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Abstract. Using the notion of weighted sharing of values we prove some uniqueness
theorems for meromorphic functions which improve some earlier results.
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1. Introduction

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. For b ∈ C ∪ {∞} we say that f and g share the value b
CM (counting multiplicities) if f and g have the same b-points with the same
multiplicities. If the multiplicities are ignored, we say that f and g share the
value b IM ( ignoring multiplicities). Though for the standard notations and
definitions of Nevanlinna theory we refer [2], we now explain some notations
and definitions which will be needed in the sequel.

Definition 1. [3, 13] Let s be a positive integer.

(i) We denote by N(r, a; f |≥ s) the counting function of those a-points of
f whose multiplicities are greater than or equal to s, where each a-point
is counted only once. The counting function N(r, a; f |≤ s) is defined
likewise.

(ii) We denote by Ns(r, a; f) the counting function of a-points of f , where an
a-point with multiplicity m is counted m times if m ≤ s and s times if
m > s. We put N∞(r, a; f) ≡ N(r, a; f).

(iii) We denote by N(r, a; f |≤ s) the counting function of those a-points of
f whose multiplicities are less than or equal to s, where an a-point is
counted according to its multiplicity.

Let f and g share a value a IM. Let z be an a-point of f and g with
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multiplicities pf (z) and pg(z) respectively. We put

νf (z) =

{
1 if pf (z) > pg(z)

0 if pf (z) ≤ pg(z)
and µf (z) =

{
1 if pf (z) < pg(z)

0 if pf (z) ≥ pg(z).

Let

n(r, a; f > g) =
∑
|z|≤r

νf (z) and n(r, a; f < g) =
∑
|z|≤r

µf (z).

Then, we denote by N(r, a; f > g) and N(r, a; f < g) the integrated counting
functions obtained from n(r, a; f > g) and n(r, a; f < g) respectively. Finally
we put

N∗(r, a; f, g) = N(r, a; f > g) +N(r, a; f < g).

Again, for a ∈ C ∪ {∞} we use the following notations:

δs(a; f) = 1− lim sup
r→∞

Ns(r, a; f)

T (r, f)

δs)(a; f) = 1− lim sup
r→∞

N(r, a; f |≤ s)

T (r, f)

Θs)(a; f) = 1− lim sup
r→∞

N(r, a; f |≤ s)

T (r, f)
,

where s is a positive integer.

Definition 2. For a, b ∈ C ∪ {∞} we denote by N(r, a; f | g 6= b) the counting
function of those a-points of f which are not the b-points of g, where an a-
point is counted according to its multiplicity. The reduced counting function
N(r, a; f | g 6= b) is defined analogously.

H. Ueda [9] proved the following result.

Theorem A. Let f and g be two distinct nonconstant entire functions sharing
0, 1 CM and let a(6= 0, 1) be a finite complex number. If a is lacunary for f
then 1− a is lacunary for g and (f − a)(g + a− 1) ≡ a(1− a).

Improving Theorem A, H. X. Yi [11] proved the following result.

Theorem B. Let f and g be two distinct nonconstant entire functions sharing
0, 1 CM and let a(6= 0, 1) be a finite complex number. If δ(a; f) > 1

3
then a and

1−a are Picard exceptional values of f and g respectively and (f−a)(g+a−1) ≡
a(1− a).

S. Z. Ye [10] extended Theorem B to meromorphic functions and proved
the following result.
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Theorem C. Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0, 1, ∞ CM. Let a(6= 0, 1) be a finite complex number.
If δ(a; f) + δ(∞; f) > 4

3
then a and 1 − a are Picard exceptional values of f

and g respectively and ∞ is also a Picard exceptional value of both f and g and
(f − a)(g + a− 1) ≡ a(1− a).

The following two examples show that in the above theorems the sharing
of 0 and 1 cannot be relaxed from CM to IM.

Example 1. [5, 7] Let f = ez − 1 and g = (ez − 1)2 and a = −1. Then
f , g share 0 IM and 1, ∞ CM. Also N(r,∞; f) ≡ 0 and N(r, a; f) ≡ 0 but
(f − a)(g + a− 1) 6≡ a(1− a).

