We
now define the space D(ẼF ) as completion of D̃ in the norm

‖u‖D(ẼF )
=

(‖u‖2L2(F,µF ) + ẼF [u]
)1/2

. (4.6)

D(ẼF ) is injected into L2(F, µF ) and is a Hilbert space with scalar product
associated to norm (4.6). Then we extend ẼF as usual on D(ẼF ).

We recall that F can be thought as union of three von Koch curves ac-
cording to Figure 2a as well as to Figure 2b.

We now show that ẼF is independent of the chosen tiling of F . Namely,
we have:

Theorem 4.6. A function u is in D(ẼF ) if and only if u ∈ C(F ) and
u|Ki

∈ D(E(i)) (i = 1, ..., 6). Moreover, in this case we have

ẼF [u] = E(1)[u|K1 ] + E(2)[u|K2 ] + E(3)[u|K3 ]

= E(4)[u|K4 ] + E(5)[u|K5 ] + E(6)[u|K6 ]
(u ∈ D(ẼF )). (4.7)

Proof. We only prove the first equality, the second being analogous. As
on F the clockwise orientation is given, every point p in Vm has a ”preceding”
and a ”following” m-neighbor in Vm, denoted in the following by pml and pmr,
respectively. First suppose u ∈ D̃. According to Figure 2a, for any u : V∗ → R
and for any m ≥ 1 we have

Ẽm[u] =
1
2

4m
∑

p∈Vm

∑
q∼mp

[u(p)− u(q)]2

=
1
2

4m

( ∑

p∈V
(1)

m \{x1,x3}

∑
q∼mp

[u(p)− u(q)]2
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+
∑

p∈V
(2)

m \{x3,x5}

∑
q∼mp

[u(p)− u(q)]2

+
∑

p∈V
(3)

m \{x1,x5}

∑
q∼mp

[u(p)− u(q)]2 +
∑

q∼mx1

[u(x1)− u(q)]2

+
∑

q∼mx3

[u(x3)− u(q)]2 +
∑

q∼mx5

[u(x5)− u(q)]2
)

=
1
2

4m

( ∑

p∈V
(1)

m \{x1,x3}

∑
q∼mp

[u(p)− u(q)]2

+ [u(x1)− u(xmr
1 )]2 + [u(x3)− u(xml

3 )]2

+
∑

p∈V
(2)

m \{x3,x5}

∑
q∼mp

[u(p)− u(q)]2

+ [u(x3)− u(xmr
3 )]2 + [u(x5)− u(xml

5 )]2

+
∑

p∈V
(3)

m \{x1,x5}

∑
q∼mp

[u(p)− u(q)]2

+ [u(x5)− u(xmr
5 )]2 + [u(x1)− u(xml

1 )]2
)

=
1
2

4m

( ∑

p∈V
(1)

m

∑

q∈V
(1)

m :q∼mp

[u(p)− u(q)]2

+
∑

p∈V
(2)

m

∑

q∈V
(2)

m :q∼mp

[u(p)− u(q)]2

+
∑

p∈V
(3)

m

∑

q∈V
(3)

m :q∼mp

[u(p)− u(q)]2
)

= E(1)
m [u|V (1)

∗
] + E(2)

m [u|V (2)
∗

] + E(3)
m [u|V (3)

∗
].

By passing to the limit as m → ∞, it follows u|Ki
∈ D(E(i)) (i = 1, 2, 3).

By a similar argument it also follows that u|Ki
∈ D(E(i)) (i = 4, 5, 6). From

the definition of D(ẼF ) it follows that (4.7) holds for any u ∈ D(ẼF ). Finally,
u ∈ C(F ) follows from Remark 3.1

Remark. From the proof of Theorem 4.6 it follows that for a function u

to be in D(ẼF ) it is sufficient that u ∈ C(F ) and u|Ki
∈ D(E(i)) (i = 1, 2, 3)

(or, equivalently, i = 4, 5, 6). In particular, from this follows that no matching
conditions at the junction points are needed.
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Corollary 4.7.
(ẼF ,D(ẼF )

)
is a strongly local, closed, regular Dirichlet

form on L2(F, µF ), where µF is defined by (3.1).

Proof. The proof follows from Theorem 4.6 and the corresponding prop-
erties of E(i) on Ki

Corollary 4.8. D(ẼF ) is continuously embedded into C0,β(F ), β = Df

2 .

