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Lavrentiev Regularization
for Linear Ill-Posed Problems

under General Source Conditions

M. T. Nair and U. Tautenhahn

Abstract. In this paper we study the problem of identifying the solution x† of
linear ill-posed problems Ax = y with non-negative and self-adjoint operators A
on a Hilbert space X where instead of exact data y noisy data yδ ∈ X are given
satisfying ‖y − yδ‖ ≤ δ with known noise level δ. Regularized approximations xδ

α

are obtained by the method of Lavrentiev regularization, that is, xδ
α is the solution

of the singularly perturbed operator equation Ax + αx = yδ, and the regularization
parameter α is chosen either a priori or a posteriori by the rule of Raus. Assuming
the unknown solution belongs to some general source set M we prove that the
regularized approximations provide order optimal error bounds on the set M . Our
results cover the special case of finitely smoothing operators A and extend recent
results for infinitely smoothing operators. In addition, we generalize our results to
the method of iterated Lavrentiev regularization of order m and discuss a special
ill-posed problem arising in inverse heat conduction.
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1. Introduction

Ill-posed problems have important applications in science and engineering (see,
e.g., [2, 9, 13, 14, 29]). In this paper we are interested in the solution x† ∈ X
of linear ill-posed problems

Ax = y (y ∈ R(A)) (1.1)
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where A ∈ L(X) is a non-negative, self-adjoint and injective operator with
non-closed range R(A), and X is a Hilbert space. Here, L(X) denotes the
space of all bounded linear operators from X into itself. Throughout this
paper we assume that yδ ∈ X are the available noisy data with

‖y − yδ‖ ≤ δ (1.2)

and known noise level δ.
The numerical treatment of ill-posed problems in which the solution x†

of problem (1.1) does not depend continuously on the data yδ requires the
application of special regularization methods. In the method of Tikhonov
regularization (see [2, 9, 14, 29]) a regularized approximation xδ

α of problem
(1.1), (1.2) is defined as the solution of the minimization problem

min
x∈X

Jα(x); Jα(x) = ‖Ax− yδ‖2 + α‖x‖2 (1.3)

depending on a positive regularization parameter α > 0.
In the case of non-negative and self-adjoint operators A the least squares

minimization in problem (1.3), equivalently

A∗Ax + αx = A∗yδ, (1.4)

can be replaced by the simpler regularized equation

Ax + αx = yδ. (1.5)

The method of computing the regularized approximation xδ
α by solving (1.5) is

called method of Lavrentiev regularization (see [13, 24, 28, 30]) or, sometimes,
simplified regularization (see [3 - 8]) or method of singular perturbation. The
main aim of this paper is to extend some results from [21] for method (1.4) to
the more simpler method (1.5).

The paper is organized as follows. In Section 2 we discuss some facts on
optimality and order optimality of regularization methods for the approxi-
mate solution of problem (1.1) with data yδ ∈ X satisfying condition (1.2).
In Sections 3 and 4 we prove that the method of Lavrentiev regularization
is order optimal on some general source set M provided the regularization
parameter is chosen either a priori (Section 3) or a posteriori by the rule of
Raus (Section 4). In Section 5 we generalize our results to the method of
iterated Lavrentiev regularization of order m and in Section 6 we discuss a
special ill-posed problem arising in inverse heat conduction and illustrate the
assumptions required in the foregoing sections.
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2. Optimality and order optimality

For the stable approximate solution of problem (1.1) some regularization tech-
nique has to be applied, which provides regularized approximations xδ

α =
Rδ

αyδ with property xδ
α → x† as δ → 0 where the regularization parameter

α = α(δ, yδ) has to be chosen properly. Hence, regularized approximations xδ
α

depend continuously on the data. However, the convergence of xδ
α to x† can be

arbitrarily slow without assuming additional quantitative a priori restrictions
on the unknown solution x†, which is typical for ill-posed problems (see [25]).

In order to guarantee certain convergence rates for ‖xδ
α − x†‖, the set of

solutions of problem (1.1) has to be restricted to certain source sets. Typi-
cally, for operator equations (1.1) with finitely smoothing operators A, source
conditions of the type x† ∈ Mp,E with

Mp,E =
{

x ∈ X
∣∣∣ x = Apv, ‖v‖ ≤ E

}
(p > 0) (2.1)

are exploited (see [2, 14, 27, 30]). For infinitely smoothing operators A, source
conditions of type (2.1) are generally too restrictive. In this case it is natural
to assume that x† ∈ M log

p,E with

M log
p,E =

{
x ∈ X

∣∣∣ x = ln−p A−1v, ‖v‖ ≤ E
}

(p > 0) (2.2)

where the representation x = ln−p A−1v in (2.2) has to be understood in
the sense x = ϕ(A)v with ϕ(λ) =

[
ln 1

λ

]−p, (see [10, 15, 22, 27]). For the
notation of finitely and infinitely smoothing forward operators see, e.g., [15].
In this paper we are interested in order optimality results under general source
conditions x† ∈ Mϕ,E with Mϕ,E given by

Mϕ,E =
{

x ∈ X
∣∣∣ x = ϕ(A)v, ‖v‖ ≤ E

}
(2.3)

and source functions ϕ satisfying

Assumption A1. ϕ : (0, a] → (0,∞) with ‖A‖ ≤ a is continuous and
possesses the following properties:

(i) ϕ is strictly monotonically increasing on (0, a] with limλ→0 ϕ(λ) = 0.
(ii) The function g : (0, ϕ2(a)] → (0, a2ϕ2(a)], implicitly defined by

g(ϕ2(λ)) = λ2ϕ2(λ), is convex.

