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Classes of Multiplication Operators
and Their Limit Operators

M. Lindner

Abstract. Limit operators have proven to be a device for the study of several
properties of an operator including Fredholmness and invertibility at infinity, but
also the applicability of approximation methods. For band-dominated operators,
the question of existence and structure of their limit operators essentially reduces to
the study of multiplication operators and their limit operators, which is the topic of
this paper.
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1. Introduction and main items

Limit operators have been introduced as a device for the study of several
properties of an operator including Fredholmness [5 - 7, 9] and invertibility at
infinity [3, 10], but also the applicability of approximation methods [4, 9, 10].
The first time limit operator techniques were applied to the general class of
band-dominated operators was in 1985 by Lange and Rabinovich in [1, 2].

The motivation behind the concept of limit operators is to study the be-
haviour of an operator A at infinity. One therefore takes a sequence h of points
hm tending to infinity and watches the sequence of operators V−hmAVhm as
m → ∞. If convergence of that sequence takes place in a certain sense (sim-
ilar to strong convergence, see [3] or [9]), we will regard its limit as the limit
operator of A with respect to the sequence h and denote it by Ah. Collecting
all possible limit operators in this manner results in the so called operator
spectrum σop(A) of A. We will regard A as a rich operator if it possesses suffi-
ciently many limit operators in the following sense: Every sequence h tending
to infinity has an infinite subsequence g such that Ag exists.
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For a rich operator A, all necessary information about its behaviour at
infinity is accurately stored in σop(A), and for such operators, the typical
criterion for the applications mentioned above says that an operator A is
subject to the property under consideration if and only if all limit operators
(or associated operators to these) of A are invertible and their inverses are
uniformly bounded.

But in order to really work with these criteria, one still has to gain some
knowledge on the objects it is dealing with:

Q1 How do we recognize rich operators?
Q2 How do their limit operators look like?

This paper is essentially concerned with answering these questions for some
practically relevant classes of operators. To see why everything reduces to
the study of multiplication operators, we have to take some closer look at
the operators under consideration and their limit operators in Section 2. The
study of multiplication operators and their limit operators is then done in
Section 3.

Acknowledgement. I am grateful to my advisors and friends Bernd
Silbermann and Steffen Roch for many fruitful conversations, inspirations and
hints.

2. Preliminaries

2.1 Band-dominated operators. By `p and Lp we denote the usual spaces
of complex-valued sequences on Zn and functions on Rn, respectively. The
Lebesgue parameter p is in [1,∞], as usual, and the dimension n is some fixed
positive integer.

An operator A ∈ L(`p) is a band operator if its matrix representation
[aαβ ] with respect to the standard basis in `p is a band matrix, i.e. aαβ = 0
if |α − β| exceeds some fixed number – the so called band width of A. The
set of band operators clearly turns out to be an algebra – but it is not closed.
Hence, it is a natural desire to pass to its closure with respect to the norm in
L(`p), which is a Banach algebra then. The elements of the latter are called
band-dominated operators.

For α ∈ Zn, let Vα denote the so called shift operator on `p, acting by
the rule (Vαu)β = uβ−α on every u ∈ `p, i.e. shifting u by α components.
Without introducing a new symbol, we will say that Vτ is the shift operator
on Lp where (Vτu)(x) = u(x− τ) for every u ∈ Lp.

The important observation is that A is band operator if and only if it is
a finite sum-product of shifts Vα and discrete multiplication operators (i.e.
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diagonal matrices). Consequently, band-dominated operators are composed
of these two ingredients as well.

By cutting Rn into cubes of size 1 and identifying a function f ∈ Lp with
the `p-sequence of restrictions of f to these cubes, the notion of a band(-dom-
inated) operator can be transferred to operators on Lp as well. It turns out
that also here, huge classes of practically relevant operators are only composed
(via addition, composition and taking norm limits) by operators of multipli-
cation and shift-invariant operators like convolutions and shifts. We hereby
call an operator A shift-invariant if it coincides with V−cAVc for every vector
c.

2.2 The set of rich operators. We do not know any algorithm that answers
question Q1 from the introduction, i.e. tells if a given operator is rich or not.
But it is not hard to see (e.g., in [9]) that the set of rich band-dominated
operators actually forms a Banach algebra.

So what we can do is decomposing our operator A into its basic com-
ponents, namely multiplication operators and shift-invariant operators, and
examine their rich property: Clearly, shift-invariant operators S are always
rich since the sequence V−hmSVhm is constant for every h = (hm). For mul-
tiplication operators this question is extremely non-trivial, but we will find
some answers in Section 3.