Proof. The thesis follows from Theorem 4.6 and Proposition 2.2

4.3 Equivalence of both approaches. In this subsection, we show that the
form ẼF coincides with the form EF . In the following we denote the restriction
of LF [u] to Ki (i = 1, . . . , 6) by LF [u]|Ki

(·) = LF [u](· ∩Ki).
We preliminary prove the following

Lemma 4.9. For any u ∈ DF we have u|Ki
∈ D(E(i)),

∫

Ki

dLF [u] = E(i)[u|Ki
] (i = 1, . . . , 6) (4.8)

and LKi [u] = LF [u]|Ki
(i = 1, . . . , 6).

Proof. Without loss of generality we show the assertion for i = 1 only.
For this, consider LF [u]|K1 which by Definition 4.1 is given by LK [u ◦ ϕ−1

1 ].
We recall that, for u ◦ ϕ−1

1 ∈ D(E), LK [u ◦ ϕ−1
1 ] is the weak limit of the

sequence (L(n)
K [u ◦ ϕ−1

1 ]) defined in (2.7). Hence, the left-hand side of (4.8)
can be written as∫

K1

dLF [u] =
∫

K

dLK [u ◦ ϕ−1
1 ]

= lim
n→∞

∫

Vn

dL(n)
K [u ◦ ϕ−1

1 ]

=
1
2

lim
n→∞

∑

p∈Vn

∑

q∈Vn:q∼np

[
u(ϕ−1

1 (p))− u(ϕ−1
1 (q))

]2
|p− q|2δ

=
1
2

lim
n→∞

∑

p′∈V
(1)

n

∑

q′∈Vn:q′∼np′

[u(p′)− u(q′)]2

|p′ − q′|2δ

where the last equality follows from the fact that ϕ−1
1 : K → K1 preserves n-

neighborhood (see Lemma 3.2). From the finiteness of the last limit it follows
that u|K1 ∈ D(E(1)) and that

1
2

lim
n→∞

∑

p′∈V
(1)

n

∑

q′∈Vn:q′∼np′

[u(p′)− u(q′)]2

|p′ − q′|2δ
= E(1)[u|K1 ].

Thus the statement is proved
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Theorem 4.10. A function u : F → R belongs to DF if and only if it
belongs to D(ẼF ). In this case,

EF [u] = ẼF [u]. (4.9)

Proof. Let u be in DF . We prove that u belongs to D(ẼF ) and that (4.9)
holds. Indeed, every u ∈ DF is continuous on F (see Remark 4.2). From
Lemma 4.9 and Theorem 4.6 it follows that u ∈ D(ẼF ). We note that EF can
be written as

EF [u] =
∫

K1

dLF [u] +
∫

K2

dLF [u] +
∫

K3

dLF [u] (u ∈ DF )

(see (4.5)). From Theorem 4.6 we have

ẼF [u] = E(1)[u|K1 ] + E(2)[u|K2 ] + E(3)[u|K3 ] (u ∈ D(ẼF )).

This together with Lemma 4.9 yields (4.9) for any u ∈ DF .

On the other hand, if a function u is in D(ẼF ), we obtain from Theorem
4.6 that u|Ki

∈ D(E(i)) (i = 1, . . . , 6). Proceeding as in the proof of Lemma
4.9, it follows that u ◦ ϕ−1

i ∈ D(E), hence u ∈ DF and (4.9) holds

From Theorem 4.10 and Corollary 4.7 we obtain

Corollary 4.11. (EF ,DF ) is a strongly local, closed, regular Dirichlet
form on L2(F, µF ).

Corollary 4.12.

i) DF is a Hilbert space with scalar product associated to the norm ‖u‖DF

=
(‖u‖2L2(F,µF ) + EF [u]

)1/2.

ii) DF is continuously embedded into C0,β(F ) with β = Df

2 .

Because of the equivalence of both energy forms, from now on we use only
the notation (EF ,DF ).

