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A Global Bifurcation Theorem
for Convex-Valued Differential Inclusions

S. Domachowski and J. Gulgowski

Abstract. In this paper we prove a global bifurcation theorem for convex-valued
completely continuous maps. Basing on this theorem we prove an existence theorem
for convex-valued differential inclusions with Sturm-Liouville boundary conditions

u′′(t) ∈ ϕ(t, u(t), u′(t)) for a.e. t ∈ (a, b)

l(u) = 0

)
.

The assumptions refer to the appropriate asymptotic behaviour of ϕ(t, x, y) for |x|+
|y| close to 0 and to +∞, and they are independent from the well known Bernstein-
type conditions. In the last section we give a set of examples of ϕ satisfying the
assumptions of the given theorem but not satisfying the Bernstein conditions.

Keywords: Differential inclusions, Sturm-Liouville boundary conditions, global bi-
furcation
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1. Global bifurcation theorem

Let E be a real Banach space, A ⊂ R an open interval and cf(E) the family
of all non-empty, closed, bounded and convex subsets of E. We call a map
F : A×E → cf(E) completely continuous if F is upper semicontinuous and,
for any bounded set B ⊂ A× E, the set F (B) ⊂ E is relatively compact.

Let F : A × E → cf(E) be a completely continuous map such that
0 ∈ F (λ, 0) for λ ∈ A and let f : A× E → cf(E) be given by

f(λ, x) = x− F (λ, x). (1.1)

We call (µ0, 0) ∈ A×E a bifurcation point of the map f if for all open subsets
U ⊂ A × E with (µ0, 0) ∈ U there exists a point (λ, x) ∈ U such that x 6= 0
and 0 ∈ f(λ, x). Let us denote the set of all bifurcation points of f by Bf .
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Let Rf ⊂ A×E be the closure (in A×E) of the set of non-trivial solutions
of the inclusion 0 ∈ f(λ, x), i.e.

Rf =
{
(λ, x) ∈ A× E : x 6= 0 and 0 ∈ f(λ, x)

}
.

Let us observe that, for each (λ, x) ∈ Rf , 0 ∈ f(λ, x).
Let U ⊂ E be a bounded open subset and let the map g : U → cf(E) be

given by g(x) = x − G(x), where G : U → cf(E) is a completely continuous
map such that, for x ∈ ∂U , the relation x 6∈ G(x) holds. It is well known that
in such situation we may define the Leray-Schauder degree deg(g, U, 0) (cf. [2,
3, 8, 17, 19]).

For each λ satisfying (λ, 0) 6∈ Bf there exists an r0 > 0 such that, for ‖x‖ =
r ∈ (0, r0], the relation x 6∈ F (λ, x) holds. So the value deg

(
f(λ, ·), B(0, r), 0

)
is defined. Assume that for an interval [a, b] ⊂ A there exists a δ > 0 such
that ((

[a− δ, a) ∪ (b, b + δ]
)× {0}) ∩ Bf = ∅.

Then we may define the bifurcation index s[f, a, b] of the map f with respect
to the interval [a, b] as

s[f, a, b] = lim
λ→b+

deg
(
f(λ, ·), B(0, r), 0

)− lim
λ→a−

deg
(
f(λ, ·), B(0, r), 0

)

where r = r(λ) > 0 is small enough.

Now we are going to give some auxiliary lemmas, which will be used in
the proof of the global bifurcation theorem below. We are going to use a
separation lemma for closed subsets of compact Hausdorff spaces given in [9]
(see also [24: Section XI]).

Lemma 1. Assume that X, Y are closed subsets of a compact Hausdorff space
K and that there does not exist a connected set S ⊂ K such that S ∩X 6= ∅
as well as S ∩ Y 6= ∅. Then there exists a separation K = Kx ∪ Ky with
Kx ∩Ky = ∅ such that X ⊂ Kx and Y ⊂ Ky and both Kx and Ky are open
and closed in K.

An immediate consequence of Lemma 1 is the following

Proposition 1. Let the map f : A × E → cf(E) be given by (1.1) and let
[a, b] ⊂ A be an interval such that ([a, b]× {0}) ∩ Bf 6= ∅. Further, let C0 be a
compact component of the set R = Rf∪([a, b]×{0}) such that [a, b]×{0} ⊂ C0.
Then there exists an open and closed set K0 ⊂ R such that

C0 ⊂ K0 ⊂ (c, d)×B(0, R) ⊂ [c, d]×B(0, R) ⊂ A× E.
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Now we are going to give a generalization of Ize’s lemma (cf. [14] and [20:
Lemma 3.4.2]) to convex-valued completely continuous vector fields. For this
let the function ρ(·, [a, b]) : R→ [0, +∞) be given by

ρ(λ, [a, b]) =

{
a− λ for λ < a
0 for λ ∈ [a, b]
λ− b for λ > b.

Lemma 2. Let the map f : A×E → cf(E) be given by (1.1) and let [a, b] ⊂ A
be an interval such that Bf ⊂ [a, b] × {0}. Then there exists an ε0 > 0 such
that for all ε ∈ (0, ε0] there is an r0 > 0 so that the map

fr,ε : Ur,ε → cf(R× E)

fr,ε(λ, x) =
{
(‖x‖2 − r2, y) : y ∈ f(λ, x)

}

with
Ur,ε =

{
(λ, x) ∈ R× E : ‖x‖2 + ρ2(λ, [a, b]) < r2 + ε2

}

is a completely continuous vector field and

deg(fr,ε, Ur,ε, 0) = −s[f, a, b] (r ∈ (0, r0]).