Example 2. [5, 7] Let f = 2 − ez, g = ez(2 − ez) and a = 2. Then f ,
g share 1 IM and 0, ∞ CM. Also N(r,∞; f) ≡ 0 and N(r, a; f) ≡ 0 but
(f − a)(g + a− 1) 6≡ a(1− a).

Motivated by these examples, in [5, 7] the following question is asked:

Is it possible in any way to relax the nature of sharing of values in the
theorems stated above?

In [5, 7] this problem is studied using the notion of weighted sharing of values
introduced in [3, 4] which measures how close a shared value is to being shared
IM or to being shared CM.

Definition 3. Let k be a nonnegative integer or infinity . For a ∈ C ∪{∞} we
denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m
is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then zo is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g with
multiplicity m(≤ k) and zo is an a-point of f with multiplicity m(> k) if and
only if it is an a-point of g with multiplicity n(> k) where m is not necessarily
equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight
k. Clearly if f , g share (a, k) then f , g share (a, p) for all integers p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a,0)
or (a,∞) respectively.

In [5] the following theorem is proved.

Theorem D. Let f and g be two distinct meromorphic functions sharing (0, 1),
(1,∞), (∞,∞). If a(6= 0, 1,∞) is a complex number such that 3δ2)(a; f) +
2δ1)(∞; f) > 3 then a and 1−a are Picard exceptional values of f and g and ∞
is also a Picard exceptional value of both f and g and (f−a)(g+a−1) ≡ a(1−a).
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Also in [7], the following two theorems are proved.

Theorem E. Let f and g be two distinct meromorphic functions sharing (0, 1),
(1,∞), (∞, 11). If a(6= 0, 1,∞) is a complex number such that 3δ2(a; f) +
3δ(∞; f) > 4 then a and 1−a are Picard exceptional values of f and g respectively
and also ∞ is a Picard exceptional value of both f and g and (f−a)(g+a−1) ≡
a(1− a).

Theorem F. Let f and g be two distinct meromorphic functions sharing (0, 1),
(1,∞), (∞, 0). If a(6= 0, 1,∞) is a complex number such that 3δ2(a; f) +
14 δ(∞; f) > 15 then a and 1 − a are Picard exceptional values of f and
g respectively and also ∞ is a Picard exceptional value of both f and g and
(f − a)(g + a− 1) ≡ a(1− a).

2. Results

The purpose of the paper is to improve Theorem D, Theorem E and Theorem F
either by reducing the weight of sharing the values or by relaxing the condition
on deficiencies. We now state the main results of the paper.

Theorem 1. Let f and g be two distinct nonconstant meromorphic functions
sharing (0, 1), (1,m), (∞, k), where (m−1)(mk−1) > (1+m)2. If a(6= 0, 1,∞)
is a complex number such that

3δ2)(a; f) + 2δ1)(∞; f) > 3,

then a and 1−a are Picard exceptional values of f and g respectively and also ∞
is a Picard exceptional value of both f and g and (f − a)(g + a− 1) ≡ a(1− a).

This theorem improves Theorem D and Theorem E.

Corollary 1. Theorem 1 holds for the pairs of values (m, k) = (3, 4), (4, 3),
(2, 6), (6, 2).

Note 1. Considering f = ez/(1− ez), g = 1/(2− 2ez), a = −1 we see that the
condition 3δ2)(a; f) + 2δ1)(∞; f) > 3 is sharp.

Theorem 2. Let f , g be two distinct nonconstant meromorphic functions shar-
ing (0, 1), (1,m), (∞, 0) where m ≥ 2. If a(6= 0, 1,∞) is a complex number
such that

3δ2(a; f) +
11m+ 13

m− 1
Θ(∞; f) >

12m+ 12

m− 1

then a and 1− a are Picard exceptional values of f and g respectively and also
∞ is a Picard exceptional value of f and g and (f − a)(g + a− 1) ≡ a(1− a).

Corollary 2. Theorem F holds if 3δ2(a; f) + 11Θ(∞; f) > 12.
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Theorem 3. Theorem 2 holds if

3δ2)(a; f) +
76m+ 52

m− 1
Θ(∞; f) >

77m+ 51

m− 1
.

Corollary 3. Theorem F holds if 3δ2)(a; f) + 76Θ(∞; f) > 77.