Remark 4.13. We point out that the definition of energy forms in terms
of a local energy measure, i.e. a Lagrangian, can be adopted to define energy
forms on a wider range of more general fractals with a smaller (or, even empty)
symmetry group; of course, in the case of the von Koch snowflake, the above
equivalence is due to the simple geometry – i.e. the high symmetry – of the
von Koch snowflake.
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5. The Laplacian on the snowflake

We now define the Laplace operator on F . As (EF ,DF ) is a strongly local,
closed, regular Dirichlet form on L2(F, µF ), there exists (see [11: Chapter 6,
Theorem 2.1]) a unique self-adjoint, non-positive operator ∆F on L2(F, µF )
– with domain D(∆F ) ⊆ DF , dense in L2(F, µF ) – such that

EF (u, v) = −
∫

F

(∆F u)v dµF

(
u ∈ D(∆F ), v ∈ DF

)
.

In a similar way, on each of the Koch curves K1, . . . ,K6 we define Laplacians
∆Ki

as unique self-adjoint, non-positive operators on L2(Ki, µi) – with do-
mains D(∆Ki) ⊆ D(E(i)), dense in L2(Ki, µi) – such that, for any i = 1, . . . , 6,

E(i)(u, v) = −
∫

Ki

(∆Kiu)vdµi

(
u ∈ D(∆Ki), v ∈ D(E(i))

)
.

These are the ”field operators” with homogeneous ”Neumann” boundary con-
ditions [19].

We now define the local operator ∆Ki,loc on K̊i (i = 1, ..., 6). Following
[19], we define D(E(i))loc as the space of all µi-measurable functions u : Ki →
R such that, for any open relatively compact subset U ⊂⊂ K̊i, there exists
a function w ∈ D(E(i)) such that u = w µi-a.e. on U . Given u ∈ D(E(i))loc,
the measure LKi [u] is well defined on K̊i by putting LKi [u]|U = LKi [w]|U
for arbitrary U and w as above. The measure LKi(u, v) on K̊i for u, v ∈
D(E(i))loc is given by polarization. We recall that, from Lemma 4.9, for every
u ∈ D(E(i))loc we have LKi [u] = (LF )|Ki

[u] on K̊i (i = 1, . . . , 6).

We now define the ”local” Laplacian ∆Ki,loc (i = 1, . . . , 6).

Definition 5.1. Fix i ∈ {1, . . . , 6}. For f ∈ L2(Ki, µi), we say that
u ∈ L2(Ki, µi) ∩ D(E(i))loc is a local weak solution of the (formal) equation

−∆Kiu = f in K̊i (5.1)

if ∫

K̊i

dLKi(u, v) =
∫

K̊i

fv dµi ∀ v ∈ D(E(i)) ∩ C0(K̊i). (5.2)

Given f ∈ L2(Ki, µi), we denote the set of all weak solutions u of equation
(5.1) by

R0[∆Ki ]loc(f) =
{
u ∈ L2(Ki, µi) ∩ D(E(i))loc : u satisfies (5.2)

}
.
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This defines R0[∆Ki
]loc as a multi-valued operator

R0[∆Ki ]loc : L2(Ki, µi) → L2(Ki, µi).

We denote by −∆Ki,loc the inverse of R0[∆Ki ]loc in multi-valued sense. That
is, −∆Ki,loc is the operator defined on the domain

D(∆Ki
loc) = R0[∆Ki

]loc(L2(Ki, µi))

setting f ∈ −∆Ki,loc(u) for u ∈ D(−∆Ki,loc) if and only if u ∈ R0[∆Ki
]loc(f)

for f ∈ L2(Ki, µi).
It can be proved (see [19]) that −∆Ki,loc is single-valued on its domain,

and we write f = −∆Ki,loc(u) if u ∈ D(∆Ki
loc), with domain

D(∆Ki,loc) = R0[∆Ki ]loc(L2(Ki, µi))

being the space of all functions u ∈ L2(Ki, µi) ∩ D(E(i))loc such that u is the
weak solution of equation (5.2) for a function f ∈ L2(Ki, µi), and then we
write −∆Ki,locu = f .

In order to describe properties of the free diffusion process associated to
EF , from now on, just to fix ideas, we assume F =

⋃3
i=1 Ki.

Remark 5.2. We note that, as F\{x1, x3, x5} =
⋃3

i=1 K̊i, according to
Theorems 4.6 and 4.10

DF ∩ C0

( 3⋃

i=1

K̊i

)

=
{

v : F → R
∣∣∣ v|Ki

∈ D(E(i)) ∩ C0(K̊i) (i = 1, 2, 3)
}

.

