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F -Implicit Complementarity Problems
in Banach Spaces

Nan-jing Huang and Jun Li

Abstract. In this paper, the F -implicit complementarity problem (F-ICP) and
F -implicit variational inequality problem (F -IVIP) are introduced and studied. The
equivalence between (F -ICP) and (F -IVIP) is presented under certain assumptions.
Furthermore, we derive some new existence theorems of solutions for (F -ICP) and (F -
IVIP) by using the Fan-Knaster-Kuratowski-Mazurkiewicz theorem [K. Fan: Math.
Ann. 142 (1961), 305 – 310] and Lin’s result [T. C. Lin: Bull. Austral. Math. Soc.
34 (1986), 107 – 117] under some suitable assumptions without the monotonicity.
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1. Introduction

It is well known that the complementarity problem and variational inequality
theory are very powerful tools of the current mathematical technology. The
classical complementarity problem can be considered as equivalent form of the
variational inequality problem (see [4, 8, 9, 16, 17]). In recent years, the classical
complementarity problem and variational inequality theory have been extended
and generalized to study a wide class of problems arising in mechanics, physics,
optimization and control, nonlinear programming, game theory, economics, fi-
nance, regional, structural, transportation, elasticity, and applied sciences, etc.
(see, for example, [1-4, 6-24] and the references therein).

Let X be a real Banach space with dual space X∗, and 〈t, x〉 denote the value
of a linear continuous function t ∈ X∗ at x. Let K be a closed convex cone of
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X. In 2001, Yin, Xu and Zhang [24] introduced a class of a F -complementarity
problem (F -CP), which consists of finding x ∈ K such that

〈Tx, x〉+ F (x) = 0, 〈Tx, y〉+ F (y) ≥ 0

for all y ∈ K, where T : K → X∗ and F : K → R. They proved that problem
(F -CP) is equivalent to the following generalized variational inequality problem:

(GVIP): Find x ∈ K such that

〈Tx, y − x〉+ F (y)− F (x) ≥ 0 ∀y ∈ K,

where K is a non-empty closed convex cone and F is a positively homogeneous
and convex function. They also proved the existence of solutions for the problem
(F -CP) under some assumptions with the F -pseudo-monotonicity.

In this paper, the F -implicit complementarity problem (F -ICP) and F -
implicit variational inequality problem (F -IVIP) are introduced and studied.
The equivalence between the problems (F -ICP) and (F -IVIP) is presented un-
der certain assumptions. Furthermore, we derive some new existence theorems
of solutions for (F -ICP) and (F -IVIP) by using the Fan-Knaster-Kuratowski-
Mazurkiewicz theorem [5] and Lin’s result [22] under some different assumptions
without the F -pseudomonotonicity.

2. Preliminaries

We first recall some definitions and Lemmas which needed in the main results
of this paper. In this, by conv the convex hull is denoted.

Definition 2.1. Let K be a non-empty subset of topological vector space
X. A point-to-set mapping T : K → 2X is called a Knaster-Kuratowski-
Mazurkiewicz-mapping (for short, KKM-mapping) if, for every finite subset
{x1, x2, . . . , xn} of K, conv{x1, x2, . . . , xn} is contained in

⋃n
i=1 T (xi).

Lemma 2.1. [5] Let K be a non-empty subset of the Hausdorff topological vector
space X. Let G : K → 2X be a KKM-mapping, such that for any y ∈ K, G(y)
is closed and G(y∗) is compact for some y∗ ∈ K. Then, there exists x∗ ∈ K
such that x∗ ∈ G(y) for all y ∈ K, i.e. ∩y∈KG(y) 6= ∅.