The proof of the lemma is a modification of that given in [12] for the
single-valued case and [a, b] = {λ0}. It is enough to replace the function
d(λ) = |λ − λ0| by d(λ) = ρ(λ, [a, b]). For an overview of this technique see
also [15: Remark 1.5].

Theorem 1. Let the map f : A× E → cf(E) be given by (1.1) and assume
that there exists an interval [a, b] ⊂ A such that Bf ⊂ [a, b]×{0} and s[f, a, b] 6=
0. Then there exists a non-compact component C ⊂ Rf satisfying C ∩Bf 6= ∅.
Proof. As consequence of the homotopy property of the topological degree
and s[f, a, b] 6= 0 we have ([a, b]×{0})∩Bf 6= ∅. Let C0 be a component of the
set R = Rf ∪ ([a, b] × {0}) such that [a, b] × {0} ⊂ C0. Assume further that
C0 is compact. By Proposition 1 there exists a bounded open and closed set
K ⊂ R such that C0 ⊂ K. So there exists a bounded and open set U ⊂ A×E
satisfying K ⊂ U and (R \ K) ∩ U = ∅. Hence for (λ, x) ∈ ∂U and r > 0
we have 0 6∈ fr(λ, x). Moreover, for any r1, r2 > 0 the maps fr1 and fr2 may
be joined by homotopy. We can see as well that for large R > 0 the map fR

has no zeroes in U so that deg(fr, U, 0) = 0 for r > 0. There exist ε > 0 and
r1 > 0 such that Ur1,ε ⊂ U . Further, by Lemma 2 there exists r′ ∈ (0, r1]
such that deg(fr′ , Ur′,ε, 0) = −s[f, a, b]. Of course, Ur′,ε ⊂ U .

Because Bf ⊂ [a, b]×{0} and U is bounded, there exists a number r2 > 0
such that 0 6∈ f(λ, x) for (λ, x) ∈ U with 0 < ‖x‖ ≤ r2 and ρ(λ, [a, b]) ≥ ε.
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Let r ∈ (0, min{r′, r2}). Then Ur,ε ⊂ U . Hence, if 0 ∈ fr(λ, x) then ‖x‖ =
r < r2 and ρ(λ, [a, b]) < ε. Then we have ‖x‖2 + ρ2(λ, [a, b]) < r2 + ε2 and
(λ, x) ∈ Ur,ε. Consequently, we have the implication

(λ, x) ∈ U \ Ur,ε =⇒ 0 6∈ fr(λ, x).

That is why we have deg(fr, Ur,ε, 0) = deg(fr, U, 0) and the contradiction

0 = deg(fr, U, 0) = deg(fr, Ur,ε, 0) = −s[f, a, b] 6= 0.

Because of this contradiction there exists a non-compact component C0 ⊂
Rf ∪ ([a, b]×{0}). What we are going to prove now is that there exists a non-
compact component C of Rf such that C∩Bf 6= ∅. Of course, such component
has to satisfy C ⊂ C0.

At the beginning let us denote by Γ the family of all components γ of Rf

such that γ ∩ Bf 6= ∅. Further, let G =
⋃

γ∈Γ γ. We can observe that G ⊂ C0.
We are going to show that there exists a γ ∈ Γ such that γ is not compact.
But first assume, contrary to our claim, that each γ ∈ Γ is compact.

Let us now take B = (c, d)×B(0, R) such that

[a, b]× {0} ⊂ B ⊂ B ⊂ A×E,

let us denote by ΓB the family of all that components γ of Rf ∩B for which
γ ∩ Bf 6= ∅ and let us also denote GB =

⋃
γ∈ΓB

γ. We can see that Bf ⊂ GB .
We are going to show that GB is a closed subset of Rf ∩ B. For this let
{(λn, xn)} ⊂ GB be a sequence such that (λn, xn) → (λ0, x0) ∈ Rf ∩ B and
let γn ∈ ΓB be such that (λn, xn) ∈ γn. Assume, contrary to our claim, that
(λ0, x0) 6∈ GB . Then x0 6= 0 and the component γ0 of Rf ∩ B containing
(λ0, x0) is such that γ0 ∩ Bf = ∅. In this case we may apply Lemma 1 to
the case of K = Rf ∩ B, X = {(λ0, x0)} and Y = Bf . Then there exist sets
Kx, Ky ⊂ K open and closed in K such that

(λ0, x0) ∈ Kx, Bf ⊂ Ky, Kx ∩Ky = ∅, K = Kx ∪Ky.

Because for large n ∈ N the relation γn ∩Kx 6= ∅ holds and γn ∩Ky 6= ∅, this
contradicts the connectedness of γn.