For every function v, which is in D(E(i)) ∩ C0(K̊i) for a fixed i, denote by ṽ
the trivial extension

ṽ =
{

v on K̊i

0 elsewhere on F .

Then ṽ ∈ DF ∩ C0(
⋃3

i=1 K̊i).

Theorem 5.3. For any i ∈ {1, . . . , 3} and every u ∈ D(∆F ), u|Ki ∈
D(∆Ki,loc) and

∆Ki,locu|Ki = ∆F u on K̊i.

Proof. Without loss of generality we choose i = 1. Let u ∈ D(∆F ). From
the definition of D(∆F ),

∫

F

dLF (u, v) =
∫

F

fv dµF ∀ v ∈ DF (5.3)
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for some f ∈ L2(F, µF ). Now choose v ∈ D(E(1)) ∩ C0(K̊1) and let ṽ be
its trivial extension (see Remark 5.2). From (5.3) and taking into account
Theorem 4.5, Lemma 4.9 and the strong locality of the form E(i) we obtain

∫

K̊1

dLK1(u, v) =
∫

K̊1

fv dµ1 ∀ v ∈ D(E(1)) ∩ C0(K̊1).

Hence, u ∈ D(∆K1,loc) and ∆K1,locu = ∆F u on K̊1

From Theorem 5.3, we conclude immediately:

Corollary 5.4. For any u ∈ D(∆F ),

∆F u =
3∑

i=1

∆Ki,loc(u)1K̊i
on F\{x1, x3, x5}.

When F = ∪6
i=4Ki, a similar procedure can be carried on. Namely, for

u ∈ D(∆F ), one can obtain

∆F u =
6∑

i=4

∆Ki,loc(u)1K̊i
on F\{x2, x4, x6}. (5.4)

6. Reflected sets and some stochastic aspects

By the general theory of stochastic analysis (see, e.g., [7]) there is a one-
to-one correspondence between local regular Dirichlet forms and stochastic
processes. This correspondence can be expressed in terms of the corresponding
Laplacian (and the associated semigroup) which is the so-called infinitesimal
generator of the process. Roughly speaking, regularity of the form implies
existence of an associated strong Markovian process, while locality of the form
ensures continuity of the paths for quasi every starting point. From Corollary
4.11 we obtain that there exist a probability space (Ω,F ,P) and a stochastic
process (Xt)t≥0 on it with state space F , equipped with the σ-algebra of
Borel subsets of F , which is associated with (EF ,DF ). Moreover, except for
some exceptional set of starting points x ∈ F , (Xt)t≥0 has continuous paths.
Because F is a closed curve, we have no boundary conditions for (Xt)t≥0, i.e.
(Xt)t≥0 moves free on F .

Now we want to give a stochastic interpretation of Theorem 4.6. For
i = 1, . . . , 6 and for quasi every starting point x ∈ Ki, a continuous stochastic
process (X(i)

t )t≥0 – associated with the Dirichlet form (E(i),D(E(i))) – and
state space Ki is given. From Theorem 5.3 it follows that these processes can
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be defined on the same probability space (Ω,F ,P). Note that the process
(X(i)

t )t≥0 is reflected at the endpoints of Ki (i = 1, . . . , 6) (see, e.g., [7]). As
the Ki (i = 1, . . . , 6) are nested fractals, these diffusion processes (X(i)

t )t≥0

can be obtained as limits of sequences of suitable renormalized discrete sym-
metric random walks (X(i)

m )m∈N on V
(i)
m (see [17]). Of course, such a limit

process (X(i)
t )t≥0 is still symmetric and strong Markovian, i.e. in particu-

lar, it satisfies a strong reflection principle on K̊i (i = 1, . . . , 6). Note that
”symmetric” means symmetric with respect to reflections on F introduced
below.

We now prove that (Xt)t≥0 satisfies a strong reflection principle on all of
F . In order to do this, we have to introduce the notion of reflection of any
Borel subset A of the fractal F at a point p ∈ F .

For any m ∈ N, we define a distance dm on Vm in the following way: we
connect m-neighbors each other by a line segment, i.e. we obtain a closed
polygonal curve Qm. For two points p, q ∈ Vm, we define their distance
dm(p, q) as the curve length of the shortest path from p to q along Qm.

