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Explicit Upper Bound for Entropy Numbers
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Abstract. We give an explicit upper bound for the entropy numbers of the em-
bedding I : W r,p(Ql) → C(Ql) where Ql = (−l, l)m ⊂ Rm, r ∈ N, p ∈ (1,∞) and
rp > m.
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1. Introduction

It is a well known fact that the embedding I : W r,p(Ω) → C(Ω) is compact if
Ω is a bounded domain in Rm with Lipschitz boundary, r ∈ N, p ∈ (1,∞) and
rp > m.

Birman and Solomyak [1] proved that the entropy numbers of this embed-
ding satisfy ek(I) ∼ k−

r
m if Ω is a cube (see Section 2 for the definition of

entropy numbers). They have used this fact in a study of the spectrum of inte-
gral operators and nonsmooth elliptic boundary value problems. For the history
and properties of entropy numbers we refer the reader to the books [2] and [4].

Sometimes it is not enough to know that there is C > 0 such that ek(I) ≤
Ck−

r
m ; further knowledge of the value of C can be useful. For example, Cucker

and Smale [3] ask for an explicit bound on C in the case of the embedding of
the fractional Sobolev space Hs(Ω) in C(Ω) (recall that Hs(Ω) = W s,2(Ω) if
s ∈ N). Our aim is to find an explicit upper bound for the entropy numbers of
the embedding I : W r,p((−l, l)m) → C([−l, l]m) if l > 0, r ∈ N, p ∈ (1,∞) and
rp > m. In Theorem 6.2 we give explicit values of constants α = α(r, p, m, l) > 0
and β = β(r, p, m, l) > 0 such that

ek

(
I : W r,p((−l, l)m) → C([−l, l]m)

)
≤ α

(k − β)
r
m

if k > β. This gives an answer to Cucker and Smale’s question when s is a
natural number and Ω is a cube. Our proof follows the ideas of Birman and
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Solomyak [1]. We do not claim that the upper bound we obtain is sharp in its
dependence on r, m and p.

2. Preliminaries

By Ql we will always denote a cube (−l, l)m. Throughout the paper we will
use letters Q and ∆ only for cubes and the term cube only for open cubes with
sides parallel to the coordinate axes. The closure of a set A ⊂ Rm is denoted
by A. We say that a set of cubes Θ = {Q1, . . . , Qn} forms a partition of a cube
Q if Qi are pairwise disjoint and

⋃n
i=1 Qi = Q.

Given any Banach space X we use the notation BX for its unit ball (i.e.
BX = {x ∈ X : ||x||X < 1}). Suppose that Y is a Banach space and A ⊂ Y is
a bounded domain. The entropy numbers of the set A are defined by

εi(A) = inf{ε > 0 : A ⊂
i⋃

j=1

(yj + εBY ), yj ∈ Y }, i ∈ N .

Let T : X → Y be a bounded linear mapping between two Banach spaces. The
entropy numbers εi(T )of this mapping are defined by εi(T ) = εi(T (BX)). We
also define the dyadic entropy numbers by ek(T ) = ε2k−1(T ) for k ∈ N as usual.
We write dre for the upper integer part of a number r > 0 (i.e. for the smallest
i ∈ N such that r ≤ i).

Given any continuous function f from the cube U = (−1, 1)m ⊂ Rm to R,
the following substitution formula is true :∫

U

f(x) dx =

∫
∂U

∫ 1

0

rm−1f(rs) dr dHm−1(s) . (2.1)

By #S we denote the number of elements of the set S and by |A| we denote
the Lebesgue measure of a set A ⊂ Rm. Let N0

m denote the subset of Rm

which is formed by the elements with non-negative integer components. An
element α = [α1, . . . , αm] ∈ Nm

0 is called a multi-index and the length of α is
|α| = α1 + . . . + αm. If x ∈ Rm and α ∈ Nm

0 then

α! = α1! · · ·αm! and xα = xα1
1 · · ·xαm

m .

We shall need that

#{α ∈ N0
m : |α| = r} =

(
r + m− 1

m− 1

)
. (2.2)

This follows from the fact that there is a one to one correspondence between
such multi-indices and the number of variants to choose m − 1 balls from the
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row of r +m− 1 balls. Number α1 corresponds to the number of balls from the
beginning to the first chosen ball, number α2 corresponds to the the number of
balls between the first and the second chosen ball, and so on. It follows that
for every r ≥ m we have

#{β ∈ N0
m : βi ≥ 1, |β| = r}

= #{α ∈ N0
m : |α| = r −m} =

(
r − 1

m− 1

)
.