Now we are going to consider the following two situations:
(i) There exists B0 = (c, d)×B(0, R) such that [a, b]× {0} ⊂ B0 ⊂ B0 ⊂

A× E and G ⊂ B0.
(ii) There exists a sequence {γn} ⊂ Γ such that, for each B = (c, d) ×

B(0, R) satisfying [a, b] × {0} ⊂ B ⊂ B ⊂ A × E, the relation γn 6⊂ B holds
for n ∈ N large enough.
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Let us first assume that (i) holds and let CB0
0 be a component of C0 ∩B0

such that [a, b] × {0} ⊂ CB0
0 . Of course, we have GB0 ⊂ CB0

0 . By Lemma 1,
in this case CB0

0 ⊂ B0 and there must be also C0 ⊂ B0, what contradicts that
C0 is not compact. So we can assume that there exists (λ0, x0) ∈ ∂B0 ∩ CB0

0 .
We can apply Lemma 1 for K = Rf ∩ B0, X = {(λ0, x0)} and Y = Bf .
Because (λ0, x0) 6∈ GB0 , there does not exist a component γ of K such that
(λ0, x0) ∈ γ and γ ∩ Bf 6= ∅. Then by Lemma 1, there exist open and closed
sets Kx,Ky ⊂ K such that

(λ0, x0) ∈ Kx, Bf ⊂ Ky, Kx ∩Ky = ∅, Kx ∪Ky = K.

This implies that there exist an r > 0 such that Kx ∩ ([a, b] × B(0, r)) = ∅.
Hence

Kx ∩ (Ky ∪ ([a, b]× {0})) = ∅
Kx ∪ (Ky ∪ ([a, b]× {0})) = K ∪ ([a, b]× {0})

and both Kx and Ky ∪ ([a, b]×{0}) are open and closed in K ∪ ([a, b]×{0}).
But the set CB0

0 ⊂ K ∪ ([a, b]× {0}) is connected and

CB0
0 ∩Kx 6= ∅

CB0
0 ∩ (Ky ∪ ([a, b]× {0}) 6= ∅

what gives the contradiction.
In this case the situation (ii) holds true. Let us fix any B as given in

(ii) and let γ̃n ∈ ΓB be such that γ̃n ⊂ γn and (λn, xn) ∈ γ̃n ∩ ∂B. Because
xn ∈ F (λn, xn), we may assume that there exists a subsequence of (λn, xn)
converging to (λ0, x0). As we observed before, (λ0, x0) ∈ GB . So there exists
a component γ̃0 ∈ ΓB such that (λ0, x0) ∈ γ̃0. Let γ0 ∈ Γ be such that
γ̃0 ⊂ γ0. From our general assumption γ0 is compact. By Proposition 1 there
exists an open and closed set K ⊂ Rf such that γ0 ⊂ K ⊂ B0 for some
B0 = (c, d)×B(0, R0) so that B0 ⊂ B0 ⊂ A×E. But for n ∈ N large enough
the relations K ∩ γn 6= ∅ and γn 6⊂ B0 hold. This gives γn ∩ K 6= ∅ and
γn ∩ (Rf \K) 6= ∅, what contradicts the connectedness of γn.

So both (i) and (ii) cannot hold what implies that there exists γ ∈ Γ which
is not compact.

The existence of components (in the single-valued case) emanating from
bifurcation points was studied by Krasnoselskii (see [16]). The global bifurca-
tion theorem for the single-valued case was proved by Rabinowitz in [23] (see
also [9]) in the following version:

Theorem A. Let L : E → E be a compact linear map, let H : R × E → E
be a compact and continuous map such that H(λ, u) = o(‖u‖) for u near
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0 uniformly on bounded λ intervals, and let the map f : R × E → E be
given by f(λ, u) = u − λL(u) − H(λ, u). Then, if µ is an eigenvalue of L
of odd multiplicity, then Rf posseses a maximal subcontinuum Cµ such that
(µ, 0) ∈ Cµ and Cµ either

(i) meets infinity in R× E
or

(ii) meets (µ̂, 0), where µ 6= µ̂ and µ̂ is an eigenvalue of L.

The proof of Theorem 1 follows the ideas of complementing the map in-
troduced by Ize (see [14], but also [20: Section 3.4]). The original version
of the Rabinowitz theorem found numerous generalizations and modifications
(for an overview see [4, 15]). The single-valued version of the global bifurca-
tion theorem is probably most similar to what is proved in [18: Theorem 2.5].
Theorem 1 is not only a generalization of [18: Theorem 2.5] to convex-valued
maps, but also gives stronger results (it gives the existence of the component
of Rf instead of the component of Rf ∪ ([a, b]× {0})).

The convex-valued case was already considered by the authors in [1] for
a much more general situation of parameter space of dimension greater than
1. The authors gave there sufficient conditions for the existence of a global
bifurcation branch emanating from (0, 0). In Theorem 1 we focus on the
case of scalar parameters but, on the other hand, we do not assume that the
bifurcation points are isolated in the set of all bifurcation points.

2. Existence theorem for convex-valued
differential inclusion

In this section we need the following notations. For x = (x1, ..., xk) ∈ Rk

we write |x| =
∑k

i=1 |xi| and call x non-negative (and write x ≥ 0) when
x1, ..., xk ≥ 0. Let the map p : Rk → Rk be given by

p(x1, ..., xk) = (η1|x1|, ..., ηk|xk|)
where η1, ..., ηk ≥ 0 and η2

1 + ... + η2
k > 0, let ‖ · ‖0 be the supremum norm in

C[a, b] and let ‖·‖k be the norm in C1([a, b],Rk) given by ‖u‖k =
∑k

i=1(‖ui‖0+
‖u′i‖0) for u = (u1, ..., uk) ∈ C1([a, b],Rk).