2.3 Computing limit operators. Concerning question Q2 from our intro-
duction, we make extensive use of a fundamental property of limit operators
(see, e.g., [3] or [9]):

For every fixed sequence h tending to infinity, the mapping A 7→ Ah

is compatible with addition, composition, scalar multiplication, passing to
adjoints and to norm-limits. That is, the equations

(A + B)h = Ah + Bh

(AB)h = AhBh

(λA)h = λAh

(A∗)h = (Ah)∗

(limm→∞A(m))h = limm→∞A
(m)
h

hold, provided all limit operators on the right-hand sides exist.
So computing a limit operator of A can be done by decomposing A into its

basic components, namely multiplication operators and shift-invariant opera-
tors, computing their limit operators, and puzzling these together again as A
was composed by its components. Again, limit operators of a shift-invariant
operator S are trivially equal to S itself, and limit operators of multiplication
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operators are the essential problem, discussed in Section 3 for some classes of
multiplicators.

3. Limit operators of a multiplication operator

3.1 Notations and abbreviations. A discrete multiplication operator Mb

on `p acts by the rule (Mbu)α = bαuα, where b = (bα) is an element of `∞.
Without introducing a new symbol, let Mb denote the operator of multiplica-
tion in Lp by the bounded function b ∈ L∞.

For every measurable set U ⊂ Rn, PU is the the operator of multiplication
by the characteristic function of U . Clearly, PU is a projector. We will refer
to its complementary projector I − PU by QU .

For a complex number z and some ε > 0, put Uε(z) = {y ∈ C : |y−z| < ε}.
The hypercube [−1, 1]n will be abbreviated by C in what follows.

3.2 The discrete case. We first cite a result from the discrete case `p saying
that, in this situation, every (discrete) multiplication operator is rich.

Proposition 3.1. Every discrete multiplication operator Mb on `p is rich,
and every limit operator of Mb is a discrete multiplication operator again.

As a consequence, we get that every band-dominated operator on `p is
rich, and question Q1 is ridiculous in this setting. The function case Lp is
much more interesting here, and we will henceforth pay our attention to this
one. Note that some results concerning the structure of limit operators (see,
for instance, Subsection 3.6) have their discrete analogon in `p.

3.3 The function case. The proof of Proposition 3.1 (see [9]) uses some
diagonal argument in connection with an enumeration of Zn and the Bolzano-
Weierstrass theorem. Unfortunately, this proof is not portable to the case of
(usual) multiplication operators Mb on Lp for some reasons:

1) Rn cannot be enumerated.
2) By trying some workaround to reason 1) and writing Lp ∼= `p(Zn, X)

with X = Lp([0, 1)n), we get discrete multiplication operators with values
in an infinite-dimensional space. Consequently, the relative-compactness (i.e.
Bolzano-Weierstrass) argument is not applicable.

There is some very good reason for this proof being not portable to Lp:
Proposition 3.1 is not true there. The only fact that can be rescued is that
every limit operator of Mb is an operator of multiplication again, say Mc, with
c ∈ L∞.
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From V−hm
MbVhm

= MV−hmb one can easily conclude that (Mb)h = Mc

if and only if for every bounded and measurable set U ⊂ Rn

∥∥PU (V−hmb− c)
∥∥
∞ = ess sup

u∈U

∣∣b(hm + u)− c(u)
∣∣ → 0 (m →∞).

We will frequently abbreviate this fact by

b|hm+U → c|U (m →∞) (1)

(uniform convergence on U), where we agree in writing b|hm+U instead of the
much clumsier notation V−hm

(b|hm+U ) or (V−hm
b)|U .

Remark 3.2. We do not pay much attention to the general definition
of limit operators in this paper because this would require several additional
notations and technical journeys. For our purposes – the multiplication oper-
ators – relation (1) perfectly substitutes this definition. However, one aspect
should be discussed:

Since the limit operator method grew up with the discrete case, the se-
quences h = (hm) were naturally restricted to Zn. In the function case, we
could easily drop this restriction and pass to hm ∈ Rn. (Which would change
nothing up to this point!) We will however resist this temptation and stay
in the integers, which will result in some technical efforts in Subsections 3.4 -
3.7, but afterwards, in Remark 3.19 we will state the reason for doing so.

Definition 3.3. For a function f ∈ L∞ and a bounded and measurable
set U ⊂ Rn, we define

oscU (f) = ess sup
u,v∈U

|f(u)− f(v)|

oscx(f) = oscx+C(f),

the latter is referred to as local oscillation of f at x.

Lemma 3.4. If b ∈ L∞ and h = (hm) → ∞ leads to a limit opera-
tor of Mb, say Mc, then, for every bounded and measurable set U ⊂ Rn,
oschm+U (b) → oscU (c) as m →∞.

Proof. Take an arbitrary ε > 0 and a bounded and measurable U ⊂ Rn.
By (1), there is some m0 such that, for every m > m0, ‖b|hm+U − c|U‖∞ < ε

2 .
For almost all u, v ∈ U we then have∣∣b(hm + u)− b(hm + v)

∣∣
≤

∣∣b(hm + u)− c(u)
∣∣ +

∣∣c(u)− c(v)
∣∣ +

∣∣c(v)− b(hm + v)
∣∣

≤ ε

2
+ oscU (c) +

ε

2
and by passing to the essential supremum for u, v ∈ U , we get oschm+U (b) ≤
oscU (c)+ε. Completely analogously, we derive oscU (c) ≤ oschm+U (b)+ε, and
taking this together we see that

∣∣oschm+U (b) − oscU (c)
∣∣ < ε for all m > m0

which proves our claim
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Definition 3.5. We call a function b ∈ L∞ rich if Mb is a rich operator.
Otherwise we call b ordinary.

