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Abstract. In this paper we study existence, uniqueness and data dependence for
the solutions of some integro-differential equations of mixed type in Banach space by
using Picard and weakly Picard operators’ technique and suitable Bielecki norms.
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1. Introduction

Ordinary differential equations, functional differential equations with or with-
out deviating argument and equations in abstract spaces have been studied in
many papers. In the papers [3, 6] theorems about the existence and unique-
ness of solutions of some abstract nonlinear non-local Cauchy problems in
Banach spaces were considered and in the paper [4] a theorem about the ex-
istence of an approximate solution to an abstract nonlinear non-local Cauchy
problem in a Banach space was given, too. We remark in the same field the
monographs [5, 9, 11 - 13].

Integro-differential equations of mixed type in Banach spaces have been
studied in the papers [7, 10], and integro-differential equations of mixed type
with impulses in Banach spaces were considered in the paper [14], too. Fred-
holm-Volterra integral equations in relationship with Maia’s theorem were
considered in the paper [16].

The aim of the present paper is to obtain existence, uniqueness and data
dependence results for the solutions of some integro-differential equations of
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mixed type in Banach space. To do this we use Picard and weakly Picard
operators’ technique due to I. A. Rus (see [18 - 22]). So, our technique is
different from those used in the papers quoted above.

Let (X, ‖ · ‖) be a Banach space. Consider the problem

x′(t) = f

(
t, x(t),

∫ t

0

K1(t, s)x(s) ds,

∫ T

0

K2(t, s)x(s) ds

)

x(0) = x0





(1)

on [0, T ], where f ∈ C([0, T ]×X3, X), Ki ∈ C(Di,R) (i = 1, 2) and x0 ∈ X.
Here

D1 = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T}
D2 = [0, T ]× [0, T ].

It is well known that x ∈ C1([0, T ], X) is a solution of problem (1) if and only
if x is a solution in C([0, T ], X) of the integro-differential equation

x(t) = x0 +
∫ t

0

f

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)
dξ (2)

on [0, T ].
In [10] the author combines topological degree theory and monotone it-

erative technique given in [12] to investigate the existence of solutions and
also minimal and maximal solutions of problem (1). In the present paper we
consider suitable Bielecki norms in a convenient space and obtain existence,
uniqueness and data dependence results for the solutions of equation (2) which
is equivalent to problem (1).

In [7] the authors study the existence of solutions of the abstract non-local
integro-differential Cauchy problem in arbitrary Banach spaces

x′(t) = f

(
t, x(t),

∫ t

0

K1(t, s)x(s) ds,

∫ T

0

K2(t, s)x(s) ds

)

x(0) = x0 −
p∑

i=1

cix(ti)





on [0, T ], where f ∈ C([0, T ] × X3, X), 0 < t1 < t2 < . . . < tp ≤ T , ci 6= 0,
p ∈ N and x0 ∈ X. This problem is equivalent to the integro-differential
equation

x(t) = x0 −
p∑

i=1

cix(ti)

+
∫ t

0

f

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)
dξ

(3)
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on [0, T ]. For this purpose, the Kuratowski measure of non-compactness, fixed
point principles and a monotone iterative technique were applied. We remark
that the weakly Picard operators technique can be used to prove existence of
solutions to equation (3).

2. Preliminaries

Let (X, d) be a metric space and A : X → X an operator. We shall use the
following notations:

P (X) = {Y ⊆ X|Y 6= ∅}
FA = {x ∈ X|A(x) = x} – the fixed point set of A

I(A) = {Y ∈ P (X)|A(Y ) ⊆ Y }
OA(x) = {x,A(x), A2(x), ..., An(x), ...} – the A-orbit of x ∈ X

H : P (X)× P (X) → R+ ∪ {+∞}
H(Y,Z) = max

(
supa∈Y infb∈Z d(a, b), supb∈Z infa∈Y d(a, b)

)
– the Pompeiu-Hausdorff functional on P (X).