(2.3)

Given r ∈ N and p ∈ (1,∞) we will denote by W r,p(Ω) the corresponding
Sobolev space. This space is equipped with the norm

||u||pW r,p(Ω) =
∑
|α|≤r

∫
Ω

|Dαu|p .

Suppose that r ∈ N, p ∈ (1,∞), rp > m and Ω ⊂ Rm is a bounded domain
with Lipschitz boundary. It is a well-known fact that for any u ∈ W r,p(Ω) there
exists ũ ∈ C(Ω) such that u = ũ almost everywhere on Ω. In the whole paper
we will use only this representative which is defined and continuous on Ω. For
p ∈ (1,∞) we denote its conjugate index by p∗ = p/(p − 1) (i.e. 1

p
+ 1

p∗
= 1).

Given a function u ∈ W r,p(Ω) we define Np(u, r, Ω) by

(Np(u, r, Ω))p =
∑
|α|=r

∫
Ω

|Dαu|p .

We shall need the following bound for the entropy numbers of the unit ball
in a finite-dimensional space from [2, page 9].

Lemma 2.1. Suppose that E is a real k-dimensional Banach space. Then for
all i ∈ N

i−1/k ≤ εi(BE) ≤ 4i−1/k .

3. Semi-additive functions

Let the non-negative function J(Q) of cubes Q ⊂ Ql be lower semi-additive, i.e.
for every cube Q ⊂ Ql and for any partition of Q into cubes Qj we have∑

j

J(Qj) ≤ J(Q) .

By J we will always denote only those non-negative lower semi-additive func-
tions. Let us be given J , a partition Θ of Ql into cubes and a > 0. We set

Ga(J, Θ) = max
∆∈Θ

|∆|aJ(∆) .
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Lemma 3.1. Let s ∈ N, a > 0, xj ≥ 0 and yj ≥ 0 for j ∈ {1, . . . , s}. Suppose
that b > 0 is such that

s∑
j=1

xj ≤ 1,
s∑

j=1

yj ≤ 1 and xjy
a
j ≥ b

for every j ∈ {1, . . . , s}. Then b ≤ s−(a+1).

Proof. From

s
√

x1 · · ·xs ≤
x1 + . . . + xs

s
≤ 1

s
and s

√
y1 · · · ys ≤

y1 + . . . + ys

s
≤ 1

s

it follows that

bs ≤ x1 · · ·xn(y1 · · · ys)
a ≤ s−ss−as .

Theorem 3.1. Suppose that J is a non-negative lower semi-additive function
such that J(Ql) ≤ 1. Then for every n ∈ N we can find a partition Θ of Ql into
cubes such that #Θ ≤ n and

Ga(J, Θ) ≤ c1n
−(a+1) where c1 =

(
22m

1− 2−
ma

(a+1)

)a+1

|Ql|a . (3.1)

Proof. We will construct a sequence of partitions Θi of Ql by induction. Set
Θ0 = {Ql}. In the (i + 1)-th step we will divide each cube ∆ ∈ Θi satisfying

|∆|aJ(∆) ≥ 2−maGa(J, Θi) (3.2)

into 2m equal cubes. Now, Θi+1 consists of undivided cubes from Θi and of the
new cubes which were created by the division.

Let ni = #Θi, δi = Ga(J, Θi), and by si we will denote the number of cubes
from Θi which satisfy (3.2). Plainly n0 = 1 and

ni+1 ≤ 2mni . (3.3)

If we divide a cube ∆ into 2m equal cubes ∆j, then obviously

max
j
|∆j|aJ(∆j) ≤ 2−ma|∆|aJ(∆) . (3.4)

Thanks to (3.2) and (3.4) we obtain

δi+1 ≤ 2−maδi . (3.5)

Now let us focus on those si cubes ∆j which are divided in the (i + 1)-th step.
Set xj = J(∆j), yj = |∆j|/|Ql| for j ∈ {1, . . . , si} and b = 2−maδi|Ql|−a. Thanks



Explicit Upper Bound for Entropy Numbers 225

to
∑si

j=1 J(∆j) ≤ J(Ql) ≤ 1,
∑si

j=1 |∆j| ≤ |Ql| and (3.2) we obtain from Lemma
3.1 that

δi ≤ 2mas
−(a+1)
i |Ql|a . (3.6)

From the construction it follows that

nj+1 = nj + sj(2
m − 1)

for every j ∈ N0, and therefore

ni ≤ 2m

i−1∑
j=0

sj (3.7)

for every i ∈ N. For a fixed t ∈ N we obtain from (3.5) and (3.6) that for every
0 ≤ i ≤ t we have

si ≤ 2−(t−i−1) ma
a+1 δ

− 1
a+1

t |Ql|
a

a+1 .