In (2.3), the operator function ϕ is defined via spectral representation

ϕ(A) =
∫ a

0

ϕ(λ) dEλ (‖A‖ ≤ a)
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where A =
∫ a

0
λ dEλ is the spectral representation and {Eλ}0≤λ≤a the spectral

family of A (see [20]). We may observe that, since A is assumed to be self-
adjoint and non-negative, σ(A) ⊆ [0, a], where σ(A) denotes the spectrum of
the operator A.

Any operator R : X → X can be considered as a special method for
solving problem (1.1). The approximate solution to (1.1) is then given by
Ryδ. Let us consider the worst case error ∆(δ,R) for identifying the solution
x† of problem (1.1) from yδ ∈ X under the assumptions ‖y − yδ‖ ≤ δ and
x† ∈ Mϕ,E which is defined by

∆(δ,R) = sup
{
‖Ryδ − x†‖

∣∣∣ x† ∈ Mϕ,E , yδ ∈ X, ‖y − yδ‖ ≤ δ
}

.

This worst case error characterizes the maximal error of the method R if the
solution x† of problem (1.1) varies in the set Mϕ,E . An optimal method Ropt

is characterized by ∆(δ,Ropt) = infR ∆(δ,R). It can easily be realized that

inf
R

∆(δ,R) ≥ ω(δ,Mϕ,E)

with
ω(δ,Mϕ,E) = sup

{‖x‖∣∣ x ∈ Mϕ,E , ‖Ax‖ ≤ δ
}
. (2.4)

For estimating the modulus of continuity ω(δ,Mϕ,E) of the inverse opera-
tor A−1 on the source set Mϕ,E , we introduce the function ρ : (0, ϕ(a)] →
(0, aϕ(a)] defined implicitly by ρ(ϕ(λ)) = λϕ(λ), or explicitly by

ρ(λ) = λϕ−1(λ). (2.5)

Theorem 2.1. Let Mϕ,E be given by (2.3) and let Assumption A1 be
satisfied. If δ is sufficiently small such that δ

E ≤ aϕ(a), then

ω(δ,Mϕ,E) ≤ E ρ−1
( δ

E

)
(2.6)

with ρ given by (2.5). If δ
E ∈ σ(Aϕ(A)), then there holds equality in (2.6).

Proof. From (2.3) and (2.4) we have

ω(δ,Mϕ,E) = sup
{
‖ϕ(A)v‖

∣∣∣ ‖Aϕ(A)v‖ ≤ δ, ‖v‖ ≤ E
}

. (2.7)

Substituting ϕ(A)v = Ew provides

ω(δ,Mϕ,E) = E sup
{
‖w‖

∣∣∣ ‖Aw‖ ≤ δ

E
, ‖[ϕ(A)]−1w‖ ≤ 1

}
. (2.8)
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Now choose w in the range of ϕ(A) such that the side conditions ‖Aw‖ ≤ δ
E

and ‖[(ϕ(A)]−1w‖ ≤ 1 of (2.8) are satisfied. Since the function g of Assump-
tion A1(ii) is convex, by exploiting Jensen’s inequality we obtain

g

( ‖w‖2
‖[ϕ(A)]−1w‖2

)
= g

(∫ a

0
ϕ2(λ)[ϕ(λ)]−2d‖Eλw‖2∫ a

0
[ϕ(λ)]−2d‖Eλw‖2

)

≤
∫ a

0
g(ϕ2(λ))[ϕ(λ)]−2d‖Eλw‖2∫ a

0
[ϕ(λ)]−2d‖Eλw‖2

=

∫ a

0
λ2d‖Eλw‖2∫ a

0
[ϕ(λ)]−2d‖Eλw‖2

=
‖Aw‖2

‖[ϕ(A)]−1w‖2 .

(2.9)

We exploit the side condition ‖[ϕ(A)]−1w‖ ≤ 1, i.e. ‖w‖ ≤ ‖w‖
‖[ϕ(A)]−1w‖ , take

into consideration that the function g implicitly defined in Assumption A1(ii)
possesses the explicit form

g(λ) = λ
[
ϕ−1

(√
λ
)]2

, (2.10)

exploit the monotonicity of ϕ−1 as well as inequality (2.9) and obtain

[ϕ−1(‖w‖)]2 ≤
[
ϕ−1

( ‖w‖
‖[ϕ(A)]−1w‖

)]2

=
‖[ϕ(A)]−1w‖2

‖w‖2 g

( ‖w‖2
‖[ϕ(A)]−1w‖2

)

≤ ‖Aw‖2
‖w‖2 .