There are even functions b ∈ L∞ for which no sequence h → ∞ in Zn at
all leads to a limit operator of Mb. Such functions will be referred to as poor
functions. We denote the set of rich functions by L∞$ .

Since the set of rich operators is a Banach algebra, we have that also L∞$
is closed under addition, multiplication and supremum norm, i.e. L∞$ is a
Banach subalgebra of L∞.

It is time to look at some examples now. Let n = 1. For instance,
b1(x) = (−1)[x/π], where [y] denotes the integer part of y, is a poor function.
The function b1 is 2π-periodic and has a jump at every multiple of π. That is
why (b1|hm+U )m cannot be a Cauchy sequence in L∞(U) for any sequence of
integers (hm). Here the cause for b1 being poor is clearly the condition that
all hm have to be integers.

Another example of a poor function is b2(x) = sin(x2). One can easily
show that no sequence (of integers or reals) tending to infinity leads to a limit
operator of Mb2 .

3.4 Step functions. Loosely spoken, step functions are piecewise constant
functions on a lattice of hypercubes. Let therefore H := (0, 1)n.

Definition 3.6. Take some positive real number `. A function f ∈ L∞

is called step function with steps of size ` if there is an x0 ∈ Rn with the
property that f is constant on all hypercubes Hα = x0 + `(α + H) with α
running through Zn. The set of these functions will be denoted by T`. Finally,
put

TQ =
⋃

p,q∈N
Tp/q.

Our example, b1 is obviously in Tπ and has proven to be ordinary (even
poor). We will see that this is a consequence of the irrationality of π.

Proposition 3.7. Step functions with rational step size are rich, TQ ⊂
L∞$ .

Proof. Pick some arbitrary p, q ∈ N. Since Tp/q ⊂ T1/q, it remains to
show that all functions b ∈ T1/q are rich. So put ` = 1

q , and take arbitrary
b ∈ T`, bounded and measurable U ⊂ Rn and h = (hm) ⊂ Zn with hm →∞.
The sets hm+U (m ≥ 1) differ by an integer translation. Since `q = 1, we can
unify qn adjacent steps of b to one hypercube of size 1, which is determined
by the qn function values of b at the respective steps. In this sense, our step
function b can be identified with an object in Cqn

-valued `∞. In this case
(finite-dimensional-valued `∞), we have Proposition 3.1, and so we are done
with b ∈ T1/q as well
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3.5 Bounded and uniformly continuous functions. Let BC and BUC
denote the Banach algebras of all continuous and all uniformly continuous
L∞-functions, respectively.

Proposition 3.8. Every b ∈ BUC is rich. Moreover, if Mc is a limit
operator of Mb, then c ∈ BUC as well.

Proof. Pick some arbitrary b ∈ BUC. To every ε > 0 there is a δ > 0
such that

b(x + δC) ⊂ Uε(b(x)) (x ∈ Rn). (2)

So this is true for some δ′ ∈ Q with 0 < δ′ ≤ δ as well. Consequently, there
is a step function s ∈ Tδ′ with ‖b − s‖∞ < ε which tells that TQ is dense in
BUC. Proposition 3.7 and the norm-closedness of L∞$ show that BUC ⊂ L∞$ .

Now suppose Mc is the limit operator of Mb with respect to some sequence
h = (hm) → ∞. Take an arbitrary ε > 0, and choose δ > 0 such that (2)
holds. By (2) we have oschm+U (b) ≤ 2ε (m ≥ 1) for every bounded and
measurable U ⊂ Rn with diameter not exceeding 2δ. But Lemma 3.4 then
shows that oscU (c) ≤ 2ε for every bounded and measurable U whose diameter
does not exceed 2δ, i.e. c ∈ BUC

So all uniformly continuous BC-functions are rich. But are there any more
rich functions among the others in BC? To answer this question, we first have
a look at an example of such a function in BC \BUC:

Take a real-valued continuous function f on the axis which is only sup-
ported in the intervals m2 + (− 1

m , 1
m ) (m ≥ 1) with 0 ≤ f(x) ≤ f(m2) = 1

for all x ∈ R. Clearly, Mf has no limit operator with respect to any subse-
quence of h = (m2). (But there are sequences like (m2 + m) which lead to a
limit operator of Mf . So f is not poor.) However, f is just ordinary. Indeed,
one can show that every function in BC \BUC is a little bit like f and thus:
ordinary.