Together with (3.7) this implies

nt ≤ 2m
( t−1∑

j=0

2−(t−j−1) ma
a+1

)
δ
−1
a+1

t |Ql|
a

a+1 ≤ 2m 1

1− 2
−ma
a+1

δ
− 1

a+1

t |Ql|
a

a+1 .

Hence (3.1) gives us

δi ≤ c12
−m(a+1)n

−(a+1)
i (3.8)

for every i ∈ N. For i = 0 this inequality is obvious. Given n ∈ N, we can find
i ∈ N such that ni ≤ n < ni+1 ≤ 2mni thanks to (3.3). Thus #Θi ≤ n and
(3.8) gives us

Ga(J, Θi) = δi ≤ c12
−m(a+1)n

−(a+1)
i ≤ c1n

−(a+1) .

4. Polynomial approximations

For a cube ∆ ⊂ Rm we denote by Pr(∆) the set of all polynomials on ∆ of degree
less or equal to (r − 1). By Pr(∆, M) we will denote the set of all polynomials
v ∈ Pr(∆) such that ||v||C(∆) < M .

Given partition Θ of Ql, we denote by Pr(Θ) the set of functions g such
that g ∈ Pr(∆) for every ∆ ∈ Θ. That is, on every cube from the partition the
function is possibly a different polynomial of degree less or equal to (r − 1).

Definition 4.1. For any cube ∆ ⊂ Rm and for any u ∈ W r,p(∆) we define

(P∆u)(x) =
χ∆(x)

|∆|
∑

|α|≤r−1

∫
Rm

χ∆(y)
(x− y)α

α!
Dαu(y) dy .

for every x ∈ ∆. Plainly P∆u ∈ Pr(∆).
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Following the ideas from [4, Lemma 6.1, page 289] we compute the constant
in the approximation of a function u ∈ W r,p(∆) by P∆u.

Lemma 4.1. Let r ∈ N, p ∈ (1,∞) and rp > m. For every cube ∆ ⊂ Rm and
for every u ∈ W r,p(∆) we have

||u− P∆u||C(∆) ≤ c2|∆|
r
m
− 1

p Np(u, r, ∆)

where

c2 =
r

m

2
m
p∗(

p∗( r
m
− 1

p
)
) 1

p∗

(∑
|α|=r

1

(α!)p∗

) 1
p∗

(4.1)

Proof. Transformation of coordinates gives us that, without loss of generality,
we can suppose ∆ = (−1

2
, 1

2
)n (i.e. |∆| = 1). Since Cr(∆) is dense in W r,p(∆)

and

un
W r,p(∆)−→ u =⇒

 un
C(∆)−→ u

P∆un
C(∆)−→ P∆u


it is sufficient to prove the lemma only for u ∈ Cr(∆). By Taylor’s formula we
have for every x ∈ ∆ that

u(x)− (P∆u)(x) (4.2)

=
χ∆(x)

|∆|
∑
|α|=r

r

α!

∫
Rm

χ∆(y)

∫ 1

0

(1− τ)r−1(x− y)αDαu (y + τ(x− y)) dτdy .

We shall write the above expression as
∑

|α|=r
r
α!

Fα(x). The substitution τ̃ =

(1− τ) and z = (x− y)τ̃ gives us

|Fα(x)| ≤ χ∆(x)

∫
Rm

∫ 1

0

χ∆

(
x− z

τ̃

) |zα|
τ̃m+1

|Dαu(x− z)| dτ̃ dz . (4.3)

If x ∈ ∆ and x− z
τ̃
∈ ∆, then x− z = τ̃(x− z

τ̃
) + (1− τ̃)x ∈ ∆. From |xi| ≤ 1

2

and |xi − zi

τ̃
| < 1

2
it follows that | zi

τ̃
| < 1. Therefore,

χ∆(x)χ∆(x− z

τ̃
) ≤ χ∆(x− z)χ2∆(

z

τ̃
),

and hence (4.3) gives us

|Fα(x)| ≤
∫

Rm

(∫ 1

0

|zα|
τ̃m+1

χ2∆

(z

τ̃

)
dτ̃

)
χ∆(x− z)|Dαu(x− z)| dz . (4.4)

We shall write the right hand side as [gα∗(χ∆|Dαu|)](x). Denote U = (−1, 1)m =
2∆. For any z ∈ Rm \{0} we can find a unique s = s(z) ∈ ∂U and ρ = ρ(z) > 0
such that z = ρs.
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Clearly, for τ̃ < ρ(z) we have z
τ̃

/∈ U . This property and χU( z
τ̃
) ≤ χU(z) for

τ̃ < 1 give us

gα(z) =

∫ 1

ρ

|zα|τ̃−m−1χU

(z

τ̃

)
dτ̃

≤ 1

m

((1

ρ

)m

− 1
)
ρ|α||sα|χU(z)

≤ 1

m
ρr−m|sα|χU(z) .