(2.11)

This inequality attains the form ρ(‖w‖) ≤ ‖Aw‖, giving ‖w‖ ≤ ρ−1(‖Aw‖),
where ρ is defined by (2.5). Due to the monotonicity of ρ−1 and the assumption
δ
E ≤ aϕ(a) we obtain ‖w‖ ≤ ρ−1(‖Aw‖) ≤ ρ−1

(
δ
E

)
. From this estimate and

(2.8) we obtain (2.6).
In the second part we prove that in (2.6) equality holds provided δ

E ∈
σ(Aϕ(A)). Assume that δ

E is an eigenvalue of the operator Aϕ(A) and
v0 is a corresponding eigenvector with ‖v0‖ = E. Then Aϕ(A)v0 = δ

E v0,
consequently, ‖Aϕ(A)v0‖ = δ. Hence, in view of (2.7) we conclude that
ω(δ,Mϕ,E) ≥ ‖ϕ(A)v0‖. From ρ(ϕ(A))v0 = Aϕ(A)v0 = δ

E v0 we obtain
ϕ(A)v0 = ρ−1

(
δ
E

)
v0, consequently, ω(δ,Mϕ,E) ≥ Eρ−1

(
δ
E

)
. Hence, due to

(2.6) we have

ω(δ,Mϕ,E) = Eρ−1
( δ

E

)
. (2.12)
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If δ
E ∈ σ(Aϕ(A)) is not an eigenvalue, then δ

E belongs to the approximate
eigenspectrum of Aϕ(A) as Aϕ(A) is self-adjoint (cf. [20]), and in that case,
the proof of (2.12) follows with small modifications

For the proof of Theorem 2.1 in the case of compact operators A see [11].
Our proof is based on the proof of Theorem 2.1 in [27] and it is more general
since the operator A is not necessarily compact. Note that estimate (2.6)
can also be given in terms of the function g defined in Assumption A1(ii) and

possesses the equivalent form ω(δ,Mϕ,E) ≤ E
√

g−1
(

δ2

E2

)
. A further equivalent

variant of (2.6) which is along the lines of [16] uses the function Θ(λ) = λϕ(λ)
and has the form ω(δ,Mϕ,E) ≤ E ϕ(Θ−1( δ

E )).
Due to Theorem 2.1 the following definition makes sense.

Definition 2.2. Let Assumption A1 be satisfied and ρ be given by (2.5).
Then, any regularization method Rδ

α, or any regularized approximation xδ
α =

Rδ
αyδ for problem (1.1), (1.2) is called

(i) optimal on the set Mϕ,E if ‖xδ
α − x†‖ ≤ E ρ−1( δ

E )

(ii) order optimal on the set Mϕ,E if ‖xδ
α − x†‖ ≤ cE ρ−1( δ

E ) with c ≥ 1.

3. A priori parameter choice

In this section we prove that for proper a priori chosen regularization param-
eter α the method of Lavrentiev regularization

xδ
α = (A + αI)−1yδ (3.1)

yields order optimal error bounds on the set Mϕ,E provided ϕ is concave.
In our first proposition of this section we estimate the regularization error
‖xα−x†‖ where xα is the regularized approximation with exact data, that is,

xα = (A + αI)−1y. (3.2)

Proposition 3.1. Let Mϕ,E be given by (2.3), x† ∈ Mϕ,E, Assumption
A1 be satisfied and let ρ be given by (2.5). Let xα be the regularized approxi-
mation defined in (3.2) and let α be chosen a priori by

α = ϕ−1
(
ρ−1

( δ

E

))
. (3.3)

If the function ϕ is concave, then

‖xα − x†‖ ≤ Eρ−1
( δ

E

)
. (3.4)
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Proof. Since limλ→0 ϕ(λ) = 0 and since ϕ is concave we have tϕ(λ) ≤
ϕ(tλ) for t ∈ [0, 1]. Choosing t = α

λ+α and exploiting the monotonicity of ϕ
provides

α

λ + α
ϕ(λ) ≤ ϕ

( αλ

λ + α

)
≤ ϕ(α). (3.5)

Let us use the notation

Bα = I −A(A + αI)−1 = α(A + αI)−1.

Then, the regularization error can be expressed by ‖xα − x†‖ = ‖Bαx†‖.
Exploiting the source condition x† ∈ Mϕ,E with x† = ϕ(A)v and applying
(3.5) provides

‖xα − x†‖ = ‖Bαx†‖ ≤ ‖Bαϕ(A)v‖ ≤ E sup
λ≥0

∣∣∣∣
α

λ + α
ϕ(λ)

∣∣∣∣ ≤ Eϕ(α). (3.6)

For the regularization parameter α chosen by (3.3) there holds ϕ(α) = ρ−1( δ
E ).

Consequently, (3.4) follows from (3.6)

Our next theorem provides an order optimal error bound for ‖xδ
α − x†‖

provided the regularization parameter α is chosen a priori by (3.3).