Let us recall that a multi-valued map ϕ : [a, b]× Rk × Rk → cf(Rk) is a
Carathéodory map if the map ϕ(·, x, y) : [a, b] → cf(Rk) is measurable for all
(x, y) ∈ R2k, the map ϕ(t, ·, ·) : R2k → cf(Rk) is upper semicontinuous for all
t ∈ [a, b], and for each R > 0 there exists an integrable function mR ∈ L1(a, b)
such that{∀ w ∈ L1((a, b),Rk)

∀ (x, y) ∈ R2k

∀ t ∈ [a, b]

}
:

{
|x|+ |y| ≤ R

w(t) ∈ ϕ(t, x, y)

}
=⇒ |w(t)| ≤ mR(t).
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In this section we will give sufficient conditions for the existence of the solution
of the boundary value problem

u′′(t) ∈ ϕ
(
t, u(t), u′(t)

)
for a.e. t ∈ (a, b)

l(u) = 0

}
(2.1)

where ϕ : [a, b] × Rk × Rk → cf(Rk) is a Carathéodory map and the map
l : C1([a, b],Rk) → Rk × Rk is given by

l(u1, ..., uk) =
(
l1(u1), ..., lk(uk)

)
(2.2)

where lj(uj) =
(
uj(a) sin αj − u′j(a) cos αj , uj(b) sin βj + u′j(b) cos βj

)
with

αj , βj ∈ [0, π
2 ] and α2

j + β2
j > 0 (j = 1, ..., k). It is well known (cf. [13:

Theorem XI.4.1]) that with the boundary value problem

u′′i (t) = hi(t) for a.e. t ∈ (a, b)

li(ui) = 0

}
(2.3)

we may associate a continuous map Ti : L1(a, b) → C1[a, b] such that Ti(hi) =
ui if and only if ui ∈ C1[a, b], u′i : [a, b] → R1 is absolutely continuous and ui

is a solution of problem (2.3).
Consider the map

T : L1((a, b),Rk) → C1([a, b],Rk)

T (u1, ..., uk) = (T1u1, ..., Tkuk).

We can see that

u = Th ⇐⇒
{

u′′(t) = h(t) for a.e. t ∈ (a, b)

l(u) = 0

for h ∈ L1((a, b),Rk). The map T has the following properties:
- For the Niemytzki operator Φ : C1([a, b],Rk) → cf(L1((a, b),Rk)) associ-

ated with ϕ and given by

Φ(u) =
{

w ∈ L1((a, b),Rk) : w(t) ∈ ϕ(t, u(t), u′(t))
}

(2.4)

the superposition T ◦ Φ : C1([a, b],Rk) → cf(C1([a, b],Rk)) is completely
continuous (cf. [22: Proposition 3.6]).
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- For u, v ∈ C([a, b],Rk) such that l(u) = l(v) = 0 we have

〈Tu, v〉 = 〈u, Tv〉 (2.5)

where 〈u, v〉 =
∫ b

a

( ∑k
i=1 ui(t)vi(t)

)
dt (cf. [13: Theorem XI.4.1]).

- (Maximum principle, cf. [21: Chapter 1/Theorem 2]) If the functions
u ∈ C2([a, b],Rk) and h ∈ C([a, b],Rk) satisfy

u′′(t) = h(t) for a.e. t ∈ (a, b)

l(u) = 0

}
(2.6)

and h ≤ 0, then u ≥ 0.
Before state the existence theorem we must refer to some spectral prop-

erties of the linear single-valued problem

u′′(t) + λu(t) = 0 for t ∈ (a, b)

l(u) = 0

}
. (2.7)

It is obvious that µ ∈ R is an eigenvalue of problem (2.7) if and only if there
exists j ∈ {1, ..., k} such that µ is an eigenvalue of the scalar problem

u′′j (t) + λuj(t) = 0 for t ∈ (a, b)

lj(uj) = 0

}
. (2.7)j

It is well known (cf [13: Theorem XI.4.1]) that there exists exactly one eigen-
value µj ∈ R of problem (2.7)j , for which there exists an eigenvector vµj such
that vµj (t) > 0 for t ∈ (a, b), and then µj > 0. Let us observe that then
uµj = (0, ..., vµj , ...0) is the eigenvector of problem (2.7) associated with the
eigenvalue µj .

Lemma 3. Assume that (λ, u) ∈ (0, +∞)×C1([a, b],Rk) is a solution of the
problem

u′′(t) + λp(u(t)) = 0 for t ∈ (a, b)

l(u) = 0

}
(2.8)

and u 6= 0. Then λ ∈ Λ =
{

µi

ηi
: ηi > 0

}
.

Proof. Let us first observe that Λ 6= ∅. By the maximum principle, for each
(λ, u) ∈ (0, +∞) × C1([a, b],Rk) being a solution of problem (2.8) we have
u ≥ 0. So, for i = 1, ..., k,

u′′i (t) + ληiui(t) = 0 for t ∈ (a, b)

li(ui) = 0

ui ≥ 0





.

If ηi = 0, then there must be ui = 0. On the other hand, for ηi > 0 the only
λ > 0 for which u 6= 0 equals λ = µi

ηi
.
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Before we state the existence theorem let us assume that a Carathéodory
map ϕ : [a, b]× Rk × Rk → cf(Rk) satisfies the following two conditions:

∀ ε > 0 ∃ δ > 0 such that

|x|+ |y| ≤ δ

∀ (x, y) ∈ R2k

}
=⇒

{
ϕ(t, x, y) ⊂ B

(−m1p(x), ε(|x|+ |y|))

∀ t ∈ [a, b]





(2.9)

∀ ε > 0 ∃ R > 0 such that

|x|+ |y| ≥ R

∀ (x, y) ∈ R2k

}
=⇒

{
ϕ(t, x, y) ⊂ B

(−m2p(x), ε(|x|+ |y|))

∀ t ∈ [a, b].