Thanks to (2.1) we obtain

||gα||p
∗

Lp∗ (Rm)
≤ m−p∗

∫
U

ρp∗(r−m)(z)|sα(z)|p∗ dz

≤ m−p∗
∫

∂U

|sα|p∗
∫ 1

0

ρ(r−m)p∗+m−1 dρ dHm−1(s)

=
m−p∗

(r −m)p∗ + m

∫
∂U

|sα|2 dHm−1(s)

≤ m−p∗

(r −m)p∗ + m
Hm−1(∂U)

=
m−p∗

mp∗( r
m
− 1 + 1

p∗
)

2m 2m−1

=
m−p∗2m

p∗( r
m
− 1

p
)

.

(4.5)

From (4.2), (4.4), Hölder’s inequality and (4.5) we have

|u(x)− P∆u(x)| ≤
∑
|α|=r

r

α!
|Fα(x)|

≤
∑
|α|=r

r

α!
||gα||Lp∗ (Rm)||χ∆Dαu||Lp(Rm)

≤ r

m

2
m
p∗(

p∗( r
m
− 1

p
)
) 1

p∗

(∑
|α|=r

1

α!
||Dαu||Lp(∆)

)
≤ r

m

2
m
p∗(

p∗( r
m
− 1

p
)
) 1

p∗

(∑
|α|=r

1

(α!)p∗

) 1
p∗

Np(u, r, ∆)

= c2Np(u, r, ∆) ,

which proves the assertion.
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Remark 1. It is possible to have a more explicit bound for c2 since∑
|α|=r

1

(α!)p∗
≤
∑
|α|=r

1

α!
=

mr

r!
.

The last equality can be proved by induction with respect to m. Denote
A(r, m) =

∑
|α|=r

1
α!

. Plainly P (r, 1) = 1
r!
. For m > 1 we have

P (r, m) =
r∑

i=0

1

i!
P (r − i, m− 1)

=
r∑

i=0

r!

r!

1

i!(r − i)!
(m− 1)r−i

=
1

r!

r∑
i=0

(
r

r − i

)
(m− 1)r−i

=
mr

r!
.

On the other hand, this bound is not very sharp, and for given values of r, m
and p the sum is better to compute .

Definition 4.2. Given u ∈ W r,p(Ql) and a partition Θ of Ql, we define

(PΘu)(x) = (P∆)(x)

for every ∆ ⊂ Θ and x ∈ ∆. Plainly PΘu ∈ Pr(Θ).

Theorem 4.1. Let r ∈ N, p ∈ (1,∞) and rp > m. For every n ∈ N and for
every u ∈ W r,p(Ql) such that Np(u, r, Ql) ≤ 1 there is a partition Θ of Ql such
that #Θ ≤ n and

||u− PΘu||L∞(∆) ≤ c2c
1
p

1 n−
r
m .

Proof. For every partition of Ql into cubes ∆j we can use Lemma 4.1 to obtain

||u− P∆j
u||C(∆j) ≤ c2|∆j|

r
m
− 1

p Np(u, r, ∆j) .

The function

J(∆) = (Np(u, r, ∆))p =
∑
|α|=r

∫
∆

|Dαu|p (4.6)

is clearly non-negative and lower semi-additive. Hence, we can use Theorem 3.1
for a = pr

m
− 1 to obtain the partition Θ such that #Θ ≤ n and

||u− P∆u||C(∆) ≤ c2

(
|∆|aNp

p (u, r, ∆)
) 1

p ≤ c2c
1
p

1 n−
(a+1)

p (4.7)

for every ∆ ∈ Θ.
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5. Auxiliary estimate of covering numbers

In this section we prove that it is possible to cover the unit ball of W r,p(Ql) by
a finite number of balls in C(Ql).