Theorem 3.2. Let Mϕ,E be given by (2.3), x† ∈ Mϕ,E, Assumption A1 be
satisfied and let ρ be given by (2.5). Let xδ

α be the regularized approximation
defined in (3.1) and let α be chosen a priori by (3.3). If the function ϕ is
concave, then

‖xδ
α − x†‖ ≤ 2E ρ−1

( δ

E

)
. (3.7)

Proof. Due to ρ(λ) = λϕ−1(λ) we obtain for λ = ρ−1( δ
E ) the equation

δ

E
= ρ−1

( δ

E

)
ϕ−1

(
ρ−1

( δ

E

))
.

Hence, for α chosen by (3.3) we obtain δ
E = αρ−1( δ

E ) or, equivalently,

δ

α
= Eρ−1

( δ

E

)
. (3.8)

Let xα be given by (3.2). Then, by (3.8),

‖xδ
α − xα‖ = ‖(A + αI)−1(yδ − y)‖ ≤ δ

α
= Eρ−1

( δ

E

)
. (3.9)

Now (3.7) follows from (3.4), (3.9) and the triangle inequality
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Let us discuss two special cases that fit into the framework of Theorem 3.2.
In our first special case we consider operator equations with finitely smoothing
operators A and assume that the function ϕ of set (2.3) has the form ϕ(λ) = λp

with p > 0. It can be easily seen that this function satisfies the requirements
of Assumption A1. Since ϕ−1(λ) = λ

1
p we obtain ρ(λ) := λϕ−1(λ) = λ

p+1
p ,

consequently, ρ−1(λ) = λ
p

p+1 , which provides ϕ−1(ρ−1(λ)) = λ
1

p+1 . Hence,
the regularization parameter (3.3) attains the form

α =
( δ

E

) 1
p+1

. (3.10)

Since ϕ(λ) = λp is concave for p ≤ 1 we obtain the following result from
Theorem 3.2.

Corollary 3.3. Let Mp,E be given by (2.1), x† ∈ Mp,E and let xδ
α be the

regularized approximation defined in (3.1). Let α be chosen a priori by (3.10).
If 0 < p ≤ 1, then xδ

α is order optimal on the set Mp,E, and

‖xδ
α − x†‖ ≤ 2E

1
p+1 δ

p
p+1 . (3.11)

In our second special case we consider operator equations with infinitely
smoothing operators A and assume that the function ϕ of set (2.3) has the
form ϕ(λ) =

[
ln 1

λ

]−p with p > 0. We observe that Assumption A1 is satisfied

for all p > 0 provided ‖A‖ ≤ e−
1
2 . Since ϕ−1(λ) = e−1/λ

1
p we obtain ρ(λ) :=

λϕ−1(λ) = λe−1/λ
1
p , consequently,

ρ−1(λ) =
[
ln

1
λ

]−p

(1 + o(1)) (λ → 0) (3.12)

(see, e.g., [15]). Consequently, the regularization parameter (3.3) attains the
form

α =
δ

E

[
ln

E

δ

]p

(1 + o(1)) (δ → 0). (3.13)

Since ϕ is concave for λ ≤ e−(p+1) we obtain the following result from Theorem
3.2.

Corollary 3.4. Let M log
p,E be given by (2.2), x† ∈ M log

p,E, xδ
α be the regu-

larized approximation (3.1) and let α be chosen a priori by (3.13). If ‖A‖ ≤
e−(p+1), then xδ

α is order optimal on the set M log
p,E and

‖xδ
α − x†‖ ≤ 2E

[
ln

E

δ

]−p

(1 + o(1)) (δ → 0). (3.14)
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4. A posteriori parameter choice

In Section 3 we have proved that the method of Lavrentiev regularization
provides order optimal error bounds (3.7) on the general set Mϕ,E given by
(2.3) provided the regularization parameter α is chosen a priori according
to formula (3.3). Unfortunately, this a priori parameter choice requires the
knowledge of the function ϕ, which is generally unknown. One prominent a
posteriori rule for choosing α which does not require to know the function ϕ
is Morozov’s discrepancy principle (see [17, 18]) in which α is chosen as the
solution of the nonlinear scalar equation ‖Axδ

α−yδ‖ = Cδ with some constant
C ≥ 1. Although Morozovs’s discrepancy principle works well for the method
of Tikhonov regularization (1.3) (see, for example, [21, 27]), it appears to be
divergent for the method of Lavrentiev regularization (see [7, 30]).

A convergent a posteriori rule for the method of Lavrentiev regularization
has been studied in [4]. In this rule the regularization parameter α is chosen
as the solution of the nonlinear equation

αt‖Axδ
α − yδ‖ = δs.

For this rule order optimality on the source set Mp,E given in (2.1) has been
established for the range p ∈ (0, 1] provided the non-negative numbers s, t, p
are related by s = t+1

p+1 . Hence, in order to guarantee order optimality for this
rule, the knowledge of the number p in the source set (2.1) is required.