Definition 2.1 (Rus [18]). Let (X, d) be a metric space. An operator
A : X → X is a Picard operator if there exists x∗ ∈ X such that FA = {x∗}
and the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Definition 2.2 (Rus [19]). Let (X, d) be a metric space. An operator
A : X → X is a weakly Picard operator if the sequence (An(x0))n∈N converges
for all x0 ∈ X and its limit (which may depend on x0) is a fixed point of A.

If A is a weakly Picard operator, then we consider the operator

A∞ : X → X, A∞(x) = lim
n→∞

An(x).

The following results are useful in what follows:

Theorem 2.1 [17]. Let (Y, d) be a complete metric space and A,B : Y →
Y two operators. We suppose the following:

(i) A is a contraction with contraction constant α and FA = {x∗A}.
(ii) B has fixed points and x∗B ∈ FB.

(iii) There exists η > 0 such that d(A(x), B(x)) ≤ η, for all x ∈ Y .

Then d(x∗A, x∗B) ≤ η
1−α .

Theorem 2.2 [22]. Let (X, d) be a complete metric space and A,B :
X → X two orbitally continuous operators. We suppose the following:
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(i) There exists α ∈ [0, 1) such that

d(A2(x), A(x)) ≤ αd(x,A(x))

d(B2(x), B(x)) ≤ αd(x,B(x))
(x ∈ X).

(ii) There exists η > 0 such that d(A(x), B(x)) ≤ η for all x ∈ X.
Then H(FA, FB) ≤ η

1−α where H denotes the Pompeiu-Hausdorff functional.

Theorem 2.3 [19]. Let (X, d) be a metric space. Then A : X → X is a
weakly Picard operator if and only if there exists a partition X =

⋃
λ∈Λ Xλ of

X such that
(a) Xλ ∈ I(A)
(b) A|Xλ

: Xλ → Xλ is a Picard operator, for all λ ∈ Λ.

Consider a Banach space (X, ‖ · ‖), let ‖ · ‖B and ‖ · ‖C be the Bielecki and
Chebyshev norms on C([0, T ], X) defined by

‖x‖B = max
t∈[0,T ]

‖x(t)‖e−τt (τ > 0) and ‖x‖C = max
t∈[0,T ]

‖x(t)‖

and denote by dB and dC their corresponding metrics. We consider the set

CL([0, T ], X) =
{

x ∈ C([0, T ], X)
∣∣∣∣
‖x(t1)− x(t2)‖ ≤ L|t1 − t2|
for all t1, t2 ∈ [0, T ]

}

where L > 0 and BR = {x ∈ X : ‖x‖ ≤ R} with R > 0. If d ∈ {dC , dB}, then
(C([0, T ], X), d) and (CL([0, T ], X), d) are complete metric spaces.

3. A integro-differential equation of mixed type

Consider equation (2). Denote ki = max(t,s)∈Di
|Ki(t, s)| (i = 1, 2). We have

Theorem 3.1. Suppose the following:
(i) f ∈ C([0, T ]×X3, X).
(ii) There exists a constant M > 0 such that ‖f(s, u, v, w)‖ ≤ M for all

u, v, w ∈ X and all s ∈ [0, T ].
(iii) M ≤ L.
(iv) There exists a constant L0 > 0 such that

‖f(s, u1, v1, w1)− f(s, u2, v2, w2)‖
≤ L0

(‖u1 − u2‖+ ‖v1 − v2‖+ ‖w1 − w2‖
)
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for all ui, vi, wi ∈ X (i = 1, 2) and all s ∈ [0, T ].

(v) There exists a constant τ > 0 such that L0
τ

(
1 + k1

τ + k2TeτT
)

< 1.

Then equation (2) has a unique solution x∗ in CL([0, T ], X), and this solution
can be obtained by the successive approximation method, starting from any
element of CL([0, T ], X).

Proof. Consider the continuous operator

A :
(
CL([0, T ], X), ‖ · ‖B

) → (
CL([0, T ], X), ‖ · ‖B

)

defined by

A(x)(t)

= x0 +
∫ t

0

f

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)
dξ.