Lemma 5.1. Let Q ⊂ Rm be a cube and P = Pr(Q,M). Let this set be
equipped with the supremum norm as in C(Q). Then, for every ε < M the
following estimate holds for the number of elements in an optimal ε-net:

Nε(P ) ≤
⌈

4M

ε

⌉c3

where c3 =

(
r − 1 + m

m

)
(5.1)

Proof. Without loss of generality, we can suppose that M = 1. On the Banach
space E of polynomials on Q of degree less or equal to r − 1 we use a norm
||.||C(Q). From (2.2) we obtain that the dimension of this space is equal to

#{α ∈ N0
m : |α| ≤ r − 1} = #{α ∈ N0

m+1 : |α| = r − 1} =

(
r − 1 + m

m

)
= c3

Clearly, for n = d4
ε
ec3 we have 4n

−1
c3 ≤ ε and therefore we can cover the unit

ball by n balls of diameter ε in view of Lemma 2.1.

We will need an estimate of the norm of the embedding I : W r,p(Ql) →
C(Ql).

Lemma 5.2. Suppose that r ∈ N, p ∈ (1,∞) and rp > m. Then for every
u ∈ W r,p(Ql) it holds

||u||
C(Ql)

≤ c4||u||W r,p(Ql) (5.2)

where

c4 = c2|Ql|
r
m
− 1

p +
( ∑
|α|≤r−1

1

(α!)p∗

) 1
p∗

max
(
|Ql|−

1
p , |Ql|

(r−1)
m

− 1
p

)
. (5.3)

Proof. By Lemma 4.1 we have

||u||
C(Ql)

≤ ||u− PQlu||
C(Ql)

+ ||PQlu||
C(Ql)

≤ c2|Ql|
r
m
− 1

p ||u||W r,p(Ql) + ||PQlu||
C(Ql)

.
(5.4)

From Definition 4.1 and Hölder’s inequality we obtain for every x ∈ Ql that



230 S. Hencl

|PQlu(x)| ≤ 1

|Ql|
∑

|α|≤r−1

∣∣∣∣∫
Ql

(x− y)α

α!
Dαu(y) dy

∣∣∣∣
≤ 1

|Ql|
∑

|α|≤r−1

(2l)|α|

α!
|Ql|

1
p∗

(∫
Ql

|Dαu|p
) 1

p

≤ max
(
|Ql|−

1
p , |Ql|

(r−1)
m

− 1
p

)( ∑
|α|≤r−1

1

(α!)p∗

) 1
p∗ ||u||W r,p(Ql),

(5.5)

which shows the assertion.

Remark 2. Using Remark 1 it is possible to have the more explicit bound

∑
|α|≤r−1

1

(α!)p∗
≤

r−1∑
i=0

∑
|α|=i

1

α!
=

r−1∑
i=0

mi

i!
≤ em .

Lemma 5.3. Let r ∈ N, p ∈ (1,∞) and rp > m. Put ε̃0 = 2c2|Ql|
r
m
− 1

p . Then,
there are functions fi ∈ C(Ql), i ∈ {1, . . . , c5} such that

BW r,p(Ql) ⊂
c5⋃

i=1

(
fi + ε̃0BC(Ql)

)
where

c5 =

⌈
8 +

4

c2

( ∑
|α|≤r−1

1

(α!)p∗

) 1
p∗

max
(
|Ql|−

r
m , |Ql|−

1
m

)⌉(r−1+m
m )

. (5.6)

Proof. Suppose that u ∈ BW r,p(Ql). From Lemma 4.1 and Lemma 5.2 we have

|PQlu| ≤ |PQlu− u|+ |u| ≤ c2|Ql|
r
m
− 1

p + c4 .

Hence, we obtain from Lemma 5.1 that the set

{PQlu : ||u||W r,p(Ql) ≤ 1}

has an ε̃0

2
-set in C(Ql) of cardinality at most

C =

⌈
8c2|Ql|

r
m
− 1

p + 8c4

ε̃0

⌉c3

.

By Lemma 4.1

|PQlu− u| ≤ c2|Ql|
r
m
− 1

p =
ε̃0

2
,
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and therefore this set serves as an ε̃0-set for BW r,p(Ql) as well. By (5.3), (5.1)

and ε̃0 = 2c2|Ql|
r
m
− 1

p we obtain

C =

⌈
8 +

4

c2

( ∑
|α|≤r−1

1

(α!)p∗

) 1
p∗

max
(
|Ql|−

r
m , |Ql|−1/m

)⌉(r−1+m
m )

,

which proves the assertion.

6. Main result

In this section we give an explicit upper bound for the entropy numbers of the
embedding I : W r,p(Ql) → C(Ql).