In this section we discuss the rule of Raus (see [3, 8, 24]) for choosing
the regularization parameter. This a posteriori rule does not require to know
the number p in the source set (2.1), and more generally, does not require to
know the function ϕ which characterizes the set Mϕ,E given by (2.3). This
rule reads as follows:

Rule of Raus. For given constant C > 1, choose α as the solution of
the equation

d(α) := ‖Bα(Axδ
α − yδ)‖ = Cδ with Bα = α(A + αI)−1. (4.1)

The nonlinear scalar equation (4.1) possesses a unique solution α = αR

provided ‖yδ‖ > Cδ (see [3, 24, 28]). We prove in this section that for concave
functions ϕ the method of Lavrentiev regularization combined with rule (4.1)
is order optimal on the source set Mϕ,E given by (2.3).

In our first proposition we estimate the regularization error ‖xα − x†‖
where xα is the regularized approximation with exact data, that is, xα is
given by (3.2).
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Proposition 4.1. Let x† ∈ Mϕ,E with Mϕ,E given by (2.3), let Assump-
tion A1 be satisfied and let ρ be given by (2.5). Let xα the regularized approx-
imation defined in (3.2) and let α be chosen by rule (4.1). If the function ϕ
is concave, then

‖xα − x†‖ ≤ (C + 1)Eρ−1
( δ

E

)
. (4.2)

Proof. Let us use the notations

Bα = I −A(A + αI)−1 = α(A + αI)−1 and rα(λ) =
α

λ + α
. (4.3)

Since ϕ is a concave function with limλ→0 ϕ(λ) = 0 we have tϕ(λ) ≤ ϕ(tλ)
for t ∈ [0, 1], or equivalently, [ϕ−1(tϕ(λ))]2 ≤ t2λ2. We multiply by t2ϕ2(λ)
and obtain

t2ϕ2(λ)
[
ϕ−1(tϕ(λ))

]2 ≤ t4λ2ϕ2(λ) (t ∈ [0, 1]). (4.4)

Recall that the function g from Assumption A1(ii) possesses the explicit form
(2.10). Hence, (4.4) attains the form g(t2ϕ2(λ)) ≤ t4λ2ϕ2(λ). Choosing
t = rα(λ) yields

g
(
r2
α(λ)ϕ2(λ)

) ≤ λ2r4
α(λ)ϕ2(λ). (4.5)

Let α be the regularization parameter chosen by rule (4.1). Since d(α) =
‖B2

αyδ‖ we obtain

‖B2
αy‖ ≤ ‖B2

αyδ‖+ ‖B2
α(y − yδ)‖ ≤ (C + 1)δ. (4.6)

Note that since x† ∈ Mϕ,E , x† = ϕ(A)v for some v ∈ X with ‖v‖ ≤ E, so that
by (4.3) we have Bαx† = rα(A)ϕ(A)v. Now we use Assumption A1, (4.5),
(4.6) and obtain, by exploiting Jensen’s inequality, that

g

(‖Bαx†‖2
‖v‖2

)
= g

(∫ a

0
r2
α(λ)ϕ2(λ) d‖Eλv‖2∫ a

0
d‖Eλv‖2

)

≤
∫ a

0
g(r2

α(λ)ϕ2(λ)) d‖Eλv‖2∫ a

0
d‖Eλv‖2

≤
∫ a

0
λ2r4

α(λ)ϕ2(λ) d‖Eλv‖2∫ a

0
d‖Eλv‖2

=
‖B2

αAx†‖2
‖v‖2

≤ (C + 1)2δ2

‖v‖2 .

(4.7)
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Using the monotonicity of ϕ−1 as well as relations (2.10) and (4.7) we obtain

[
ϕ−1

( ‖Bαx†‖
(C + 1)E

)]2

≤
[
ϕ−1

(‖Bαx†‖
‖v‖

)]2

=
‖v‖2

‖Bαx†‖2 g

(‖Bαx†‖2
‖v‖2

)

≤ (C + 1)2δ2

‖Bαx†‖2 .

Due to the definition of ρ according to ρ(λ) = λϕ−1(λ), the above estimate
provides ρ

( ‖Bαx†‖
(C+1)E

) ≤ δ
E . From this estimate and the identity ‖xα − x†‖ =

‖Bαx†‖ we obtain (4.2)

Our next proposition provides some estimate for the regularization pa-
rameter obtained by rule (4.1).

Proposition 4.2. Let Mϕ,E be given by (2.3), x† ∈ Mϕ,E, and let As-
sumption A1 be satisfied. Let α be chosen by rule (4.1). If the function ϕ is
concave, then

(C − 1)δ ≤ E αϕ(α). (4.8)

Proof. Let us use notations (4.3). From rule (4.1) we obtain

Cδ = ‖B2
αyδ‖ ≤ δ + ‖B2

αy‖.
From this estimate, the estimate ‖BαA‖ ≤ α and (3.6) we obtain

(C − 1)δ ≤ ‖B2
αy‖ = ‖B2

αAx†‖ ≤ α‖Bαx†‖ ≤ Eαϕ(α).

Hence, the proof is complete

Now we are ready to provide our main result of this section.