Theorem 3.9. A bounded and continuous function is rich if and only if
it is uniformly continuous, BUC = BC ∩ L∞$ .

Proof. Thinking of Proposition 3.8, it remains to show that all functions
in BC\BUC are ordinary. So take a bounded and (not uniformly) continuous
function b. Since b is uniformly continuous on every compact, the reason for
its non-uniform continuity lies at infinity, i.e. there is an ε0 > 0 and a sequence
(xm) ⊂ Rn with xm →∞ and

b
(
xm +

1
m

C
)
6⊂ Uε0(b(xm)) (m ≥ 1). (3)

Now choose the integer sequence h = (hm) = ([xm]), where [y] denotes
component-wise integer parts. We will see that Mb does not possess a limit
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operator with respect to any subsequence of h. Suppose there is such a limit
operator Mc, and let U := C. Then b is uniformly continuous on every hy-
percube hm + U , and (1) shows that c is uniformly continuous on U , i.e. for
every ε > 0 there is a δ > 0 such that c(x+ δC) ⊂ Uε(c(x)) for all x ∈ U = C.
So, especially,

c((xm − hm) + δC) ⊂ Uε0/4(c(xm − hm)) (m ≥ 1).

Because of (3) , for all sufficiently large m (with 1
m ≤ δ) the functions b|hm+U

and c|U differ on a translate of δC by at least ε0
4 , which contradicts (1)

3.6 Slowly oscillating functions. Here we will study another interesting
class of functions which have the property that limit operators of their multi-
plication operators behave especially nice.

Definition 3.10. Let Sn−1 denote the unit sphere (with respect to the
Euclidian norm | · |E) of Rn. Let s ∈ Sn−1. Then we say that a sequence
(xm) ⊂ Rn tends to infinity in the direction s, and write xm →∞s as m →∞,
if for every R > 0 and every neighborhood U ⊂ Sn−1 of s there is a m0 such
that |xm|E > R and xm

|xm|E ∈ U for all m > m0.

Definition 3.11. We will say that a function f ∈ L∞ is slowly oscillating
towards ∞s and write f ∈ SOs if oscx(f) → 0 as x → ∞s. Finally, we put
SO = ∩s∈Sn−1SOs.

Lemma 3.12. Let f be some arbitrary function in L∞ and s ∈ Sn−1.
Then:

a) The following three conditions are equivalent:
(i) f ∈ SOs.
(ii) limx→∞s oscx(f) = 0.
(iii) limx→∞s oscx+U (f) = 0 for all bounded and measurable U ⊂ Rn.
b) If f is differentiable in some neighborhood of ∞s, then gradf(x) → 0

as x →∞s is sufficient for f ∈ SOs, but not necessary.

Proof. Part a). The equivalence (i) ⇐⇒ (ii) holds by Definition 3.11.
The implication (iii) ⇒ (ii) is trivial since assertion (ii) is just assertion (iii)
with U = C. The implication (ii) ⇒ (iii): If assertion (ii) holds, then we have

lim
x→∞s

oscx+U (f) = 0 (4)

for U = C and all subsets of C. If (4) holds for a set U , then it also holds for
all sets of the form t+U (t ∈ Rn) in place of U . Finally, if it holds for U = U1

and U = U2 with U1 ∩ U2 6= ∅, then it clearly holds for U = U1 ∪ U2 since
oscx+(U1∪U2)(f) ≤ oscx+U1(f) + oscx+U2(f). Taking all this together, it is
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clear that (4) holds for all bounded and measurable U . This implies assertion
(iii).

Part b) Pick some ε > 0. If gradf(x) → 0 as x → ∞s, there is some
neighborhood Vε of ∞s such that ‖gradf(x)‖∞ < ε

2n for all x ∈ Vε. But from

|f(x+u)−f(x+v)| = |gradf(ξx,u,v) ·(u−v)| < ε (u, v ∈ C, ξx,u,v ∈ x+C)

we conclude that oscx(f) ≤ ε if x ∈ Vε. This is assertion (ii).

Check the function f(x) = sin x2

x to see that f ′(x) need not tend to zero if
f ∈ SO±. Moreover, slowly oscillating functions need not even be continuous.

For instance, look at f(x) = (−1)[
√

x]

x

In what follows, we will often use property (iii) to characterize the sets
SOs. It is easy to observe that SOs is a closed subalgebra of L∞. We will now
study the set of limit operators of Mb when b is slowly oscillating.

The local operator spectrum σop
s (A) of an operator A is the set of all limit

operators Ah with h tending to infinity into direction s ∈ Sn−1. It is not
surprising that for every operator A, the identity σop(A) = ∪s∈Sn−1σop

s (A)
holds (see [3] or [9]).

Proposition 3.13. If b ∈ SOs, then the set of limit operators towards
∞s of Mb is σop

s (Mb) = {cI : c ∈ b(∞s)} where b(∞s) refers to the essential
cluster points (set of partial limits) of b at ∞s.