Fix m ∈ N and a point p ∈ Vm. We define the reflection of a point
q ∈ Vm \ {p} in p, denoted by Rm

p (q), as the point r ∈ Vm which is different
from q such that dm(r, p) = dm(q, p) if it exists or Rm

p (q) := q otherwise. We
set Rm

p (p) = p.
For a set A ⊆ Vm, the reflected set is given by

Rm
p (A) =

⋃

q∈A

Rm
p (q).

For a set A ⊆ F and a point p ∈ V∗, we define the reflection of A in p by

Rp(A) =
⋃

m≥m0

Rm
p (A ∩ Vm)

where m0 is the smallest natural number such that p ∈ Vm0 . By the density
of V∗ in F , this defines for any point p ∈ F and any set A ⊆ F a reflected set
Rp(A) ⊆ F . Note that in general a set A ⊆ F and its reflection Rp(A) have
not the same shape as in the Euclidean case.

Now we are able to formulate the strong reflection principle of a process
(X(1)

t )t≥0 with starting point x ∈ K1. We refer for the definitions of a Markov
process, a random (or, stopping) time, a filtration, and the conditioned ex-
pectation with respect to a σ-algebra etc. to [10].

For any c ∈ K1, define the random time

τc = inf
{
t > 0 : X

(1)
t = c

}
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and denote the sub-σ-algebra of F of the τc-past by Gτc
. Then, for any Borel

set A ⊆ K1 with Rc(A) ⊆ K1,

P
(
X

(1)
τc+s ∈ A|Gτc

)
= P(X(1)

τc+s ∈ Rc(A)|Gτc
) (s > 0), (6.1)

i.e. from time τc on, the process ”behaves symmetric” with respect to c. This
follows from the theory of symmetric strong Markovian processes on nested
fractals (see [14, 17]).

Now we come back to the interpretation of Theorem 4.6, i.e. we show how
the free diffusion on F ”splits” into three reflected processes on K1,K2 and
K3. Note that the infinitesimal generator ∆F of the stochastic process (Xt)t≥0

uniquely determines its so-called one-step-transition probabilities because, for
any Borel set B ⊆ F , any point x ∈ F and any time t > 0,

P
(
Xt ∈ B|X0 = x

)
= E

(
1B(Xt)|X0 = x

)
= (e∆F t1B)(x).

By the Chapman-Kolmogorov equality we obtain that the infinitesimal gener-
ator determines uniquely also finite-dimensional distributions of the associated
Markovian process. Therefore, Corollary 5.4 yields

Xt1{Xt∈F\{x1,x3,x5}}
d=X

(1)
t 1{Xt∈K̊1} + X

(2)
t 1{Xt∈K̊2} + X

(3)
t 1{Xt∈K̊3}

(6.2)

where the processes (X(1)
t )t≥0, (X

(2)
t )t≥0 and (X(3)

t )t≥0 are chosen to be inde-
pendent. By the same arguments (cf. (5.4)) we obtain

Xt1{Xt∈F\{x2,x4,x6}}
d=X

(4)
t 1{Xt∈K̊4} + X

(5)
t 1{Xt∈K̊5} + X

(6)
t 1{Xt∈K̊6}.

(6.3)

From (6.2) and (6.1) we know that the process (Xt)t≥0 satisfies a strong reflec-
tion principle in every point c ∈ F\{x1, x3, x5}; from (6.3) we conclude that
the same holds also in the points x1, x3, x5, because they can be regarded as
inner points of K4,K5 and K6, respectively. So we observe a strong reflection
principle on all of F , i.e. for any c ∈ F and any set A ⊆ F we have

P
(
Xτc+s ∈ A|Gτc

)
= P

(
Xτc+s ∈ Rc(A)|Gτc

)
(s > 0)

where τc is now given by

τc = inf
{
t > 0 : Xt = c

}
.

Therefore, (Xt)t≥0 is a symmetric Markovian process on F , which corresponds
stochastically to three reflected diffusions on the von Koch curves K1,K2 and
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K3. In other words, when the process arrives in say x1 from the left, with
probability 1

2 , it goes back and still behaves like X
(3)
t (t ≥ 0) and, with

probability 1
2 , it passes through x1 and behaves in ”the next small future”

like X
(1)
t (t ≥ 0). This means that, for the free diffusion on F , the (former

junction) points x1, x3, x5 are no longer exceptional points.

Obviously, (Xt)t≥0 can also be obtained as limit of renormalized symmet-
ric random walks on the approximating sets Vm.
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