(2.10)

where m1, m2 > 0 are constants.

Theorem 2. Let the map l : C1([a, b],Rk) → Rk × Rk be given by (2.2), let
Λ =

{
µi

ηi
: ηi > 0

}
and let ϕ : [a, b] × Rk × Rk → cf(Rk) be a Carathéodory

map satisfying (2.9)− (2.10) with constants m1,m2 > 0 such that

min{m1, m2} < min Λ ≤ maxΛ < max{m1,m2}.
Then there exists a non-trivial solution of the Sturm-Liouville problem (2.1).

Proof. Let us denote m = min{m1, m2} and M = max{m1,m2}, let ν >
max Λ

m be a fixed constant, let q1, q2 : (0, +∞) → [0,+∞) be continuous maps
forming a partition of unity associated with the open cover {(0, 2ν), (ν, +∞)}
of the interval (0, +∞), and let us define the Carathéodory map

ψ : [a, b]× Rk × Rk × (0, +∞) → cf(Rk)

ψ(t, x, y, λ) = q1(λ)λϕ(t, x, y)− q2(λ)λm2p(x).

Let us now consider the differential inclusion

u′′(t) ∈ ψ(t, u(t), u′(t), λ) a.e. on (a, b)

l(u) = 0

}
. (2.11)

We can see that (λ, u) ∈ (0,+∞)×C1([a, b],Rk) is a solution of this problem
if and only if u ∈ TΨ(λ, u), where

Ψ : (0, +∞)× C1([a, b],Rk) → cf(L1((a, b),Rk))

Ψ(λ, u) =
{

w ∈ L1((a, b),Rk) : w(t) ∈ ψ(t, u(t), u′(t), λ) for a.e. t ∈ [a, b].
}

Let us also observe that, because ν > 1, a pair (1, u) is a solution of problem
(2.11) if and only if u is a solution of problem (2.1). Consider the map

f : (0,+∞)× C1([a, b],Rk) → cf(C1([a, b],Rk))

f(λ, u) = u− TΨ(λ, u)
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and let
P : C1([a, b],Rk) → L1((a, b),Rk)

P (u)(t) = p(u(t))

denote the Niemytzki map for the map p. The proof of Theorem 2 will be
given now in three steps.

Step 1. We are going to show that Bf ⊂
{(

λ
m1

, 0
)

: λ ∈ Λ
}
. For this

let us take a sequence {(λn, un)} ⊂ (0, +∞) × C1([a, b],Rk) of non-trivial
solutions of problem (2.11) such that λn → λ0 ∈ [0,+∞) and un → 0. We
have

un ∈ q1(λn)λnT
(
Φ(un) + m1P (un)

)− λnT
(
m1q1(λn) + m2q2(λn)

)
P (un).

Let us denote vn = un

‖un‖k
. Then

vn ∈ q1(λn)λnT
Φ(un) + m1P (un)

‖un‖k
− λnT

(
(m1q1(λn) + m2q2(λn)

)
P (vn)).

By (2.9) we have Φ(un)+m1P (un)
‖un‖k

→ {0} (in the Hausdorff metric). Because
the sequence

{(
m1q1(λn)+m2q2(λn)

)
P (vn)

}
is bounded, there exists a subse-

quence of {vn} convergent to v0 ∈ C1([a, b],Rk), where ‖v0‖k = 1. So letting
n → +∞ we get v0 = −λ0T

((
m1q1(λ0) + m2q2(λ0)

)
P (v0)

)
and

v′′0 (t) + λ0

(
m1q1(λ0) + m2q2(λ0)

)
p(v0(t)) = 0 for a.e. t ∈ (a, b)

l(u) = 0

}
.

So, by Lemma 3,
(
m1q1(λ0) + m2q2(λ0)

)
λ0 ∈ Λ. No matter what is the value

of λ0 we have m1q1(λ0)+m2q2(λ0) ∈ [m,M ]. So λ0 ≤ max Λ
m < ν what implies

m1λ0 ∈ Λ and finishes the proof of Step 1.
Step 2. We will now show that s

[
f, min Λ

m1
, max Λ

m1

]
= −1. For this, first

let us observe that for λ 6∈ {
λ

m1
: λ ∈ Λ

}
there exists r > 0 such that by (2.9)

the map
f(λ, ·) : B(0, r) → cf(C1([a, b],Rk))

is homotopic to the map

f̄(λ, ·) : B(0, r) → cf(C1([a, b],Rk))

f̄(λ, u) = u + λ
(
m1q1(λ) + m2q2(λ)

)
TP (u).

We can see also that the map

f̄(λ, ·) : B(0, r) → C1([a, b],Rk)
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for λ ≥ ν may be joined by homotopy with the map

f0(λ, ·) : B(0, r) → C1([a, b],Rk)

f0(λ, u) = u + λm1TP (u).