Theorem 6.1. Let r ∈ N, p ∈ (1,∞), rp > m and ε > 0. There are N(ε) ∈ N
and fi ∈ L∞(Ql), i ∈ {1, . . . , N(ε)} such that

BW r,p(Ql) ⊂
N(ε)⋃
i=1

(
fi + εBL∞(Ql)

)
log2 N(ε) ≤ log2 c5 + c

m
r
10ε

−m
r

(6.1)

where

c10 = 2c2
22r(

1− 2−m(1−m
pr

)
) 2r

m

|Ql|
r
m
− 1

p

(
2 + (r + 4)

(
r − 1 + m

m

)) r
m

. (6.2)

Proof. We will use results and notation from the previous sections. Set a =
pr
m
− 1 and define J by formula (4.6). For a given u ∈ W r,p(Ql) we construct a

sequence of partitions Θi of Ql as described in the proof of Theorem 3.1. Set

c6 = c12
−m(a+1) =

(
2m

1− 2−
ma

(a+1)

)a+1

|Ql|a . (6.3)

Along with the characteristic numerical sequences ni = #Θi and δi = Ga(J, Θi)
= max∆∈Θi

|∆|aJ(∆) we also introduce the sequence

δ̃i = c6 min
0≤j≤i

(
2−am(i−j)n

−(a+1)
j

)
, i ∈ N0 . (6.4)

From the definition of the numbers δ̃i it follows that

na+1
j ≤ c6δ̃

−1
i 2−am(i−j) for 0 ≤ j ≤ i . (6.5)
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In addition, from (3.8), (3.5), (6.3) and (6.4) we have

δi ≤ δ̃i ≤ c6n
−(a+1)
i . (6.6)

The sequence δ̃i is more regular than δi since

2−(a+1)mδ̃i ≤ δ̃i+1 ≤ 2−amδ̃i . (6.7)

From (6.4) it follows that

δ̃i+1 = min
(
2−amδ̃i, c6n

−(a+1)
i+1

)
.

The right-hand side inequality in (6.7) follows immediately. The left-hand side
inequality has to be verified only in the case

δ̃i+1 = c6n
−(a+1)
i+1 ≥ 2−(a+1)mδ̃i

which follows easily from (3.3) and (6.6).

Now let ν be a fixed number such that 0 < ν < c6. To each semi additive
function J we associate the number k = k(J, a, ν) ∈ N determined by the
condition

δ̃k < ν ≤ δ̃k−1 . (6.8)

Let Ta(J, ν) denote the segment {Θi}k
i=1. We unite in one class those (and only

those) functions J for which the sequences Ta(J, ν) coincide. The number of
classes into which we divide the set of all semi-additive functions will be denoted
by N(a, ν).

Lemma 6.1. For ν ∈ (0, c6)

log2 N(a, ν) ≤ c7ν
−(a+1)−1

where

c7 =
2m

1− 2−
ma

(a+1)

(
2m +

1

1− 2−
ma

(a+1)

)
|Ql|

a
a+1 . (6.9)

Proof. First we estimate the number N1(a, ν) of more ’extensive’ classes which
unite in one those functions J for which the actual sequences of partitions
Ta(J, ν) do not necessarily coincide but for which the corresponding numerical
sequences {ni}k

i=1, k = k(J, a, ν) do coincide. If we apply (3.3), (6.5) with
i = j = k − 1 and (6.8) we obtain

na+1
k ≤ 2m(a+1)na+1

k−1 ≤ 2m(a+1)c6δ̃
−1
k−1 ≤ 2m(a+1)c6ν

−1 . (6.10)

Let n? denote the integer part of the number 2m(c6ν
−1)(a+1)−1

. The equality

n? + 1 = 1 +
k∑

i=1

(ni − ni−1) + (n? + 1− nk)
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associates to each sequence Ta(J, ν) a representation of the number n? as a sum
of k + 1 positive integer terms. By (2.3) the number of such representations is(

n?−1
k

)
< 2n?−1. Thus

log2 N1(a, ν) < n? ≤ 2m(c6ν
−1)(a+1)−1

. (6.11)

Now let the sequence {ni}k
i=1 be fixed. We find an estimate of the number of

distinct sequences of partitions {Θi}k
i=1 = Ta(J, ν) for which #Θi = ni for every

i ∈ {0, . . . , k}. To do this we note that for a given partition Θi the partition
Θi+1 is uniquely determined by knowing which si cubes are further divided upon
formation of Θi+1. The number of possibilities here is

(
ni

si

)
< 2ni . After k steps

this gives us a total range of possibilities numbering less than 2n0+...+nk−1 .