Note 2. Considering f = ez(1 − ez), g = e−z(1 − e−z) and a = 1
4

we see that
the conditions

(i) 3δ2)(a; f) + 2δ1)(∞; f) > 3 of Theorem 1

(ii) 3δ2)(a; f) + 76Θ(∞; f) > 77 of Corollary 3

cannot be replaced by the following weaker ones respectively:

(I) 3Θ2)(a; f) + 2δ1)(∞; f) > 3

(II) 3Θ2)(a; f) + 76Θ(∞; f) > 77.

Throughout the paper we denote by f , g two nonconstant meromorphic
functions in C.

3. Lemmas

In this section we present some lemmas which are needed to prove the main
results.

Lemma 1. [1, 3] If f , g share (0, 0), (1, 0), (∞, 0). Then

(i) T (r, g) ≤ 3T (r, f) + S(r, g)

(ii) T (r, f) ≤ 3T (r, g) + S(r, f).

This lemma shows that S(r, f) = S(r, g), and we denote them by S(r).

Lemma 2. [6] Let f , g share (0, 1), (1,m), (∞, k) and f 6≡ g, where (m −
1)(mk − 1) > (1 +m)2. Then

(i) N(r, 0; f |≥ 2) +N(r, 1; f |≥ 2) +N(r,∞; f |≥ 2) = S(r)

(ii) N(r, 0; g |≥ 2) +N(r, 1; g |≥ 2) +N(r,∞; g |≥ 2) = S(r).

Lemma 3. Let f , g share (0, 1), (1,m), (∞, 0) and f 6≡ g, where m ≥ 2. Then

(i) N(r, 0; f |≥ 2) ≤ m+1
m−1

N∗(r,∞; f, g) + S(r)

(ii) N(r, 1; f |≥ m+ 1) ≤ 2
m−1

N∗(r,∞; f, g) + S(r).

Proof. Let φ1 = f ′

f−1
− g′

g−1
and φ2 = f ′

f
− g′

g
. We suppose that N(r, a; f) 6= S(r)

for a = 0, 1 because otherwise the lemma is trivial. Since f 6≡ g, it follows that
φi 6≡ 0 for i = 1, 2. Now
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N(r, 0; f |≥ 2) ≤ N(r, 0;φ1)

≤ T (r, φ1) +O(1)

= N(r,∞;φ1) + S(r)

≤ N(r, 1; f |≥ m+ 1) +N∗(r,∞; f, g) + S(r),

(1)

and, analogously,

mN(r, 1; f |≥ m+ 1) ≤ N(r, 0;φ2)

≤ T (r, φ2) +O(1)

= N(r,∞;φ2) + S(r)

≤ N(r, 0; f |≥ 2) +N∗(r,∞; f, g) + S(r).

(2)

Hence, from (1) and (2) we get (i). Further, from (2) we get

N(r, 1; f |≥ m+ 1) ≤ 1

m
N(r, 0; f |≥ 2) +

1

m
N∗(r,∞; f, g) + S(r)

≤ 1

m

(m+ 1

m− 1
+ 1

)
N∗(r,∞; f, g) + S(r)

=
2

m− 1
N∗(r,∞; f, g) + S(r),

which is (ii). This proves the lemma.

Lemma 4. Let f, g share (0, 0), (1, 0), (∞, 0) and f 6≡ g. If α = (f−1)/(g−1)
and h = g/f , then

(i) N(r, 0;α) = N(r,∞; f < g) +N(r, 1; f > g)

(ii) N(r,∞;α) = N(r,∞; f > g) +N(r, 1; f < g)

(iii) N(r, 0;h) = N(r, 0; f < g) +N(r,∞; f > g)

(iv) N(r,∞;h) = N(r, 0; f > g) +N(r,∞; f < g).

The proof is straightforward and omitted.

Lemma 5. Let f , g share (0, 1), (1,m), (∞; 0) and α, h be defined as in
Lemma 4, where m ≥ 2. If aαh+ bα ≡ c for nonzero constants a, b, c, then

T (r, f) ≤ 4(m+ 1)

m− 1
N(r,∞; f < g) + S(r).

Proof. If one of α and αh is constant then from the given condition we see
that the other is constant and so f = 1−α

1−αh
becomes a constant, which is a

contradiction. So α and αh are nonconstant.