Let the homotopy

h : [0, 1]×B(0, r) → C1([a, b],Rk)

h(τ, u) = u + λ
(
τm1q1(λ) + m2τq2(λ) + (1− τ)m1

)
TP (u)

be given. Similarly to what we showed in Step 1 of this proof, for any non-
trivial zero of the homotopy h, there must be

λ
(
τm1q1(λ) + m2τq2(λ) + (1− τ)m1

) ∈ Λ

what, having
(
τm1q1(λ) + m2τq2(λ) + (1 − τ)m1

) ≥ (1 − τ)m1 + τm ≥ m,

implies λ ≤ max Λ
m and contradicts λ ≥ ν. On the other hand, for λ < ν we

have f̄(λ, ·) = f0(λ, ·).
Let r > 0 and λ0 ∈ (0, min Λ

m1
) be fixed. We will show that

f0(λ0, ·) : B(0, r) → C1([a, b],Rk)

may be joined by homotopy with the identity map. Let a homotopy be
given by h(τ, u) = u + λ0τTm1P (u). We can conclude from Lemma 3 that
(λ0τ, 0) 6∈ Bf for τ ∈ [0, 1]. That is why we have no non-trivial zeros of
h(τ, u) = 0. Hence, by homotopy property of topological degree, we have
deg

(
f0(λ0, ·), B(0, r), 0

)
= 1.

Assume now that λ0 ∈ (max Λ
m1

,+∞) and let i ∈ {1, ..., k} be such that
ηi > 0 and uµi = −µiTuµi with uµi,i(t) > 0 for t ∈ (a, b) where uµi,i is the
i-th coordinate of uµi . We will show that for λ0 the map f0(λ0, ·) may be
joined by homotopy on B(0, r) with the map

f1 : B(0, r) → C1([a, b],Rk)

f1(u) = f0(λ0, u)− uµi .

A homotopy h : [0, 1]×B(0, r) → C1([a, b],Rk) is given by

h(τ, u) = f0(λ0, u)− τuµi .

Assume now that for ‖u‖k ≤ r and τ ∈ (0, 1] the equality h(τ, u) = 0 holds
and

u + λ0m1TP (u)− τuµi = 0

u + T
(
λ0m1P (u) + τµiuµi

)
= 0.
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So we have

u′′(t) + λ0m1p(u(t)) + τµiuµi
(t) = 0 for a.e. t ∈ (a, b)

l(u) = 0

}

what, by the maximum principle, gives u ≥ 0 and, consequently, pi(ui) = ηiui.
Since ui = −λ0Tim1ηiui + τuµi,i and also

〈ui, uµi,i〉 = −λ0〈Tim1ηiui, uµi,i〉+ τ〈uµi,i, uµi,i〉
= −λ0〈m1ηiui, Tiuµi,i〉+ τ〈uµi,i, uµi,i〉
=

λ0m1ηi

µi
〈ui, uµi,i〉+ τ〈uµi,i, uµi,i〉

we have
µi −miηiλ0

µi
〈ui, uµi,i〉 = τ〈uµi,i, uµi,i〉 > 0.

Because uµi,i ≥ 0 and ui ≥ 0, it must be also µi > m1ηiλ0 what contradicts
the assumption λ0 > max Λ

m1
≥ µi

ηim1
.

If τ = 0, then h(τ, ·) = f0(λ0, ·) and h(0, u) = 0 if and only if f0(λ0, u) = 0.
Because mλ0 6∈ Λ, f0(λ0, u) = 0 implies u = 0. Hence the homotopy h
has no non-trivial zeroes. Also, h(1, ·) has no zeroes at all and that is why
deg

(
f0(λ0, ·), B(0, r), 0

)
= 0. So Step 2 is proved.

Step 3. Let us observe that by Theorem 1 there exists a non-compact
component C ⊂ Rf . Now we are going to show that there exists a sequence
{(λn, un)} ⊂ C such that ‖un‖k → +∞ and λn → λ0 ∈

{
λ

m2
: λ ∈ Λ

}
.

Because the set C is not compact, there exists a sequence {(λn, un)} ⊂ C
such that λn → 0, or λn → +∞, or ‖un‖k → +∞. We are going to show that
there must be ‖un‖k → +∞.

First, let us assume that λn → 0 and that {‖un‖k} is bounded. In this
case, for almost all n ∈ N, the relation un ∈ λnTΦ(un) holds and consequently
un → 0. As we showed in Step 1, un → 0 and λn → λ0 implies that λ0 ∈{

λ
m1

: λ ∈ Λ
}

what contradicts λn → 0.
Now let us consider the case λn → +∞. Then, for almost all n ∈ N, if

un 6= 0, then there must be q2(λn) = 1 and un = λnTm2P (un). By Lemma 3
there is λn ∈

{
λ

m2
: λ ∈ Λ

}
what contradicts λn → +∞.

So we may assume that ‖un‖k → +∞ and λn → λ0 ∈ (0, +∞). Now we
are going to prove that in such situation λ0 ∈

{
λ

m2
: λ ∈ Λ

}
. Indeed, we can

see that

un ∈
{

λnq1(λn)T
(
Φ(un) + m2P (un)

)− λnTm2P (un)

λnq1(λn)T Φ(un)+m2P (un)
‖un‖k

− λnTm2P (vn)
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where vn = un

‖un‖k
. We are going to show that for all ε > 0 there exists N ∈ N

such that

T
Φ(un) + m2P (un)

‖un‖k
⊂ B(0, ε) (n > N).