Proof. Pick some c ∈ b(∞s), some bounded and measurable set U ⊂ Rn

and an ε > 0. There is a sequence of points (xm) ⊂ Rn tending to ∞s and
a sequence (cm) of complex numbers cm ∈ b(xm + U) such that cm → c as
m →∞. Since U ′ = U + C is bounded and measurable and b ∈ SOs, there is
a m0 such that for every m > m0 the oscillation oscxm+U ′(b) is less than ε

2 .
If m0 is taken large enough that in addition |cm − c| < ε

2 , then

|b(xm + u)− c| ≤ |b(xm + u)− cm|+ |cm − c|
≤ oscxm+U ′(b) + |cm − c|
< ε

for all u ∈ U ′, i.e. b(xm + U ′) ⊂ Uε(c) if m > m0. Now define the sequence of
integers h = (hm) by hm = [xm]. Then hm + U is contained in xm + U ′ and,
consequently, b(hm + U) is contained in Uε(c) for all m > m0. From (1) we
get that cI is the limit operator of Mb with respect to the sequence h.

Conversely, by Lemma 3.4, it is clear that for all limit operators Mc to-
wards ∞s of Mb the local oscillation oscx(c) has to be zero at every x ∈ Rn,
i.e. c has to be a constant which is contained in the essential range of b at
∞s
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Corollary 3.14. If b ∈ SO, then σop(Mb) = {cI : c ∈ b(∞)}, where
b(∞) is the set of all partial limits of b at infinity.

Proposition 3.15. Slowly oscillating functions are rich, i.e. SO ⊂ L∞$ .

Proof. Take a b ∈ SO and an arbitrary sequence h = (hm) of integers
with hm → ∞. The partial limiting set of the local essential ranges of b in
h1, h2, ... is non-empty. So pick a complex number c in that partial limiting
set and an appropriate subsequence g of h, and proceed as in the proof of
Proposition 3.13 to show that cI is the limit operator of Mb with respect to
g

In some sense, even the reverse of Corollary 3.14 is true!

Proposition 3.16. If b ∈ L∞$ and every limit operator of Mb is a multiple
of the identity operator I, then b ∈ SO.

Proof. Let the conditions of the proposition be fulfilled, and suppose that
b 6∈ SO. Then there exist a bounded and measurable set U ⊂ Rn, an ε0 > 0
and a sequence of points (xm) ⊂ Rn tending to infinity such that for every m
the oscillation oscxm+U (b) is larger than ε0.

Now let U ′ := U + C and h = (hm) ⊂ Zn with hm = [xm]. Since
xm + U ⊂ hm + U ′, we have oschm+U ′(b) ≥ oscxm+U (b) > ε0 for all m ≥ 1.
Since b ∈ L∞$ , there is a subsequence g of h such that the limit operator of
Mb exists with respect to g = (gm). Denote this limit operator by Mc. By
Lemma 3.4 we then conclude that oscU ′(c) ≥ ε0 and hence c is certainly not
constant on U ′. So at least one limit operator of Mb is not a multiple of I
which contradicts our assumption

Denoting the set of functions b ∈ L∞, for which every limit operator of
Mb is a multiple of the identity, by

CL =
{

b ∈ L∞ : σop(Mb) ⊂ {cI : c ∈ C}
}

,

we can summarize Corollary 3.14 and Propositions 3.15 - 3.16 by the following
theorem (which is also true in its local versions at ∞s).

Theorem 3.17. A function b is slowly oscillating if and only if it is rich
and all limit operators of Mb are multiples of the identity, SO = CL ∩ L∞$ .

As a consequence, we get that every limit operator of a rich band-domina-
ted operator A is shift-invariant if and only if all multiplication operators,
which are components of A, are slowly oscillating!

3.7 Oscillating functions. In this subsection we restrict ourselves to func-
tions on the axis, i.e. n = 1. Let T denote the complex unit circle, and suppose
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f : T→ C is a bounded and non-constant function. Then for every p > 0, by
b(x) = f(exp 2πix

p ) we get a periodic function in L∞ with b(x + p) = b(x) for
all x ∈ R. In this case, b is an oscillating function with a constant frequency.

Furthermore, we will study cases of oscillating functions whose frequency
tends to zero and to infinity, respectively, and decide whether they are rich
or not. For simplicity, we will restrict our studies to the local operator spec-
trum σop

+ (Mb) at plus infinity and will therefore demand the oscillation of a
prescribed frequency only towards +∞.

So let g : R → R be a strictly monotonously increasing, differentiable
function with limx→+∞ g(x) = +∞, and put

b(x) = f
(
e2πi g(x)

)
(x ∈ R). (5)

The three cases under consideration are:

(i) g′(x) → +∞ as x → +∞ (frequency tends to infinity)
(ii) g′(x) = 1

p for all x ∈ R (constant frequency – the periodic case)

(iii) g′(x) → 0 as x → +∞ (frequency tends to zero).