Let z0 be a pole of f and g with multiplicities p and q respectively. If p > q
then z0 is a zero of 1

α
and h. So from ah + b ≡ c

α
, it follows that b = 0, which

is a contradiction. So N(r,∞; f > g) ≡ 0.
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Let z0 be a zero of f and g with multiplicities p and q respectively. If p > q
then z0 is a pole of h and z0 is a regular point of α with α(z0) = 1. Since
ah ≡ c

α
− b, this implies a contradiction. So N(r, 0; f > g) ≡ 0.

Let z0 be an 1-point of f and g with multiplicities p and q respectively. If
p > q then z0 is a zero of α and z0 is a regular point of h with h(z0) = 1. Since
aαh + bα = c, it follows that c = 0, which is a contradiction. So N(r, 1; f >
g) ≡ 0.

Since ah− c
α
≡ −b, it follows from the first and second fundamental theorems

and Lemma 4

T (r, α) ≤ N(r,∞;α) +N(r, 0;α) +N(r, 0;h) + S(r, α)

= N(r, 1; f < g) +N(r,∞; f < g) +N(r, 0; f < g) + S(r, α).

Again since ah+ b ≡ c
α
, it follows from Lemma 4 that

N(r,− b
a
;h) = N(r,∞;α) = N(r, 1; f < g)

N(r, 0;h) = N(r, 0; f < g)

N(r,∞;h) = N(r, 0;α) = N(r,∞; f < g).

By the second fundamental theorem we get

T (r, h) ≤ N(r,∞;h) +N(r, 0;h) +N(r,−b/a;h) + S(r, h)

= N(r,∞; f < g) +N(r, 0; f < g) +N(r, 1; f < g) + S(r, h).

It follows from Lemma 1 and the first fundamental theorem S(r, α) = S(r) and
S(r, h) = S(r). Since

1

f
= 1− h− 1

1
α
− 1

,

it follows from the first fundamental theorem that

T (r, f) ≤ T (r, α) + T (r, h) +O(1)

≤ 2N(r,∞; f < g) + 2N(r, 0; f < g) + 2N(r, 1; f < g) + S(r).
(3)

Since f , g share (0, 1), (1,m), (∞, 0), it follows from Lemma 3 that

N(r, 0; f < g) ≤ N(r, 0; f |≥ 2) ≤ m+ 1

m− 1
N(r,∞; f < g) + S(r)

N(r, 1; f < g) ≤ N(r, 1; f |≥ m+ 1) ≤ 2

m− 1
N(r,∞; f < g) + S(r).

So from (3) we get

T (r, f) ≤ 4(m+ 1)

m− 1
N(r,∞; f < g) + S(r).

This proves the lemma.
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Lemma 6. [6] For a meromorphic function f it holds

N(r, 0; f ′) ≤ 2N(r, 0; f) +N(r,∞; f) + S(r, f).

Lemma 7. [5] If f , g share (0, 1), (1,∞), (∞,∞) and f 6≡ g, then for any
a(6= 0, 1,∞)

(i) N(r, a; f |≥ 3) = S(r)

(ii) N(r, a; g |≥ 3) = S(r).

Lemma 8. Let f , g share (0, 1), (1,m), (∞, 0) and f 6≡ g, where m ≥ 2. Then
for any a(6= 0, 1,∞)

(i) N(r, a; f |≥ 3) ≤ 13m+7
m−1

N∗(r,∞; f, g) + S(r)

(ii) N(r, a; g |≥ 3) ≤ 13m+7
m−1

N∗(r,∞; f, g) + S(r).

Proof. Let α and h be defined as in Lemma 4. If α or h is constant then clearly
f , g share (0,∞), (1,∞), (∞,∞) and so the result follows from Lemma 7. We
now suppose that α and h are nonconstant.

Since f = 1−α
1−αh

, it follows that

f − a =
(1− a) + α(ah− 1)

1− αh
.

Let z0 be a zero of f − a with multiplicity ≥ 3. Then z0 is a zero of

d

dz

[
(1− a) + α(ah− 1)

]
= α′

[
ah− 1 +

aαh′

α′

]
with multiplicity ≥ 2. So z0 is a zero of α′ or z0 is a zero of

d

dz

[
ah− 1 +

aαh′

α′

]
= ah′

[
2 +

αh′′

α′h′
− αα′′

(α′)2

]
.