Theorem 4.3. Let Mϕ,E be given by (2.3), x† ∈ Mϕ,E, and let Assump-
tion A1 be satisfied. Let xδ

α the regularized approximation defined in (3.1) and
let α be chosen by rule (4.1). If the function ϕ is concave, then xδ

α is order
optimal on the set Mϕ,E. In fact,

‖xδ
α − x†‖ ≤ c0Eρ−1

( δ

E

)
(4.9)

with c0 = C + 1 + 1
C−1 for 1 < C ≤ 2 and c0 = C + 2 for C ≥ 2.

Proof. From (4.8) and the monotonicity of ϕ we conclude that

ϕ−1
( (C − 1)δ

Eα

)
≤ α. (4.10)
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Since ρ(λ) = λϕ−1(λ) we obtain that ρ
( (C−1)δ

Eα

) ≤ (C−1)δ
E or, equivalently,

(C − 1)δ
Eα

≤ ρ−1
( (C − 1)δ

E

)
.

We exploit the monotonicity of ρ−1 and obtain in the case C ≤ 2 that

δ

α
≤ E

C − 1
ρ−1

(
δ

E

)
for 1 < C ≤ 2. (4.11)

In the case C ≥ 2 we use the monotonicity of ϕ−1 and obtain from (4.10) the
estimate ϕ−1

(
δ

Eα

) ≤ α, and instead of (4.11) the estimate

δ

α
≤ Eρ−1

( δ

E

)
for C ≥ 2. (4.12)

From (3.1) and (3.2) we have ‖xδ
α−xα‖ ≤ δ

α , consequently, due to (4.11) and
(4.12),

‖xδ
α − xα‖ ≤ cEρ−1

( δ

E

)
(4.13)

with c = 1
C−1 for 1 < C ≤ 2 and c = 1 for C ≥ 2. Now the order optimal

error bound (4.9) follows from (4.2) and (4.13)

As in Section 3, let us discuss two special cases that fit into the framework
of Theorem 4.3. In our first special case we consider operator equations with
finitely smoothing operators A and assume that the function ϕ of set (2.3)
has the form ϕ(λ) = λp with p > 0. This function satisfies the requirements
of Assumption A1, and ρ−1 has the form ρ−1(λ) = λ

p
p+1 . Since ϕ(λ) = λp is

concave for p ≤ 1 we obtain the following result from Theorem 4.3.

Corollary 4.4. Let Mp,E given by (2.1), x† ∈ Mp,E, xδ
α be the regularized

approximation (3.1) and let α be chosen by rule (4.1). If 0 < p ≤ 1, then xδ
α

is order optimal on the source set Mp,E. In fact,

‖xδ
α − x†‖ ≤ c0E

1
p+1 δ

p
p+1 (4.14)

with c0 as in Theorem 4.3.

In our second special case we consider as in Section 3 operator equations
with infinitely smoothing operators A and assume that the function ϕ of set
(2.3) has the form ϕ(λ) =

[
ln 1

λ

]−p for p > 0. This function satisfies the
requirements of Assumption A1 provided p > 0 and ‖A‖ ≤ e−

1
2 , and ρ−1

attains form (3.12). Since ϕ is concave for λ ≤ e−(p+1) we obtain the following
result from Theorem 4.3.
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Corollary 4.5. Let M log
p,E given by (2.2), x† ∈ M log

p,E, xδ
α be the regularized

approximation defined in (3.1) and let α be chosen by rule (4.1). If ‖A‖ ≤
e−(p+1), then xδ

α is order optimal on the source set M log
p,E. In fact,

‖xδ
α − x†‖ ≤ c0E

[
ln

E

δ

]−p

(1 + o(1)) (δ → 0) (4.15)

with c0 as in Theorem 4.3.

5. Iterated Lavrentiev regularization

In this section we are going to generalize our results of Sections 3 and 4 for
the method of iterated Lavrentiev regularization of order m. Starting with
xδ

α,0 = 0, in this method the regularized approximation xδ
α := xδ

α,m is defined
recursively by solving the m operator equations

(A + αI)xδ
α,k = yδ + αxδ

α,k−1 (k = 1, ...,m). (5.1)

The advantage of this method over method (1.4) consists in the fact that order
optimality results hold true for a larger class of source functions ϕ of the source
set (2.3), especially for such source functions for which ϕ

1
m is concave.

In the case of exact data y, we define xα := xα,m recursively by solving
the m operator equations

(A + αI)xα,k = y + αxα,k−1 (k = 1, ..., m). (5.2)

We may observe that xδ
α = gα(A)yδ and xα = gα(A)y where

gα(λ) =
1
λ

[
1−

( α

λ + α

)m]
(0 < λ ≤ ‖A‖). (5.3)

In the case of a priori parameter choice, in place of Theorem 3.2 we have the
following result.