Lemma 2.2. [22] Let K be a non-empty, convex subset of a Hausdorff topolog-
ical vector space X, and A be a non-empty subset of K ×K. Suppose that the
following assumptions hold:

(i) (x, x) ∈ A for each x ∈ K

(ii) Ay = {x ∈ K : (x, y) ∈ A} is closed in K for each y ∈ K

(iii) Ax = {y ∈ K : (x, y) 6∈ A} is convex or empty for each x ∈ K
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(iv) there exists a non-empty compact convex subset C of K such that B =
{x ∈ K : (x, y) ∈ A,∀y ∈ C} is compact in K.

Then there exists an x∗ ∈ K such that {x∗} ×K ⊆ A.

3. F -Implicit complementarity problems and
variational inequality problems

Let X be a real Banach space with dual space X∗ and K be a non-empty closed
convex cone of X. Let f : K → X∗, g : K → K and F : K → R be a function.
In this section, we consider the following F -implicit complementarity problem:

(F -ICP): Find x∗ ∈ K such that

〈f(x∗), g(x∗)〉+ F (g(x∗)) = 0 and 〈f(x∗), y〉+ F (y) ≥ 0 ∀y ∈ K.

Examples of (F -ICP).

(1) If g is the identity mapping on K, then (F -ICP) collapses to the F -
complementary problem (in short F -CP) of finding x∗ ∈ K such that

〈f(x∗), x∗〉+ F (x∗) = 0 and 〈f(x∗), y〉+ F (y) ≥ 0, ∀y ∈ K,

which has been studied by Yin, Xu and Zhang [24].

(2) If F = 0, then (F -ICP) reduces to the implicit complementary problem
(in short ICP) of finding x∗ ∈ K such that

〈f(x∗), g(x∗)〉 = 0 and 〈f(x∗), y〉 ≥ 0, ∀y ∈ K.

which has been studied by Ahmad, Kazmi and Rehman [1] and Isac [15, 17].

(3) If g is the identity mapping on K and F = 0, then (F -ICP) reduces to
the complementary problem (in short CP) of finding x∗ ∈ K such that

〈f(x∗), x∗〉 = 0 and 〈f(x∗), y〉 ≥ 0, ∀y ∈ K.

which has been studied by many authors, see [15 - 20]. If X = X∗ = Rn, then
(CP) becomes the classical complementarity problem, which has been intro-
duced and studied by Cottle [3].

We also introduce the following F -implicit variational inequality problem:

(F -IVIP): Find x∗ ∈ K such that

〈f(x∗), y − g(x∗)〉 ≥ F (g(x∗))− F (y), ∀y ∈ K.

We first establish the equivalence between (F -ICP) and (F -IVIP).
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Theorem 3.1. It holds:

(i) If x∗ solves (F -ICP), then x∗ solves (F -IVIP).

(ii) If F : K → R is a positive homogeneous and convex function and x∗ solves
(F -IVIP), then x∗ solves (F -ICP).

Proof. (i) Let x∗ be a solution of (F -ICP). Then, x∗ ∈ K such that

〈f(x∗), g(x∗)〉+ F (g(x∗)) = 0 and 〈f(x∗), y〉+ F (y) ≥ 0, ∀y ∈ K.

It follows that

〈f(x∗), y − g(x∗)〉 = 〈f(x∗), y〉 − 〈f(x∗), g(x∗)〉 ≥ F (g(x∗))− F (y), ∀y ∈ K.

Thus, x∗ is a solution of (F -IVIP).

(ii) Let x∗ be a solution of (F -IVIP). Then, x∗ ∈ K such that

〈f(x∗), y − g(x∗)〉 ≥ F (g(x∗))− F (y), ∀y ∈ K. (3.1)

Since F : K → R is a positive homogeneous and convex function, and K is a
convex cone, then let y = 2g(x∗) and y = 1

2
g(x∗) in (3.1). Thus, we have

〈f(x∗), g(x∗)〉+ F (g(x∗)) ≥ 0, and 〈f(x∗), g(x∗)〉+ F (g(x∗)) ≤ 0,

from which, we have

〈f(x∗), g(x∗)〉+ F (g(x∗)) = 0.