Therefore

N(r, a; f |≥ 3) ≤ N(r, 0;α′) +N(r, 0;h′) + T
(
r, 2 +

αh′′

α′h′
− αα′′

(α′)2

)
≤ N(r, 0;α′) +N(r, 0;h′) + T

(
r,
h′′

h′

)
+ 2T

(
r,
α′

α

)
+T

(
r,
α′′

α′

)
+O(1)

≤ 2N(r, 0;α′) + 2N(r, 0;h′) + 2N(r, 0;α) + 3N(r,∞;α)

+N(r,∞;h) + S(r).
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So by the Lemmas 3, 4 and 6 we get

N(r, a; f |≥ 3) ≤ 6N(r, 0;α) + 5N(r,∞;α) + 4N(r, 0;h)

+3N(r,∞;h) + S(r)

≤ 13m+ 7

m− 1
N∗(r,∞; f, g) + S(r),

which is (i). Similarly we can prove statement (ii). This proves the lemma.

Lemma 9. [12] Let f1, f2, f3 be nonconstant meromorphic functions such that
f1 + f2 + f3 ≡ 1 and let g1 = −f1/f3, g2 = 1/f3, g3 = −f2/f3. If f1, f2, f3 are
linearly independent, then g1, g2, g3 are linearly independent.

Lemma 10. [8] Let f1, f2, f3 be nonconstant meromorphic functions such that
f1 + f2 + f3 ≡ 1. If f1, f2, f3 are linearly independent, then

T (r, f1) ≤
3∑

i=1

N2(r, 0; fi) +
3∑

i=1

N(r,∞; fi) +
3∑

i=1

S(r, fi).

Lemma 11. Let f, g share (0, 1), (1,m), (∞, 0) and f 6≡ g, where m ≥ 2. Let

f1 =
(f − a)(1− αh)

1− a
, f2 =

−aαh
1− a

, and f3 =
α

1− a
,

where a(6= 0, 1,∞) be a complex number and α, h are defined as in Lemma 4.
If f1, f2, f3 are linearly independent, then

(i) N(r, 0; f) ≤ N2(r, a; f) + 5m+9
m−1

N∗(r,∞; f, g) + S(r)

(ii) N(r, 1; f) ≤ N2(r, a; f) + 5m+5
m−1

N∗(r,∞; f, g) + S(r).

Proof. Since (1− a)f1 = (1− α)− a(1− αh) and at a pole of f , αh = g(f−1)
f(g−1)

has no pole, it follows that

N(r,∞; f1) ≤ N(r,∞; f > g) +N(r, 0; f > g) +N(r, 1; f < g)

N(r,∞; f2) ≤ N(r, 0; f > g) +N(r, 1; f < g)

N(r,∞; f3) ≤ N(r,∞; f > g) +N(r, 1; f < g).

If α is a constant, N(r, 0; f) ≡ 0 because f −1 ≡ α(g−1), f 6≡ g and f , g share

(0, 1). So we suppose that α is nonconstant. Since
3∑

i=1

S(r, fi) = S(r), we get

by Lemma 10

T (r, α) ≤
3∑

i=1

N2(r, 0; fi) +
3∑

i=1

N(r,∞; fi) + S(r)

≤ N2(r, 0; f1) + 2N(r, 0; f2) + 2N(r, 0; f3) +
3∑

i=1

N(r,∞; fi) + S(r).
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Further, since

N(r, 0; f2) ≤ N(r, 0; g > f) +N(r, 1; f > g)

N(r, 0; f3) ≤ N(r,∞; f < g) +N(r, 1; f > g),

it follows that

T (r, α) ≤ N2(r, 0; f1) + 2N∗(r, 0; f, g) + 3N∗(r, 1; f, g)

+N(r, 1; f > g) + 2N∗(r,∞; f, g) + S(r).
(4)

We see that (1− a)f1 ≡ (f − a)(1− αh) ≡ (1− α)− a(1− αh) and f ≡ 1−α
1−αh

.
So z0 is a possible zero of f1 if either z0 is a zero of f − a or z0 is a common
zero of 1− α and 1− αh. Therefore