Theorem 5.1. Let Mϕ,E be given by (2.3), x† ∈ Mϕ,E, Assumption A1
be satisfied and let ρ be given by (2.5). Let xδ

α := xδ
α,m the regularized approx-

imation defined in (5.1) and let α be chosen a priori by (3.3). If the function
ϕ

1
m is concave, then

‖xδ
α − x†‖ ≤ (1 + m)Eρ−1

( δ

E

)
. (5.4)

Proof. Let us use the notations in (4.3). Due to the concavity of ϕ
1
m we

have tmϕ(λ) ≤ ϕ(tλ) for 0 < t ≤ 1. We use this inequality with t = rα(λ),
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exploit the representation x† − xα = Bm
α x† and obtain due to x† ∈ Mϕ,E and

the monotonicity of ϕ that

‖xα − x†‖ ≤ E sup
λ∈(0,a]

|rm
α (λ)ϕ(λ)| ≤ Eϕ(λrα(λ)) ≤ Eϕ(α). (5.5)

For estimating ‖xδ
α − xα‖ we observe that xδ

α − xα = gα(A)(yδ − y) with gα

as in (5.3). Since |gα(λ)| ≤ mα, it follows that

‖xδ
α − xα‖ ≤ m

δ

α
. (5.6)

For α chosen according to (3.3) we have ϕ(α) = ρ−1
(

δ
E

)
and δ

α = Eρ−1
(

δ
E

)
(compare (3.8)). Hence, the desired error bound (5.4) follows from (5.5) and
(5.6)

In the case of a posteriori parameter choice, instead of Theorem 4.3 we
have the following result.

Theorem 5.2. Let Mϕ,E be given by (2.3), x† ∈ Mϕ,E, and let Assump-
tion A1 be satisfied. Let xδ

α := xδ
α,m the regularized approximation defined via

(5.1) and let α be chosen by rule (4.1). If the function ϕ
1
m is concave, then

xδ
α is order optimal on the set Mϕ,E. In fact,

‖xδ
α − x†‖ ≤ c0Eρ−1

( δ

E

)
(5.7)

with c0 = C + 1 + m
C−1 for 1 < C ≤ 2 and c0 = C + 1 + m for C ≥ 2.

Proof. Let us use notations (4.3). Due to yδ−Axδ
α = Bm

α yδ, the function
d in (4.1) can be written in the equivalent form d(α) = ‖Bm+1

α yδ‖. Hence, for
α chosen by rule (4.1) we have

‖Bm+1
α y‖ ≤ ‖Bm+1

α yδ‖+ ‖Bm+1
α (y − yδ)‖ ≤ (C + 1)δ. (5.8)

From the concavity of ϕ
1
m we obtain in analogy to the proof of (4.5) that

g
(
r2m
α (λ)ϕ2(λ)

) ≤ λ2r2m+2
α (λ)ϕ2(λ). (5.9)

Exploiting (5.8) and (5.9), we obtain along the lines of the proof of Proposition
4.1 that for α chosen by rule (4.1) we have

‖xα − x†‖ ≤ (C + 1)Eρ−1
( δ

E

)
. (5.10)

Now we follow the proof of Proposition 4.2 and obtain relation (4.8) in this
case as well. Finally, we follow the proof of Theorem 4.3 and obtain the order
optimal error bound (5.7)
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6. Application

In this section we consider a special inverse heat conduction problem which has
been studied in [1]. This problem consists in identifying w† = u(x1, x2, 0) ∈
L2(R2) from given data yδ = uδ(x1, x2, 1) ∈ L2(R2) where y = u(x1, x2, 1)
denotes the exact unperturbed data and u(x1, x2, t) satisfies the heat equation

ut −∆u = 0
(
(x1, x2, t) ∈ R2 × R+

)
.

Let us transform the operator equation Aw = y, A ∈ L(H) with H = L2(R2)
into the frequency domain by means of the Fourier transform. Let ŵ(ξ1, ξ2) =
F{w(x1, x2)} the Fourier transform of w, that is,

ŵ = F{w} =
1
2π

∫

R2
w(x1, x2)e−i(x1ξ1+x2ξ2)dx1dx2.

The inverse Fourier transform w(x1, x2) = F−1{ŵ(ξ1, ξ2)} is given by

w = F−1{ŵ} =
1
2π

∫

R2
ŵ(ξ1, ξ2)ei(x1ξ1+x2ξ2)dξ1dξ2.

Transforming the operator equation Aw = y into the frequency domain pro-
vides the equivalent operator equation Âŵ = ŷ, Â ∈ L(H), in the form

e−(ξ2
1+ξ2

2)ŵ = ŷ. (6.1)

From this representation we realize that A and Â are linear, non-negative,
self-adjoint, injective and bounded operators with non-closed range where
‖A‖ = ‖Â‖ = 1.

In order to formulate our source condition we introduce the Sobolev scale
(Hr)r∈R+ of positive real order r (cf. [12]) according to H0 = H = L2(R2),

Hr =
{
w(x1, x2) ∈ H| ‖w‖r < ∞}

and norm

‖w‖r =
(∫

R2
(1 + ξ2

1 + ξ2
2)r|ŵ|2dξ1dξ2

) 1
2

. (6.2)

We impose as our source condition the smoothness condition w† ∈ Hp for
some p > 0 with ‖w†‖p ≤ E.