By using this equality and (3.1), we obtain

〈f(x∗), y〉 = 〈f(x∗), y − g(x∗)〉+ 〈f(x∗), g(x∗)〉 ≥ −F (y), ∀y ∈ K,

which shows that x∗ solves (F -ICP).

If g is the identity mapping on K, then we have the following results.

Corollary 3.1. ([24]) It holds:

(i) If x∗ solves (F -CP), then x∗ solves (F -VIP).

(ii) If F : K → R is a positive homogeneous and convex function and x∗ solves
(F -VIP), then x∗ solves (F -CP).

Theorem 3.2. Assume that

(a) f : K → X∗ and g : K → K are continuous, F : K → R is a lower
semicontinuous function;

(b) there exists a function h : K ×K → R such that

(i) h(x, x) ≥ 0 ∀x ∈ K
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(ii) h(x, y)− 〈f(x), y − g(x)〉 ≤ F (y)− F (g(x)) ∀x, y ∈ K

(iii) the set {y ∈ K : h(x, y) < 0} is convex for all x ∈ K;

(c) there exists a non-empty, compact, convex subset C of K, such that for
all x ∈ K\C there exists a y ∈ C such that

〈f(x), y − g(x)〉 < F (g(x))− F (y).

Then, (F -IVIP) has a solution. Furthermore, the solution set of (F -IVIP) is
compact.

Proof. Define

G(y) = {x ∈ C|〈f(x), y − g(x)〉 ≥ F (g(x))− F (y)} ∀y ∈ K.

From assumption (a), we have that for any y ∈ K, G(y) is closed in C. Since
every element x∗ ∈ ∩y∈KG(y) is a solution of (F -IVIP), we have to show that
∩y∈KG(y) 6= ∅. Since C is compact, it is sufficient to prove that the family
{G(y)}y∈K has the finite intersection property. Let {y1, y2, . . . , yn} be a finite
subset of K and set B = conv(C ∪ {y1, . . . , yn}). Then B is a compact and
convex subset of K.

We define two point-to-set mappings F1, F2 : B → 2B as follows:

F1(y) = {x ∈ B|〈f(x), y − g(x)〉 ≥ F (g(x))− F (y)} ∀y ∈ B

F2(y) = {x ∈ B|h(x, y) ≥ 0} ∀y ∈ B.

From assumptions (i) and (ii) of (b), we have h(y, y) ≥ 0 and

h(y, y)− 〈f(y), y − g(y) ≤ F (y)− F (g(y)).

Then, we have

〈f(y), y − g(y) ≥ F (g(y))− F (y)

and so F1(y) is non-empty. As above, we can prove that for any y ∈ K, F1(y)
is closed. Since F1(y) is a closed subset of a compact set B, we know that
F1(y) is compact. Next, we prove that F2 is a KKM-mapping. Suppose that
there exists a finite subset {u1, u2, . . . , un} of B and λi ≥ 0, i = 1, 2, . . . , n, with∑n

i=1 λi = 1, such that

u =
n∑

i=1

λiui 6∈
n⋃

j=1

F2(uj).

Then

h(u, uj) < 0, for j = 1, 2, . . . , n.
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From the assumption (b)(iii), we have h(u, u) < 0 which contradicts to assump-
tion (b)(i). Hence, F2 is a KKM-mapping. From assumption (b)(ii), we have
F2(y) ⊆ F1(y),∀y ∈ B. In fact, x ∈ F2(y) implies that h(x, y) ≥ 0, and by
assumption (b)(ii), we have

h(x, y)− 〈f(x), y − g(x)〉 ≤ F (y)− F (g(x)).

It follows that

〈f(x), y − g(x)〉 ≥ F (g(x))− F (y),

i.e. x ∈ F1(y). Thus, F1 is also a KKM-mapping. From Lemma 2.1, there exists
x∗ ∈ B such that x∗ ∈ F1(y) for all y ∈ B. Thus, there exists x∗ ∈ B such that
〈f(x∗), y − g(x∗)〉 ≥ F (g(x∗))− F (y) for all y ∈ B. By assumption (c), we get
x∗ ∈ C and moreover x∗ ∈ G(yi) for i = 1, 2, . . . , n. Hence, {G(y)}y∈K has the
finite intersection property.