N2(r, 0; f1) ≤ N2(r, a; f) +N(r, 0; 1− αh | α 6= ∞)−N(r,∞; f | α 6= ∞). (5)

Since f ≡ 1−α
1−αh

and the possible poles of α occur only at the poles and 1-points
of f , it follows in view of (4) and (5)

N(r, 0; f) ≤ N(r, 0; 1− α)−N(r, 0; 1− αh | α 6= ∞)

+N(r,∞; f | α 6= ∞) +N(r,∞;αh | α 6= ∞)

≤ T (r, α)−N(r, 0; 1− αh) +N(r,∞; f | 1− αh = 0)

+N(r,∞;αh | α 6= ∞) +O(1)

≤ N2(r, a; f) + 3N∗(r, 0; f, g) + 4N∗(r, 1; f, g)

+2N∗(r,∞; f, g) + S(r).

Since f , g share (0, 1), (1,m) we get

N∗(r, 0; f, g) ≤ N(r, 0; f |≥ 2)

N∗(r, 1; f, g) ≤ N(r, 1; f |≥ m+ 1).

So by Lemma 3 we obtain

N(r, 0; f) ≤ N2(r, a; f) +
5m+ 9

m− 1
N∗(r,∞; f, g) + S(r),

which is assertion (i).

If h is a constant then N(r, 1; f) ≡ 0 because g = hf , f 6≡ g and f , g share
(1,m). So we suppose that h is nonconstant. Let

g1 =
−f1

f3

=
−(f − a)(1− αh)

α
, g2 =

1

f3

=
1− a

α
, g3 =

−f2

f3

= ah.
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Then g1 + g2 + g3 ≡ 1, and by Lemma 9 the functions g1, g2, g3 are linearly
independent. Since

∑3
i=1 S(r, gi) = S(r, f), applying Lemma 10 to g1, g2, g3 we

get

T (r, h) ≤
3∑

i=1

N2(r, 0; gi) +
3∑

i=1

N(r,∞; gi) + S(r)

≤ N2(r, 0; g1) + 2N(r, 0; g2) + 2N(r, 0; g3) +
3∑

i=1

N(r,∞; gi) + S(r)

≤ N2(r, 0; g1) + 2N(r,∞;α) + 2N(r, 0;h) +N(r,∞; g1)

+N(r, 0;α) +N(r,∞;h) + S(r).

We get by Lemma 4

T (r, h) ≤ N2(r, 0; g1) +N(r,∞; g1) +N∗(r, 1; f, g) +N(r, 1; f < g)

+N∗(r, 0; f, g) +N(r, 0; f < g) + 2N∗(r,∞; f, g)

+N(r,∞; f > g).

(6)

Since g1 =
(
1− a

f

) (
1− g−1

f−1

)
and f , g share (0, 1), (1,m), (∞, 0), it follows

that possible poles of g1 occur at the zeros, 1-points and poles of f and g.

Let zo be a zero of f and g with multiplicities l and n respectively. Then in
some neighbourhood of zo we get

g1(z) =
{(z − zo)

lφ− a}{(z − zo)
lφ− (z − zo)

nψ}
(z − zo)lφ{(z − zo)lφ− 1}

,

where φ, ψ are analytic at zo and φ(zo) 6= 0, ψ(zo) 6= 0. This shows that zo is a
pole of g1 only if l > n. Again since g1 =

(
1− a

f

)(
1− 1

α

)
, it follows in view of

Lemma 4

N(r,∞; g1) ≤ N(r, 0; f > g) +N(r,∞; f < g) +N(r, 1; f > g).

So from (6) we get

T (r, h) ≤ N2(r, 0; g1) + 2N∗(r, 0; f, g) + 2N∗(r, 1; f, g)

+3N∗(r,∞; f, g) + S(r).
(7)

We see that

g1 =
−(f − a)(1− αh)

α
=
a(1− αh)− (1− α)

α
, f =

1− α

1− αh
.

So zo is a possible zero of g1 if
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(1) zo is a zero of f − a

(2) zo is a common zero of 1− α and 1− αh

(3) zo is a pole of α.