Proposition 3.18. Let f be continuous on T, g subject to one of the
cases (i)− (iii) and b be as in (5). Then:

In case (i), b is always poor.
In case (ii), b is always rich with σop

+ (Mb) = {MVcb : c ∈ E}, where

E =
{
{0, 1

` , ..., k−1
` } if p = k

` ∈ Q, where gcd(k, `) = 1
[0, p) if p ∈ R \Q (6)

(so E, and consequently σop
+ (Mb), has k elements if p = k

` ∈ Q).
In case (iii), b is always rich with σop

+ (Mb) = {cI : c ∈ f(T)}.
Proof. First of all, note that f ∈ BUC(T) since T is compact. Secondly,

let e : R → T refer to the mapping t 7→ exp(2πit), which is uniformly con-
tinuous as well. Moreover, note that g is reversible, and put g−1 such that
g−1 ◦ g = id = g ◦ g−1.

In case (i), we clearly have b ∈ BC \ BUC and hence, by Proposition
3.9, b is ordinary. But moreover, by the same arguments as in the proof of
Proposition 3.9, it is readily seen that for every sequence (of reals or integers)
h = (hm) → +∞ and every bounded interval U the sequence (b|hm+U ) cannot
be a Cauchy sequence. Hence, b is even poor.

In case (ii), we obviously have b = f ◦ e ◦ g ∈ BUC since f, e, g are all
uniformly continuous. So, by Proposition 3.8, b is rich. To compute the set of
limit operators of Mb, note that V−hmMbVhm is just a multiplication by V−hmb.
But V−hmb = V−hmmod pb since b is p-periodic. For convergence of V−hmb, the
sequence (−hmmod p)∞m=1 needs to converge 1) to some value c. Conversely,

1) Without loss of generality, we suppose that b has no period less than p.
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if a sequence (cm) converges to some c, then also ‖Vcm
b − Vcb‖∞ → 0 since

b ∈ BUC.

It remains to check which values can be attained by z mod p if z ∈ Z, and
then to compute the closure of this set:

If p = k
` ∈ Q, where k, ` ∈ N have no common divisor, then the answer is

0, 1
` , ..., k−1

` .

If p is irrational, then the answer is a dense subset of [0, p) since 1 and
p are incommensurable. So the set of limits c equals [0, p). (The limit c = p
corresponds to c = 0 in terms of Vcb.)

Finally, case (iii) strongly reminds us of the slowly oscillating functions
from Subsection 3.6. Indeed, from Lemma 3.12 b) we get that g has the slowly
oscillating property towards +∞ (ignoring the unboundedness of g which is
unimportant for the proof of Lemma 3.12 b)). Since e and f are uniformly
continuous, an easy computation shows that the composition b = f ◦e◦g is in
SO+, and from Propositions 3.15 and 3.13 we get that b is rich (towards +∞)
and that every limit operator of Mb is of the form cI with c ∈ b(+∞) = f(T).
Conversely, for every c ∈ f(T) choose t ∈ [0, 1) such that f(e(t)) = c, and put
hm := [g−1(t + m)] ∈ Z. Then b(hm) → c as m →∞, and h = (hm) leads to
the limit operator (Mb)h = cI

So if f is continuous, all answers in cases (i) - (iii) are given – including an
explicit description of the operator spectra. The situation changes completely
as soon as f has a single discontinuity, say a jump at 1 ∈ T:

Case (i) remains poor which is shown similarly as in the continuous case.

Case (ii) is rich if and only if the period p is rational. (Note the incidence
with step functions of rational/irrational step length!)

Most interesting is case (iii). Here one cannot give such a precise statement
– especially not one that is independent from the exact knowledge of the
function g. To demonstrate this, we will consider g(x) = loga x, where a > 1
is fixed. The function b then jumps at every x = ak (k ≥ 0) and is continuous
at every other point (where the local oscillation outside of the jumps becomes
smaller, the closer we come to +∞).

Suppose the basis a is an integer. Then all jumps of b are at integer points
and hence, their differences are all integer. Now it is an easy observation that
there is a step function bs with step length 1 and a function b0 ∈ L∞0 (see
Subsection 3.8) such that b = bs + b0. As a sum of two rich functions, b is
rich.

Suppose a =
√

2. Then the jumps ak of b are integers for even k, and those,
where k is odd, are multiples of

√
2. So it is easily seen that the sequence

h = (hm) = ([a2m+1])m has no subsequence leading to a limit operator of Mb,
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while the sequence h = (a2m) = (2m) leads to a limit operator. So here, b is
ordinary – but not poor.

If a is a transcendent number, then the jumps of b absolutely do not fit
together modulo 1 (otherwise we had integers m1 and m2 such that am1−am2

is an integer k, i.e. a solves the equation xm1−xm2−k = 0). So no subsequence
of h = ([am])m leads to a limit operator, and hence, b is just ordinary.