We have

∥∥A(x)(t)−A(z)(t)
∥∥

≤
∫ t

0

∥∥∥∥f

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)

− f

(
ξ, z(ξ),

∫ ξ

0

K1(ξ, s)z(s) ds,

∫ T

0

K2(ξ, s)z(s) ds

)∥∥∥∥dξ

≤ L0

∫ t

0

[
‖x(ξ)− z(ξ)‖+

∥∥∥∥
∫ ξ

0

K1(ξ, s)(x(s)− z(s)) ds

∥∥∥∥

+
∥∥∥∥

∫ T

0

K2(ξ, s)(x(s)− z(s)) ds

∥∥∥∥
]
dξ

≤ L0

[ ∫ t

0

‖x(ξ)− z(ξ)‖dξ + k1

∫ t

0

( ∫ ξ

0

‖x(s)− z(s)‖ ds

)
dξ

+ k2

∫ t

0

( ∫ T

0

‖x(s)− z(s)‖ ds

)
dξ

]

≤ L0

[ ∫ t

0

‖x(ξ)− z(ξ)‖e−τξeτξdξ

+ k1

∫ t

0

( ∫ ξ

0

‖x(s)− z(s)‖e−τseτsds

)
dξ

+ k2

∫ t

0

( ∫ T

0

‖x(s)− z(s)‖e−τseτsds

)
dξ

]
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≤ L0‖x− z‖B

[ ∫ t

0

eτξdξ + k1

∫ t

0

( ∫ ξ

0

eτsds

)
dξ

+ k2

∫ t

0

( ∫ T

0

eτsds

)
dξ

]

= L0‖x− z‖B

[(eτt

τ
− 1

τ

)
+ k1

∫ t

0

(eτξ

τ
− 1

τ

)
dξ

+ k2

∫ t

0

(eτT

τ
− 1

τ

)
dξ

]

= L0‖x− z‖B

[(eτt

τ
− 1

τ

)
+

k1

τ

(eτt

τ
− 1

τ
− t

)
+

k2

τ
(eτT − 1)t

]

≤ L0‖x− z‖B

[
eτt

τ
+

k1

τ

eτt

τ
+ k2

eτt

τ
eτ(T−t)T

]

≤ L0
1
τ

eτt
(
1 +

k1

τ
+ k2TeτT

)
‖x− z‖B

for all x, z ∈ CL([0, T ], X). It follows that

∥∥A(x)(t)−A(z)(t)
∥∥e−τt ≤ L0

τ

(
1 +

k1

τ
+ k2TeτT

)
‖x− z‖B

for all t ∈ [0, T ]. So

‖A(x)−A(z)‖B ≤ L0

τ

(
1 +

k1

τ
+ k2TeτT

)
‖x− z‖B

for all x, z ∈ CL([0, T ], X). The operator A is of Lipschitz type with constant

LA =
L0

(
1 + k1

τ + k2TeτT
)

τ
(4)

and 0 < LA < 1. By applying the Contraction Principle to this operator we
obtain that A is a Picard operator

Similarly as above, we can prove

Theorem 3.2. Suppose the following:

(i) f ∈ C([0, T ] × B3
R, X) with ‖f(s, u, v, w)‖ ≤ M(R) for all s ∈ [0, T ]

and u, v, w ∈ BR.

(ii) M(R) ≤ L.

(iii) kiT ≤ 1 (i = 1, 2).

(iv) ‖x0‖+ M(R)T ≤ R.
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(v) There exists a constant L0 > 0 such that
∥∥f(s, u1, v1, w1)− f(s, u2, v2, w2)

∥∥
≤ L0

(‖u1 − u2‖+ ‖v1 − v2‖+ ‖w1 − w2‖
)

for all ui, vi, wi ∈ BR (i = 1, 2) and all s ∈ [0, T ].
(vi) There exists a constant τ > 0 such that L0

τ

(
1 + k1

τ + k2TeτT
)

< 1.
Then equation (2) has a unique solution in CL([0, T ], BR), and this solution
can be obtained by the successive approximation method, starting from any
element of CL([0, T ], BR).