If z0 is a pole of α then z0 is either a pole of f or an 1-point of f . Since
g1 =

(
1 − a

f

) (
1− 1

α

)
, it follows that if z0 is a pole of f then g1(z0) = 1 and if

z0 is an 1-point of f then g1(z0) = 1− a(6= 0). Therefore

N2(r, 0; g1) ≤ N2(r, a; f) +N(r, 0; 1− αh | α 6= ∞)−N(r,∞; f | α 6= ∞). (8)

Since f − 1 = (1−h)α
1−αh

and a zero of α occurs at a pole of f or at an 1-point of f ,
we get in view of Lemma 4 and (7), (8)

N(r, 1; f) ≤ N(r, 1;h)−N(r, 0; 1− αh | α 6= ∞) +N(r,∞; f | α 6= ∞)

+N∗(r, 1; f, g)

≤ T (r, h)−N(r, 0; 1− αh | α 6= ∞) +N(r,∞; f | α 6= ∞)

+N∗(r, 1; f, g) +O(1)

≤ N2(r, a; f) + 2N∗(r, 0; f, g) + 3N∗(r, 1; f, g)

+3N∗(r,∞; f, g) + S(r).

Since

N∗(r, 0; f, g) ≤ N(r, 0; f |≥ 2)

N∗(r, 1; f, g) ≤ N(r, 1; f |≥ m+ 1)

we get by Lemma 3

N(r, 1; f) ≤ N2(r, a; f) +
5m+ 5

m− 1
N∗(r,∞; f, g) + S(r),

which is assertion (ii). This proves the lemma.

Lemma 12. Under the hypotheses of Lemma 11 we get

(i) N(r, 0; f) ≤ N(r, a; f |≤ 2) + 31m+23
m−1

N∗(r,∞; f, g) + S(r)

(ii) N(r, 1; f) ≤ N(r, a; f |≤ 2) + 31m+19
m−1

N∗(r,∞; f, g) + S(r).

Proof. Since N2(r, a; f) = N(r, a; f |≤ 2)+2N(r, a; f |≥ 3), the lemma follows
from the Lemmas 8 and 11.

Lemma 13. If in Lemma 11 we suppose that f , g share (0, 1), (1,m) and
(∞, k), where (m− 1)(mk − 1) > (1 +m)2, then

(i) N(r, 0; f) ≤ N(r, a; f |≤ 2) + S(r)

(ii) N(r, 1; f) ≤ N(r, a; f |≤ 2) + S(r).

Proof. Since N∗(r,∞; f, g) ≤ N(r,∞; f |≥ 2) = S(r) in view of Lemma 2, the
lemma follows from Lemma 12.
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4. Proofs of the main results

Theorem 1 can be proved in the line of Theorem 2 using Lemmas 2, 4, 5, 8 and
13. Also Theorem 3 can be proved in the line of Theorem 2 using Lemmas 3,
4, 5, 8 and 12. So we will prove Theorem 2, only.

Proof of Theorem 2. Let f1, f2, f3 be defined as in Lemma 11. It is pos-
sible to suppose that f1, f2, f3 are linearly independent. Then by the second
fundamental theorem and Lemma 11 we get

2T (r, f) ≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f) +N(r, a; f) + S(r, f)

≤ 3N2(r, a; f) +
11m+ 13

m− 1
N(r,∞; f) + S(r, f)

and so

3δ2(a; f) +
11m+ 13

m− 1
Θ(∞; f) ≤ 12m+ 12

m− 1
,

which is a contradiction. So there exist constants c1, c2, c3, not all zero, such
that

c1f1 + c2f2 + c3f3 ≡ 0. (9)

If c1 = 0, then from (9) and the definition of f2, f3 it follows that h is a constant.
Since f 6≡ g, we see that h 6= 1, and so 1 becomes a Picard exceptional value of
f because f , g share (1,m) and g ≡ hf .

Since g ≡ hf , it follows that f , g share (∞,∞), and since 1 is a Picard
exceptional value of f and so of g, we see that α = f−1

g−1
has no pole. Since

f ≡ 1

h
+

h− 1

h(1− αh)

and α has no pole, it follows that 1
h

is also a Picard exceptional value of f (in
this case h is a nonzero constant). Since 1 and 1

h
(6= 1,∞) are Picard exceptional

values of f , by the second fundamental theorem of Nevanlinna it follows that
Θ(∞; f) = 0, which is a contradiction. Hence c1 6= 0.