For completeness, we remark that b is never poor in case (iii) (and this is
independent from the explicit structure of g) since there are many sequences
leading to limit operators, for instance, h = ([g−1(t + m)])m, where t ∈ (0, 1)
is fixed.

It is not hard to see that the results from f having one jump can be
extended to f having finitely many jumps.

Remark 3.19. In Subsections 3.4 - 3.7 we have experienced the conse-
quences of the restriction of h to integer sequences, as already discussed in
Remark 3.2. We have seen that step functions with rational step length and
(non-continuous) periodic functions with rational period are always rich while
their irrational counterparts are ordinary or even poor in general. This seems
a bit unnatural indeed since re-scaling axes a little bit will change the rich-or-
ordinary-situation completely. But note that, if we would have considered real
sequences h, no non-convergent step function and no non-continuous periodic
function would be rich at all – regardless if rational or irrational parameters.
(Take multiples of

√
2 ` or

√
2 p as elements of h, and observe that there is no

subsequence of h leading to a limit operator.)
So by restricting ourselves to integer sequences h, we are left with at least

some subclasses of rich functions in these two (practically relevant!) classes.

3.8 Admissible additive perturbations. Looking for the set of all rich
functions b which do not change anything (in terms of limit operators) when
used as additive perturbations, one easily arrives at the set of all bounded
functions vanishing at infinity,

L∞0 :=
{

b ∈ L∞ : ess sup
|x|>τ

|b(x)| → 0 as τ →∞
}

,

in short, b ∈ L∞0 if and only if b ∈ L∞ and ‖QτCb‖∞ → 0 as τ →∞.

Proposition 3.20. The function b ∈ L∞ is rich with σop(Mb) = {0} if
and only if b ∈ L∞0 .

Proof. If b ∈ L∞0 , then trivially, b is rich with all limit operators of Mb

being 0. The reverse implication follows from Proposition 3.16 and Corollary
3.14
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It is readily seen that L∞0 is a closed ideal in L∞ (and, of course, in
L∞$ ). Its elements serve as additive perturbations. For instance, instead of
studying operators of multiplication by BUC-functions, one can study such by
functions in BUC+L∞0 which essentially enlarges the class of functions under
consideration without changing the property of being rich or the structure of
any limit operator.

3.9 Slowly oscillating and continuous functions. Sometimes, the class
SOC = SO ∩ BC of slowly oscillating and continuous functions is of interest.

Proposition 3.21. A slowly oscillating and continuous function is uni-
formly continuous, SOC ⊂ BUC.

Proof. Although there is a direct proof (using lots of ε’s and δ’s), we
will do something different: By Proposition 3.15, we have SO ⊂ L∞$ . Conse-
quently, SOC = SO ∩ BC ⊂ L∞$ ∩ BC = BUC, by Theorem 3.9

SOC comes from SO by taking intersection with BC, and SO can be
derived from SOC by adding L∞0 :

Proposition 3.22. The relation SOC + L∞0 = SO holds.

Proof. If f ∈ SOC and g ∈ L∞0 , then both are in SO, and hence, f + g ∈
SO.

For the reverse inclusion, take an arbitrary f ∈ SO, and put H = [0, 1]n.
Define a function g as follows: In the integer points x ∈ Zn, let g(x) be some
value from the local essential range of f at x, and then use some interpolation
idea by setting g(x+h) a convex combination (with coefficients depending on
h ∈ H) of the function values in the 2n corners of the hypercube x + H:

g(x + h) :=
∑

v∈{0,1}n

( n∏

i=1

(1− |hi − vi|)
)

g(x + v)

where h = (hi) ∈ H and v = (vi) ∈ {0, 1}n. Then g is continuous, and
g(x + H) ⊂ conv f(x + H) for all x ∈ Zn, by our construction. Consequently,
oscx+H(g) ≤ oscx+H(f) → 0 as x → ∞, whence g ∈ SOC. Finally, from
‖(f − g)|x+H‖∞ ≤ oscx+H(f) → 0 as x → ∞ we get f − g ∈ L∞0 , whence
f ∈ SOC + L∞0

3.10 Interplay with convolution operators. The commutator of two
operators A,B is the operator AB − BA, where the operators AB and BA
are referred to as semi-commutators of A and B. Recall that convolution with
a L1-function is a bounded linear operator on every space Lp with 1 ≤ p ≤ ∞.
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In [11] Shteinberg (using somewhat different notations) studied the classes
QSC and QC of functions b for which the semi-commutators and the commu-
tators of Mb with L1-convolutions are compact, respectively, in all spaces
Lp (1 < p < ∞). This question arises since firstly, multiplication and convo-
lution operators are the essential building stones for many interesting band-
dominated operators on Lp, and secondly, compact operators are rich with
their operator spectrum being equal to {0} if 1 < p < ∞.