Remark 3.1. If we consider the problem

x′(t) =
1
10

∫ t

0

sin(t + s)x(s) ds +
1
18

∫ 1
3

0

cos(ts)x(s) ds

x(0) = 0





on [0, T ], then L0 = 1, k1 = 1
10 , k2 = 1

18 , and for τ = 2 we have condition (vi)
in Theorem 3.2.

Now, we consider both equation (2) and

x(t) = y0 +
∫ t

0

g

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)
dξ (5)

on [0, T ], where g ∈ C([0, T ] ×X3, X) and Ki ∈ C(Di,R) (i = 1, 2) are the
same as in equation (2) and y0 ∈ X. We have

Theorem 3.3. Suppose the following:
(i) All conditions in Theorem 3.1 are satisfied and x∗ ∈ CL([0, T ], X) is

the unique solution of equation (2).
(ii) There exists a constant M1 > 0 such that ‖g(s, u, v, w)‖ ≤ M1 for all

u, v, w ∈ X and all s ∈ [0, T ].
(iii) With the same Lipschitz constant L0 as in Theorem 3.1,

∥∥g(s, u1, v1, w1)− g(s, u2, v2, w2)
∥∥

≤ L0

(‖u1 − u2‖+ ‖v1 − v2‖+ ‖w1 − w2‖
)

for all ui, vi, wi ∈ X (i = 1, 2) and all s ∈ [0, T ].
(iv) M1 ≤ L.
(v) There exists a constant η > 0 such that

∥∥f(s, u, v, w)− g(s, u, v, w)
∥∥ ≤ η
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for all u, v, w ∈ X and s ∈ [0, T ].

Then, if y∗ is the solution of equation (5),

‖x∗ − y∗‖B ≤ ‖x0 − y0‖+ ηT

1− LA

where LA is given by (4) with τ = τ0 > 0 such that 0 < LA < 1.

Proof. Consider the operators

A,B : CL([0, T ], X) → CL([0, T ], X)

defined by

A(x)(t) = x0 +
∫ t

0

f

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)
dξ

B(x)(t) = y0 +
∫ t

0

g

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)
dξ

on [0, T ], in which Ki ∈ C(Di,R) (i = 1, 2) are the same. We have

∥∥A(x)(t)−B(x)(t)
∥∥ ≤ ‖x0 − y0‖+ ηT (t ∈ [0, T ]).

It follows that
‖A(x)−B(x)‖B ≤ ‖x0 − y0‖+ ηT.

So we can apply Theorem 2.1

Remark 3.2. The results obtained in this section can be generalized
to study existence, uniqueness and data dependence for the solutions of the
problem with linear modification of the argument

x′(t) = f

(
t, x(t), x(λt),

∫ t

0

K1(t, s)x(λs) ds,

∫ T

0

K2(t, s)x(λs) ds

)

x(0) = x0





on [0, T ], where 0 < λ < 1, f ∈ C([0, T ] ×X4, X), Ki ∈ C(Di, R) (i = 1, 2)
and x0 ∈ X. This problem is more general than those considered in [15].
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4. Another integro-differential equation
of mixed type

Now, we consider the integral equation of mixed type

x(t) = x(0) +
∫ t

0

f

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)
dξ (6)

on [0, T ], where f ∈ C([0, T ] ×X3, X), Ki ∈ C(Di,R) and Di (i = 1, 2) are
as in problem (1). We have

Theorem 4.1. Suppose that for equation (6) the same conditions as in
Theorem 3.1 are satisfied. Then this equation has solutions in CL([0, T ], X).
If S ⊂ CL([0, T ], X) is its solutions set, then card S = card X.

Proof. Consider the operator

A∗ : CL([0, T ], X) → CL([0, T ], X)

defined by

A∗(x)(t)

= x(0) +
∫ t

0

f

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)
dξ.

This is a continuous operator, but not a Lipschitz one. We can write

CL([0, T ], X) =
⋃

α∈X

Xα, Xα =
{
x ∈ CL([0, T ], X) : x(0) = α

}
.