From (6.5) for i = k − 1 and (6.8) we obtain for j = 0, . . . , k − 1 that

nj ≤ (c6ν
−1)(a+1)−1

2−am(k−1−j)/(a+1)

which implies the inequality

n0 + . . . + nk−1 ≤ (c6ν
−1)(a+1)−1

[1− 2−am/(a+1)]−1 = n̂ . (6.12)

Therefore, N(a, ν) ≤ N1(a, ν)2n̂, (6.11), (6.12) and (6.3) give us

log2 N(a, ν) ≤ log2 N1(a, ν) + n̂

≤ c
(a+1)−1

6

(
2m +

1

1− 2−
am
a+1

)
ν−(a+1)−1

= c7ν
−(a+1)−1

,

which finishes the proof of Lemma 6.1.

Continuation of the proof of Theorem 6.1. Recall that a = pr
m
− 1 and

that J is defined by (4.6). Since we are interested only in u ∈ BW r,p(Ql) we have
Np(u, r, Ql) ≤ 1, and therefore we can use the inequality (4.7) from the proof
of Theorem 4.1. From the left-hand side inequality in (4.7), the definition of δi

and (6.6) we have

||u− PΘi
u||L∞(Ql) ≤ c2δ

1
p

i ≤ c2δ̃
1
p

i (6.13)

for every i ∈ N0.

For a fixed ε > 0 we set

ν =

(
ε

2c2

)p

. (6.14)

First let us suppose that ν < c6 and define k = k(J, a, ν) by (6.8). We unite
in one class those functions u for which the sequences Ta(J, ν) coincide. The
number of such classes is estimated by Lemma 6.1 :

log2 N(a, ν) ≤ c7

(
2c2

ε

)m
r

. (6.15)
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We select one of those classes (denoting it by K) and construct an ε-net for it.
First we note that the numbers ni and δ̃i, i = 0, . . . , k (but not the numbers δi)
coincide for all functions in K.

We will construct the ε-net in L∞(Ql) by induction. We set εi = 2c2δ̃
1
p

i for
i = 0, . . . , k. Suppose that in the i-th step we have constructed for the set K
an εi-net of cardinality Ni contained in Pr(Θi). Let u ∈ K and let w ∈ Pr(Θi)
be the element of the εi-net for which ||u−w||L∞(Ql) ≤ εi. Then (6.13) gives us

||PΘi+1
u−w||L∞(Ql) ≤ ||PΘi+1

u− u||L∞(Ql) + ||u−w||L∞(Ql) ≤ c2δ̃
1
p

i+1 + εi ≤ 2εi .

Thus, in each cube ∆ ∈ Θi+1 the function PΘi+1
u − w belongs to the set

Pr(∆, 2εi). By virtue of Lemma 5.1, definition of εi and the left-hand side
inequality in (6.7) this set has an ( εi+1

2
)-net whose cardinality does not exceed

the number ⌈
16εi

εi+1

⌉c3

≤ 2(r+4)c3 = c8 (6.16)

where c3 =
(

r−1+m
m

)
. Therefore, the set {PΘi+1

u : u ∈ K} has an ( εi+1

2
)-net

which is contained in Pr(Θi+1) and whose cardinality satisfies

Ni+1 ≤ c
ni+1

8 Ni . (6.17)

By (6.13) the same net serves as an εi+1-net for the set K. In this way, starting
from ε0-net, we construct an εk-net with cardinality Nk for the set K. By the
definition of εk, (6.8) and (6.14) this is also an ε-net. By (3.3) and (6.12) it
holds

Nk ≤ N0c
n1+...+nk
8 ≤ N0c

2m(n0+...+nk−1)
8 ≤ N0c

2mn̂
8 .

Clearly, (6.12), (6.14) and (6.3) give us 2mn̂ = c9ε
−m

r where

c9 = 2mc
(a+1)−1

6

1

1− 2−
am
a+1

(2c2)
p

a+1

=

(
2m

1− 2−
am
a+1

)2

|Ql|
a

a+1 (2c2)
m
r .

(6.18)

From definition of ε0, (6.4), n0 = 1 and (6.3) we obtain

ε0 = 2c2δ̃
1
p

0 = 2c2c
1
p

6 ≥ 2c2|Ql|
r
m
− 1

p .

Therefore, N0 ≤ c5 in view of Lemma 5.3. Now we combine the estimate

Nk ≤ c5c
c9ε−

m
r

8

which we have obtained for each of the classes with the estimate (6.15) for the
number of classes to obtain

log2 N(ε) ≤ log2 c5 + (log2 c8)c9ε
−m

r + c7(2c2)
m
r ε−

m
r . (6.19)
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Let us return to the case ν ≥ c6. Then (6.14) and (6.3) give us

ε ≥ 2c2c
1
p

6 ≥ 2c2|Ql|
r
m
− 1

p .