Now we are able to apply Theorem 2.1 and obtain
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Theorem 6.1. Let M = {w ∈ Hp| ‖w‖p ≤ E}. If δ
E ≤ 1, then for the

above formulated inverse heat conduction problem Aw = y, or equivalently
(6.1), the modulus of continuity of the inverse operator A−1 on the source set
M is given by

ω(δ,M) = E
[
1− ln

δ

E

]− p
2
(1 + o(1)) (δ → 0). (6.3)

Proof. From (6.1) and (6.2) we conclude that in the frequency domain
the source condition w† ∈ M attains the equivalent form ŵ† ∈ Mϕ,E with
Mϕ,E given by

Mϕ,E =
{

ŵ ∈ H
∣∣ ŵ = ϕ(Â)v̂, ‖v̂‖0 ≤ E

}

and ϕ : (0, 1] → (0, 1] given by

ϕ(λ) = [1− ln λ]−
p
2 . (6.4)

This representation enables us to apply Theorem 2.1. Let us check Assumption
A1 with ϕ given by (6.4). It is easily seen that A1(i) is satisfied. Concerning
A1(ii) we observe that the function g of Assumption A1 is implicitly defined
by g([1− ln λ]−p) = λ2[1− ln λ]−p. From this representation we conclude that
g defined in Assumption A1(ii) is convex for 1−p ≤ 2[1−ln λ], which is true for
p > 0 and all λ ∈ (0, 1]. Next, we have to compute ρ−1 with ρ given by (2.5).

From (6.4) we obtain ϕ−1(λ) = e1−λ
− 2

p . Consequently, ρ(λ) := λϕ−1(λ) has

the explicit form ρ(λ) = λe1−λ
− 2

p . This provides

ρ−1(λ) = [1− ln λ]−
p
2 (1 + o(1)) (λ → 0).

Now we apply Theorem 2.1 and the proof is complete

Let us define the Lavrentiev regularized approximation in the frequency
domain according to

ŵδ
α =

ŷδ

e−(ξ2
1+ξ2

2) + α
. (6.5)

In order to apply Theorems 3.2 and 4.3 we have to check under which con-
ditions the function ϕ defined by (6.4) is concave. It can be easily realized
that the inequality ϕ′′(λ) ≤ 0 is satisfied for λ ≤ e−

p
2 . Hence, the function

ϕ is concave on the range (0, e−
p
2 ]. Consequently, by scaling the operator A

by taking Ã := e−
p
2 A in place of A, so that ‖Ã‖ = e−

p
2 , we obtain for the

Lavrentiev regularized approximation (6.5) the order optimal logarithmic type
error bound

‖ŵδ
α − ŵ†‖L2(R2) = O

([
ln

1
δ

]− p
2
)

(δ → 0) (6.6)
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provided w† ∈ Hp and the regularization parameter α is either chosen a priori
from the equation αϕ(α) = δ

E with ϕ according to (6.4) or a posteriori by
rule (4.1).

Due to Plancherel’s theorem we have ‖ŵ‖ = ‖w‖. Hence, the error
bound (6.6) holds also true for the Lavrentiev regularized approximation
wδ

α = F−1{ŵδ
α} in the original domain, that is,

‖wδ
α − w†‖L2(R2) = O

([
ln

1
δ

]− p
2
)

(δ → 0).

7. Concluding remarks

We have considered a priori and a posteriori parameter choice strategies for
choosing the regularization parameter α involved in the method of Lavrentiev
regularization and obtained order optimal error estimates under general source
conditions.

It is apparent from equations (1.4) and (1.5) that if A is a positive self-
adjoint operator, then the method of Lavrentiev regularization is much simpler
and more natural than the method of Tikhonov regularization. Not only that,
the regularized equation (1.5) is in a form which can be adopted for its gener-
alization to operator equations (1.1) on Banach spaces (see, e.g., [19, 23, 26]).
Moreover, it is known that the method of Lavrentiev regularization is better
suited than the method of Tikhonov regularization concerning speed of conver-
gence and condition numbers in the case of finite dimensional approximation
(see [26]). In spite of its simplicity, Morozov’s discrepancy principle cannot
be applied to it to yield convergence (see [7, 30]). Thus, for the method of
Lavrentiev regularization it became necessary to adopt not-so-simple param-
eter choice strategies, as has been done in [3 – 8]. In contrast to the methods
in [3 – 8], the parameter choice strategy considered in this paper found appro-
priate to yield order optimality results under general source conditions which
are applicable for a wide variety of situations.

Although optimality and order optimality results are available for the
method of Tikhonov regularization under general source conditions, this work
seems to be the first attempt for such consideration for the method of Lavren-
tiev regularization.

A natural generalization of the results of this paper would be to prove
them for more general regularization methods which are defined by a general
regularization scheme xδ

α := gα(A)yδ with some properly chosen family of
functions {gα : α > 0} defined on [0, ‖A‖]. The analysis for this generalization
seems to be more complicated. We may attempt this in a future work.

Acknowledgement. The authors are grateful for the valuable hints of
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