We have that Xα is an invariant set of A∗ and we apply Theorem 3.1 to
A∗|Xα . By using Theorem 2.3 we obtain that A∗ is a weakly Picard operator.
Consider the operator

A∞∗ : CL([0, T ], X) → CL([0, T ], X), A∞∗ (x) = lim
n→∞

An
∗ (x).

From An+1
∗ (x) = A∗(An

∗ (x)) and the continuity of A∗, A∞∗ (x) ∈ FA∗ . Then
A∞∗ (CL([0, T ], X)) = FA∗ = S, and S 6= ∅. So, card S = card X

Remark 4.1. Similarly as above we can prove the existence of solutions
of equation (3) that corresponds to a problem considered in [7].

In order to study data dependence for the solutions set of equation (6) we
consider both (6) and the equation

x(t) = x(0) +
∫ t

0

g

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)
dξ

on [0, T ] where K1, K2 are the same as in (6) and g ∈ C([0, T ]×X3, X). Let
S1 be the solutions set of this equation.
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Theorem 4.2. Suppose the following:
(i) There exists a constant L∗ > 0 such that

∥∥f(s, u1, v1, w1)− f(s, u2, v2, w2)
∥∥

≤ L∗
(‖u1 − u2‖+ ‖v1 − v2‖+ ‖w1 − w2‖

)
∥∥g(s, u1, v1, w1)− g(s, u2, v2, w2)

∥∥
≤ L∗

(‖u1 − u2‖+ ‖v1 − v2‖+ ‖w1 − w2‖
)

for all ui, vi, wi ∈ X (i = 1, 2) and all s ∈ [0, T ].
(ii) There exists a constant M∗ > 0 such that

‖f(s, u, v, w)‖ ≤ M∗
‖g(s, u, v, w)‖ ≤ M∗

for all u, v, w ∈ X and all s ∈ [0, T ].
(iii) M∗ ≤ L∗.
(iv) There exists a constant η1 > 0 such that

∥∥f(s, u, v, w)− g(s, u, v, w)
∥∥ ≤ η1

for all u, v, w ∈ X and all s ∈ [0, T ].
(v) 3L∗Tk0 < 1, where k0 = max(1, k1T, k2T ).

Then
H‖·‖C

(S, S1) ≤ η1T

1− 3L∗Tk0

where by H‖·‖C
we denote the Pompeiu-Hausdorff functional with respect to

‖ · ‖C on CL([0, T ], X).

Proof. Consider the operator

B∗ : CL([0, T ], X) → CL([0, T ], X)

defined by

B∗(x)(t) = x(0) +
∫ t

0

g

(
ξ, x(ξ),

∫ ξ

0

K1(ξ, s)x(s) ds,

∫ T

0

K2(ξ, s)x(s) ds

)
dξ

on [0, T ]. We have
∥∥A2

∗(x)(t)−A∗(x)(t)
∥∥

≤ L∗

∫ t

0

[
‖A∗(x)(ξ)− x(ξ)‖
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+
∥∥∥∥

∫ ξ

0

K1(ξ, s)(A∗(x)(s)− x(s)) ds

∥∥∥∥

+
∥∥∥∥

∫ T

0

K2(ξ, s)(A∗(x)(s)− x(s)) ds

∥∥∥∥
]
dξ

≤ 3L∗T max(1, k1T, k2T )‖A∗(x)− x‖C

= 3L∗Tk0‖A∗(x)− x‖C

for all x ∈ CL([0, T ], X). Similarly,
∥∥B2

∗(x)(t)−B∗(x)(t)
∥∥ ≤ 3L∗Tk0‖B∗(x)− x‖C

for all x ∈ CL([0, T ], X). It follows that

‖A2
∗(x)−A∗(x)‖C ≤ 3L∗Tk0‖A∗(x)− x‖C

‖B2
∗(x)−B∗(x)‖C ≤ 3L∗Tk0‖B∗(x)− x‖C .

Because of assumption (iv), ‖A∗(x)−B∗(x)‖C ≤ η1T for all x ∈ CL([0, T ], X).
By applying Theorem 2.2 we obtain H‖·‖C

(FA∗ , FB∗) ≤ η1T
1−3L∗Tk0

and the
theorem is proved
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