Due to Lemma 5.3 we have N(ε) ≤ c5, and hence (6.19) is valid also if ν ≥ c6.

Now we can use the definition of the constants involved, namely (6.9),
(6.16), (6.18), (5.1), a = pr

m
− 1 and (6.2) to obtain(

c7(2c2)
m
r + (log2 c8)c9

) r
m

≤ 2c2|Ql|
ar

(a+1)m

(
2

(
2m

1− 2−
ma

(a+1)

)2

+ (r + 4)c3

(
2m

1− 2−
ma

(a+1)

)2
) r

m

= c10 ,

which completes the proof of Theorem 6.1.

Finally we can state our main result. The values of constants c10, c5 and c2

are given by (6.2), (5.6) and (4.1). Recall that dxe denotes the upper integer
part of a number x > 0. By Remark 1 and Remark 2 it is possible to have
bounds not involving sums.

Theorem 6.2. Let r ∈ N, p ∈ (1,∞), rp > m and k > 1 + log2 c5. Then

ek

(
I : W r,p(Ql) → C(Ql)

)
≤ 2c10

(k − 1− log2 c5)
r
m

.

Proof. Given ε > 0, fix fi ∈ L∞(Ql), i ∈ {1, . . . , N(ε)} as in (6.1) and choose

f̃i ∈ Ai := (fi + εBL∞(Ql)) ∩ C(Ql) .

If Ai = ∅, then set fi ≡ 0. Since every function from W r,p(Ql) is in C(Ql) we
obtain from (6.1) that

BW r,p(Ql) ⊂
N(ε)⋃
i=1

(
f̃i + 2εB

C(Ql)

)
(6.20)

Now the definition of dyadic entropy numbers and the relation k > 1 + log2 c5

give us

ek(I : W r,p(Ql) → C(Ql)) ≤ inf{ε > 0 : N(ε/2) ≤ 2k−1}

≤ inf{ε > 0 : log2 c5 + c10

m
r ε−

m
r 2

m
r ≤ k − 1}

=
2c10

(k − 1− log2 c5)
r
m

and proves the assertion.
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There are several known ways how to extend a function from a domain with
Lipschitz boundary, and the explicit norm of the extension is known in some
cases (see [5]). The next theorem gives us a bound for the entropy numbers
of the embedding I : W r,p(Ω) → C(Ω) if we know the norm of the extension
operator.

Theorem 6.3. Let r ∈ N, p ∈ (1,∞), rp > m, k > 1 + log2 c5 and Ω ⊂
Ql ⊂ Rm. Suppose that there exists a linear extension operator E : W r,p(Ω) →
W r,p(Ql) of norm c11, i.e.

||Ef ||W r,p(Ql) ≤ c11||f ||W r,p(Ω)

for every f ∈ W r,p(Ω), and moreover Ef = f on Ω. Then

ek(I : W r,p(Ω) → C(Ω)) ≤ c11
2c10

(k − 1− log2 c5)
r
m

.

Proof. For every function f ∈ BW r,p(Ω) we have Ef ∈ c11BW r,p(Ql). By multi-
plying both sides of (6.20) by c11 we see that there is an i ∈ {1, . . . , N(ε)} such
that

||f − c11f̃i||C(Ω) ≤ ||Ef − c11f̃i||C(Ql)
< c112ε .

Therefore, analogously to the proof of the previous theorem we obtain the de-
sired bound for entropy numbers.

Acknowledgement. The author wishes to express his thanks to Professor
David Edmunds for suggesting the problems and for many stimulating con-
versations.

References

[1] Birman, M. S. and M. Z.Solomyak: Quantitative analysis in Sobolev imbedding
theorems and applications to spectral theory. Amer. Math. Soc. Transl. 114
(1980)(2), 1 – 132.

[2] Carl, B. and I. Stephani: Entropy, Compactness and the Approximation of
Operators. Cambridge: Cambridge University Press 1990.

[3] Cucker, F. and S. Smale: On the mathematical foundations of learning. Bulletin
of the American Mathematical Society 39 (2001), 1 – 49.

[4] Edmunds, D. E. and W. D. Evans: Spectral Theory and Differential Operators.
New York: Oxford University Press 1987.

[5] Mikhlin, S. G.: Constants in Some Inequalities of Analysis. Chichester: John
Wiley & Sons 1986.

Received 14.01.2004