Since f : K → X∗ and g : K → K are continuous, F : K → R is a
lower semicontinuous function, then it is easy to see that the solutions set of
(F -IVIP) is closed. From the assumption (c), any elements outside the set C
cannot be a solution of (F -IVIP). Therefore, the solutions set of (F -IVIP) must
be constained in C. Since C is compact we know that the solutions set of
(F -IVIP) is compact.

Example 3.1. Let X = Y = R2, K = R2
+ = [0,∞)× [0,∞), C = [0, 1]× [0, 1].

Let
g(x) =

(x2

2
,
x1

2

)
, F (x) = x1, f(x) ≡ f

and 〈f(x), z〉 = f(z) = z1+z2 for any x, z ∈ K with x = (x1, x2) and z = (z1, z2).
Then,

〈f(x), y − g(x)〉 = (y1 + y2)−
x1 + x2

2

for any x, y ∈ K with x = (x1, x2) and y = (y1, y2). If we set

h(x, y) = (2y1 + y2)−
(x1

2
+ x2

)
for any x, y ∈ K with x = (x1, x2) and y = (y1, y2), then all assumptions in
Theorem 3.2 hold. It is easy to see that (0, 0) ∈ K is a unique solution of
(F -IVIP).

If g is the identity mapping on K, then from Theorem 3.2, we obtain the
existence theorems for (F -VIP).

Corollary 3.2. Assume that:

(a) f : K → X∗ is continuous, F : K → R is a lower semicontinuous
function;



F -Implicit Complementarity Problems 299

(b) there exists a function h : K ×K → R such that

(i) h(x, x) ≥ 0, ∀x ∈ K;

(ii) h(x, y)− 〈f(x), y − x〉 ≤ F (y)− F (x), ∀x, y ∈ K;

(iii) the set {y ∈ K : h(x, y) < 0} is convex, ∀x ∈ K;

(c) there exists a non-empty, compact, convex subset C of K, such that ∀x ∈
K\C, ∃ y ∈ C such that

〈f(x), y − x〉 < F (x)− F (y).

Then, (F -VIP) has a solution. Furthermore, the solution set of (F -VIP) is
compact.

Theorem 3.3. Assume that f : K → X∗ and g : K → K are continuous,
F : K → R is a positive homogeneous, lower semicontinuous and convex
function. If assumptions (b) and (c) in Theorem 3.2 hold, then (F -ICP) has a
solution. Furthermore, the solution set of (F -ICP) is compact.

Proof. It follows from Theorems 3.1 and 3.2 that the conclusion holds.

Remark 3.1. It is easy to see that assumptions (i) and (ii) of (b) in Theorem
3.2 imply that 〈f(x), x − g(x)〉 ≥ F (g(x)) − F (x), ∀x ∈ K. If replacing the
assumption (iii) of (b) in Theorem 3.2 by the convexity of F and applying
Lemma 2.2, then we can also prove the existence of solutions of (F -IVIP).

Theorem 3.4. Assume that f : K → X∗ and g : K → K are continuous,
F : K → R is lower semicontinuous and convex function. And assume that
〈f(x), x− g(x)〉 ≥ F (g(x))− F (x), for all x ∈ K. Furthermore, if there exists
a non-empty, compact, convex subset C of K, such that for all x ∈ K\C there
exists a y ∈ C such that

〈f(x), y − g(x)〉 < F (g(x))− F (y),

then (F -IVIP) has a solution. Furthermore, the solution set of (F -IVIP) is
compact.

Proof. Set A = {(x, y) ∈ K × K|〈f(x), y − g(x)〉 ≥ F (g(x)) − F (y)}. The
proof of the Theorem consists of four steps.