For this, let ε > 0 be fixed. By (2.10) there exists R > 0 such that for
|un(t)|+ |u′n(t)| ≥ R the relation

ϕ(t, u(t), u′(t)) + m2p(u(t))
|u(t)|+ |u′(t)| ⊂ B(0, ε)

holds. Let mR ∈ L1(a, b) be an integrable function such that




∀w ∈ L1((a, b),Rk)
∀x ∈ Rk

∀y ∈ Rk

∀ t ∈ [a, b]





:

{ |x|+ |y| ≤ R

w(t) ∈ ϕ(t, x, y)

}
=⇒ |w(t)| ≤ mR(t).

Let us now take any w ∈ L1((a, b),Rk) such that

w(t) ∈ ϕ
(
t, un(t), u′n(t)

)
+ m2p(un(t))

‖un‖k
(t ∈ [a, b])

and consider the two situations

|un(t)|+ |u′n(t)| ≤ R

|un(t)|+ |u′n(t)| > R.

For them we have respectively |w(t)| ≤ mR(t)
‖un‖k

and

ϕ
(
t, un(t), u′n(t)

)
+ m2p(un(t))

‖un‖k

=
ϕ
(
t, un(t), u′n(t)

)
+ m2p(un(t))

|un(t)|+ |u′n(t)| · |un(t)|+ |u′n(t)|
‖un‖k

|w(t)| ∈ ϕ
(
t, un(t), u′n(t)

)
+ m2p(un(t))

|un(t)|+ |u′n(t)| · |un(t)|+ |u′n(t)|
‖un‖k

⊂ B(0, ε).

So for n ∈ N big enough and any t ∈ [a, b] we have |w(t)| < max
{
ε, mR(t)
‖un‖k

}
what shows that

T
Φ(un) + m2P (un)

‖un‖k
⊂ B

(
0, ε‖T‖(b− a)

)
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with ‖T‖ denoting the norm of the map T : L1((a, b),Rk) → C1([a, b],Rk).
Let us observe that, because of the compactness of T , we may assume that

vn → v0, where v0 6= 0. Hence, letting n → +∞ we get v0 = −λ0Tm2P (v0)
what results in λ0 ∈ { λ

m2
: λ ∈ Λ}. Further, let us observe that the assump-

tions of the theorem imply that { λ
m : λ ∈ Λ} ⊂ (1, +∞) and { λ

M : λ ∈ Λ} ⊂
(0, 1). As a consequence of Steps 1 and 3 of this proof we can see that the
connected set C contains pairs (λ1, u) and (λ2, u) with λ1 < 1 and λ2 > 1.
That is why we can conclude that there exists (1, u) ∈ C. For such a solution
of the inclusion 0 ∈ f(λ, u) there must be u 6= 0 because (1, 0) 6∈ Rf .

3. Examples and remarks

In this section we will give some applications of Theorem 2 to the convex-
valued boundary value problems

u′′(t) ∈ ϕ(t, u(t), u′(t)) for a.e. t ∈ (0, 1)

u(0) = u(1) = 0

}
(3.1)

u′′(t) ∈ ϕ(t, u(t), u′(t)) for a.e. t ∈ (0, 1)

u(0) = u′(1) = 0

}
. (3.2)

Let us remind that the topological transversality method of Granas and a
priori bounds technique have been used to existence theorems for the above
second order differential equations (inclusions) [6, 7, 10, 11]. The fundamental
assumption there, which guaranteed the bound of zeros of the homotopy join-
ing suitable vector fields associated with the boundary value problem, were
the following Bernstein conditions:

(H1) There exists a constant R > 0 such that if |x0| > R and y0 ∈ Rk, then
there is a δ > 0 such that

ess inf
t∈[a,b]

inf
{
〈x,w〉+ |y|2 : w ∈ ϕ(t, x, y), (x, y) ∈ B((x0, y0), δ)

}
> 0

where B((x0, y0), δ) =
{
(x, y) ∈ Rk × Rk : |x− x0|+ |y − y0| < δ

}
.

(H2) There is a function Φ : [0,+∞) → [0,+∞) such that the function
s → s

Φ(s) is in L∞loc[0, +∞),
∫ +∞
0

s
Φ(s) ds = +∞, |ϕ(t, x, y)| ≤ Φ(y) for

a.e. t ∈ [a, b] and all (x, y) with |x| + |y| ≤ R where R is given in
condition (H1).

(H3) There exist constants k, α > 0 such that |ϕ(t, x, y)| ≤ 2α(〈x,w〉 +
|y|2)+k for a.e. t ∈ [a, b], all (x, y) with |x|+|y| ≤ R and w ∈ ϕ(t, x, y).
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Below we will give some ordinary differential inclusions, for which the
orientors ϕ(t, x, y) locally have linear asymptotics ”at zero and at infinity”
(also all assumptions of Theorem 2 are satisfied), but they do not satisfy the
above Bernstein conditions (H1) - (H3).

Corollary 1. Let ϕ : [0, 1]×Rk×Rk → cf((−∞, 0]k) be a Carathéodory map
satisfying (2.9)− (2.10) with constants m1,m2 > 0 such that

min{m1,m2} < min
{π2

ηi
: ηi > 0

}
≤ max

{π2

ηi
: ηi > 0

}
< max{m1,m2}.

Then there exists a non-trivial solution of problem (3.1).

Proof. Let us observe that the only eigenvalue of the problem

u′′(t) + λu(t) = 0

u(0) = u(1) = 0

}
,

for which there exists a non-negative eigenvector, is µ0 = π2. Then ϕ satisfies
all assumptions of Theorem 2. So there exists a non-trivial solution of problem
(3.1).