It turns out (see [11]) that a function b ∈ L∞ is in QSC if and only if for
each compact U ⊂ Rn,

‖b|x+U‖1 → 0 (x →∞) (7)

where ‖b|x+U‖1 denotes the L1-norm of the restriction of b to the compact
x + U . Moreover (still citing [11]), QC is a Banach subalgebra of L∞, QSC is
a closed ideal in L∞ (and hence, in QC), and both algebras are related by the
equality

QC = QSC + SOC. (8)

Actually, (8) can be refined a little bit:

Proposition 3.23. The relation QC = QSC + SO holds.

Proof. From L∞0 ⊂ QSC by (7) and both being linear spaces, we get
QSC = QSC + L∞0 . Taking this together with (8) and Proposition 3.22 we
conclude QC = QSC + SOC = QSC + L∞0 + SOC = QSC + SO

We will start with a description of limit operators for b ∈ QSC:

Proposition 3.24. If b ∈ QSC, then σop(Mb) is either {0} or ∅.
Proof. Suppose Mb has a limit operator (Mb)h = Mc. We have to show

that c = 0. For every compact U ⊂ Rn, we have ‖dm‖∞ → 0 as m → ∞ by
(1), where dm = b|hm+U − c|U . Consequently,

‖c|U‖1 ≤ ‖b|hm+U‖1 + ‖dm‖1
≤ ‖b|hm+U‖1 + (mes U)‖dm‖∞
→ 0

as m →∞ by (7). So c|U = 0 for every compact U , i.e. c = 0

Now we are in the position to describe the set of rich functions among
QSC and QC.

Theorem 3.25. The relations
a) QSC ∩ L∞$ = L∞0
b) QC ∩ L∞$ = SO
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follow.

Proof. If b ∈ QSC and b ∈ L∞$ , then σop(Mb) = {0} by Proposition 3.24,
and Proposition 3.20 tells that b ∈ L∞0 . The reverse inclusion is trivial.

If f ∈ QC∩L∞$ , then, by Proposition 3.23, we get f = g+h with g ∈ QSC

and h ∈ SO ⊂ L∞$ by Proposition 3.15. Consequently, f ∈ L∞$ implies
g = f − h ∈ L∞$ , and from assertion a) we get g ∈ L∞0 ⊂ SO. So g, h ∈ SO,
whence f = g + h ∈ SO. For the reverse inclusion, recall Propositions 3.23
and 3.15

Having this theorem, we will try to find alternative descriptions of QSC

and QC. Clearly, QSC contains L∞0 . But it is strictly larger, as it also contains
functions b with property (7) and

‖b|x+U‖∞ 6→ 0 (x →∞). (9)

We will refer to functions which are subject to (7) and (9) as noise. A
typical example of a noise function is the characteristic function of the set
∪∞m=1[m,m + 1

m ] for n = 1. The set of all noise functions will be denoted by
N .

Lemma 3.26. We have QSC = L∞0 ] N where ] denotes the union of
two disjoint sets.

Proof. This is trivial: The set of functions subject to (7) decomposes
into those fulfilling (7) and (9), which is N , and those fulfilling (7) and not
(9), which is L∞0

Corollary 3.27. Noise is never rich, N ∩ L∞$ = ∅.

Proof 1. Use Lemma 3.26 and Theorem 3.25 a)

Proof 2. Conversely, suppose b ∈ N is rich. Take an integer sequence
h = (hm) tending to infinity with ‖b|hm+C‖∞ being bounded away from zero.
But from Proposition 3.24 we know that (Mb)h = 0, which clearly contradicts
(1)

For a concise description of QSC and QC, put N0 := N ∪ {0}.

Theorem 3.28. QSC and QC decompose into a rich and a noisy part by
] and by +:

a) QSC = L∞0 ]N b) QC = SO ] (SO +N ).

c) QSC = L∞0 +N0 d) QC = SO +N0.
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Proof. The proof of Assertion a) is a repetition of that of Lemma 3.26.
Considering Assertion b), we recall Proposition 3.23 a) and L∞0 ⊂ SO to get

QC = QSC + SO

= (L∞0 ∪N ) + SO

= (L∞0 + SO) ∪ (N + SO)

= SO ∪ (N + SO).

Clearly, SO and SO+N are disjoint since the earlier functions are always rich
by Proposition 3.15, and the latter are always ordinary by Proposition 3.15
and Corollary 3.27.

Now Assertion c) follows from Assertion a) and N = N + L∞0 by

QSC = L∞0 ∪N = L∞0 ∪ (L∞0 +N ) = L∞0 + (N ∪ {0}),

and Assertion d) follows from Assertion b) by

QC = (SO +N ) ∪ SO = SO + (N ∪ {0}).

Thus the theorem is proved

We conclude this journey by a simple corollary:

Corollary 3.29.
a) If b ∈ QSC and (Mb)h = Mc exists, then c = 0.
b) If b ∈ QC and (Mb)h = Mc exists, then c = const.

Proof. The proof of Assertion a) is a repetition of that of Proposition
3.24, and Assertion b) follows from Theorem 3.28 b) and Corollary 3.14
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