Since f1 + f2 + f3 ≡ 1, we get from (9)

cf2 + df3 ≡ 1 , (10)

where |c|+ |d| 6= 0. We now consider the following cases.

Case I: Let c 6= 0 and d 6= 0. Then from (10) we get

−acαh
1− a

+
dα

1− a
≡ 1.
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Since f , g share (0, 1), (1,m), (∞, 0) we get by Lemma 5

T (r, f) ≤ 4(m+ 1)

m− 1
N(r,∞; f < g) + S(r, f)

≤ 4(m+ 1)

m− 1
N(r,∞; f) + S(r, f)

and so Θ(∞; f) ≤ 3m+5
4m+4

. Therefore

3δ2(a; f) +
11m+ 13

m− 1
Θ(∞; f) ≤ 12m+ 12

m− 1
− 3m+ 5

4m+ 4
,

which is a contradiction.

Case II: Let c = 0 and d 6= 0. Then, from (10) we see that α is a constant.
Since α = f−1

g−1
and f 6≡ g, it follows that α 6= 1. So N(r, 0; f) ≡ 0 because f ,

g share (0, 1). Since f = 1−α
1−αh

, we get by the second fundamental theorem and
Lemma 4

T (r, f) ≤ N(r, 0; f) +N(r, 1− α; f) +N(r,∞; f) + S(r, f)

= N(r, 0;h) +N(r,∞; f) + S(r, f)

= N(r,∞; f > g) +N(r,∞; f) + S(r, f)

≤ 2N(r,∞; f) + S(r, f)

and so Θ(∞; f) ≤ 1
2
, which contradicts the given condition.

Case III: Let c 6= 0 and d = 0. Then from (10) we see that αh = p, say,

a constant. Since f 6≡ g and αh = g(f−1)
f(g−1)

, it follows that p 6= 1. So we get

f − a ≡ (1 + ap− a)− α

1− p
. (11)

If 1 + ap− α 6= 0, by the second fundamental theorem and Lemma 4 we get

T (r, α) ≤ N(r,∞;α) +N(r, 0;α) +N(r, 1 + ap− a;α) + S(r, α)

≤ N∗(r,∞; f, g) +N∗(r, 1; f, g) +N(r, a; f) + S(r, f)

≤ N(r,∞; f) +N∗(r, 1; f, g) +N(r, a; f) + S(r, f).

Since f , g share (0, 1), (1,m), (∞, 0), by Lemma 3 we get

N∗(r, 1; f, g) ≤ N(r, 1; f |≥ m+ 1) ≤ 2

m− 1
N∗(r,∞; f, g) ≤ 2

m− 1
N(r,∞; f).

Again, since f = 1−α
1−p

, it follows that T (r, f) = T (r, α) + O(1). Hence, from
above we get

T (r, f) ≤ N2(r, a; f) +
m+ 1

m− 1
N(r,∞; f) + S(r, f)
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and so (m− 1)δ2(a; f) + (m+ 1)Θ(∞; f) ≤ m+ 1, which contradicts the given
condition. Therefore 1 + ap− a = 0. So from (11) we get

f − a ≡ −aα. (12)

Since g = hf , we get from (12)

g + a− 1 ≡ a− 1

α
. (13)

From (12) and (13) we obtain (f − a)(g + a − 1) ≡ a(1 − a). This proves the
theorem.

Proof of Corollary 2. We choose an ε > 0 such that 3δ2(a; f)+11Θ(∞; f) >
12 + 2ε. Now it is possible to choose a sufficiently large positive integer m such
that

11m+ 13

m− 1
> 11− ε ,

12m+ 12

m− 1
< 12 + ε.

Since f , g share (0, 1), (1,m), (∞, 0) and

3δ2(a; f) +
11 + 13

m− 1
Θ(∞; f) > 3δ2(a; f) + (11− ε)Θ(∞; f)

> 12 + 2ε− εΘ(∞; f)

≥ 12 + ε

>
12m+ 12

m− 1
,

the corollary follows from Theorem 2.
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