Remark 2. The multi-valued map ϕ given in Corollary 1 does not satisfy
condition (H1). Indeed, let us take large x0 ∈ [0, +∞)k and y0 = 0. Then,
if w ∈ ϕ(t, x, y) then w < 0. So 〈x,w〉 + |y|2 < 0 and condition (H1) is not
satisfied.

Corollary 2. Let ϕ : [0, 1] × Rk × Rk → cf(Rk) be a Carathéodory map
satisfying (2.9)− (2.10) with constants m1,m2 > 0 such that

min{m1,m2} < min
{π2

ηi
: ηi > 0

}
≤ max

{π2

ηi
: ηi > 0

}
< max{m1,m2}.

Assume additionally that, for each M > 0, µ({t : |ϕ(t, 0, y)| > M}) > 0 (µ
denotes the Lebesgue measure) where k < |y| < K for k, K > 0. Then there
exists a non-trivial solution of problem (3.1).

Proof. Let us observe that the map ϕ satisfies all assumptions of Theorem 2.
So there exists a non-trivial solution of problem (3.1).

Remark 3. The multi-valued map ϕ given in Corollary 2 does not satisfy
condition (H2). Indeed, let us observe that there is no function Φ such that
|ϕ(t, x, y)| ≤ Φ(y) for a.e. t ∈ [0, 1] and all (x, y) such that |x| + |y| ≤ R. So
condition (H2) is not satisfied.
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Corollary 3. Let ϕ : [0, 1]×Rk×Rk → cf((−∞, 0]k) be a Carathéodory map
satisfying (2.9)− (2.10) with constants m1,m2 > 0 such that

min{m1,m2} < min
{ π2

4ηi
: ηi > 0

}
≤ max

{ π2

4ηi
: ηi > 0

}
< max{m1,m2}.

Then there exists a non-trivial solution of problem (3.2).

Proof. Let us observe that the only eigenvalue of the problem

u′′(t) + λu(t) = 0

u(0) = u′(1) = 0

}
,

for which there exists a non-negative eigenvector, is µ0 = π2

4 . Then the map
ϕ satisfies all assumptions of Theorem 2. So there exists a non-trivial solution
of problem (3.1).

Remark 4. The multi-valued map ϕ given in Corollary 3 does not satisfy
condition (H1). Indeed, let us take large x0 ∈ [0, +∞)k and y0 = 0. Then,
if w ∈ ϕ(t, x, y) then w < 0. So 〈x,w〉 + |y|2 < 0 and condition (H1) is not
satisfied.

Corollary 4. Let ϕ : [0, 1] × Rk × Rk → cf(Rk) be a Carathéodory map
satisfying (2.9)− (2.10) with constants m1,m2 > 0 such that

min{m1,m2} < min
{ π2

4ηi
: ηi > 0

}
≤ max

{ π2

4ηi
: ηi > 0

}
< max{m1,m2}.

Additionally, assume that, for each M > 0, µ({t : |ϕ(t, 0, y)| > M}) > 0
(Lebesgue measure), where k < |y| < K for k, K > 0. Then there exists a
non-trivial solution of problem (3.2).

Proof. Let us observe that the map ϕ satisfies all assumptions of Theorem 2.
So there exists a non-trivial solution of problem (3.2).

Remark 5. The multi-valued map ϕ given in Corollary 4 does not satisfy
condition (H2). Indeed, let us observe that there is no function Φ such that
|ϕ(t, x, y)| ≤ Φ(y) for a.e. t ∈ [0, 1] and all (x, y) such that |x| + |y| ≤ R. So
condition (H2) is not satisfied.

Remark 6. In [5] a special case of problem (2.1) was considered where αi

and βi are constant (do not depend on i ∈ {1, ..., k}) and ϕ : [a, b]×Rk×Rk →
cl(Rk) is a Carathéodory map satisfying the linear growth condition

|ϕ(t, x, y)| ≤ w0(t) + w1(t)|x|+ w2(t)|y| (3.3)
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for integrable functions w0, w1, w2 ∈ L1(a, b). Let us now denote by G :
[a, b]2 → R the Green function related with the linear problem (2.7). In [5] it
is proved that if w1, w2 in (3.3) are integrable functions and the map

L : C([a, b],Rk)× C([a, b],Rk) → C([a, b],Rk)× C([a, b],Rk)

L(ξ, η) =
( ∫ b

a

|G(·, s)|[w1(s)ξ(s) + w2(s)η(s)
]
ds,

∫ b

a

|Gt(·, s)|
[
w1(s)ξ(s) + w2(s)η(s)

]
ds

)

has spectral radius r(L) < 1, then problem (2.1) has a solution.
In the special case of w2 = 0, w1 constant and Dirichlet boundary condi-

tions l(u) = (u(a), u(b)), condition r(L) < 1 is equivalent to w1 < π2

(b−a)2 (see
[5: Example 12.2]). Let us now again consider ϕ : [0, 1] × R2 × R2 → R2

given in Corollary 1, with ηi = 1 (i = 1, ..., k), satisfying additionally
|ϕ(t, x, y)| ≤ w0 + w1|x| with w0, w1 ∈ (0,+∞). In this case, because of
(2.9) - (2.10), there must be w1 > π2. So the condition w1 < π2

(b−a)2 is not
satisfied and the mentioned theorem given in [5] cannot be applied.
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