Step 1: For each x ∈ K we have (x, x) ∈ A since 〈f(x), x − g(x)〉 ≥
F (g(x))− F (x) for all x ∈ K.

Step 2: Since f : K → X∗ and g : K → K are continuous, F : K → R
is lower semicontinuous, then Ay = {x ∈ K|(x, y) ∈ A} is closed in K for all
y ∈ K.
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Step 3: We now show that Ax = {y ∈ K|(x, y) 6∈ A} is convex or empty
for any given x ∈ K. Suppose that Ax 6= ∅ for some x ∈ K. We prove that Ax

is convex. In fact, for any y1, y2 ∈ K and t ∈ [0, 1], set yt = ty1 + (1− t)y2. We
know that yi ∈ Ax (i = 1, 2) implies that

〈f(x), yi − g(x)〉 < F (g(x))− F (yi) for i = 1, 2.

Since F : K → R is convex, it holds

〈f(x), yt − g(x)〉 = 〈f(x), (ty1 + (1− t)y2)− g(x)〉
= t〈f(x), y1 − g(x)〉+ (1− t)〈f(x), y2 − g(x)〉
< F (g(x))− (tF (y1) + (1− t)F (y2))

≤ F (g(x))− F (yt),

that is, yt ∈ Ax.

Step 4: Let B = {x ∈ K|(x, y) ∈ A ∀y ∈ C}. We show that B is compact
in C. By assumption, for each x ∈ K\C there exists a point y ∈ C such that
〈f(x), y− g(x)〉 < F (g(x))− F (y), that is, (x, y) 6∈ A, so that x 6∈ B. Thus, we
have B ⊆ C. Since B = ∩y∈CAy, Ay is closed, and C is compact it follows that
B is a closed, compact subset of C.

From the above four steps and Lemma 2.2, there exists x∗ ∈ K such that
{x∗} ×K ⊆ A, that is, 〈f(x∗), y − g(x∗)〉 ≥ F (g(x∗))− F (y) for all y ∈ K.

As in Step 2, we can show that the solutions set of (F -IVIP) is closed.
From the assumption, any elements outside the set C can not be a solution of
(F -IVIP). Therefore, the solutions set of (F -IVIP) must be constained in C.
Since C is compact we know that the solutions set of (F -IVIP) is compact.

Example 3.2. Let X = Y = R2, K = R2
+ = [0,∞) × [0,∞) and C = [0, 1] ×

[0, 1]. Let

g(x) =
(
x1 +

x2

2
,
x2

2

)
, F (x) = −x1 + x2

2
, f(x) ≡ f

and 〈f(x), z〉 = f(z) = z1+z2 for any x, z ∈ K with x = (x1, x2) and z = (z1, z2).
Then, 〈f(x), y− g(x)〉 = (y1 + y2)− (x1 +x2) for any x, y ∈ K with x = (x1, x2)
and y = (y1, y2), and all assumptions in Theorem 3.4 hold. It is easy to see that
(0, 0) ∈ K is a unique solution of (F -IVIP).

If g is the identity mapping on K, then from Theorem 3.4, we also obtain
the existence theorems for (F -VIP).

Corollary 3.3. Assume that f : K → X∗ is continuous, F : K → R is a
lower semicontinuous and convex function. And assume that 〈f(x), x − x〉 ≥
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F (x)−F (x) for all x ∈ K. Furthermore, if there exists a non-empty, compact,
convex subset C of K, such that for all x ∈ K\C there exists a y ∈ C such that

〈f(x), y − x〉 < F (x)− F (y),

then (F -VIP) has a solution. Furthermore, the solution set of (F -VIP) is com-
pact.

Theorem 3.5. Assume that f : K → X∗ and g : K → K are continuous,
F : K → R is a positive homogeneous, lower semicontinuous and convex func-
tion. If all assumptions in Theorem 3.4 hold, then (F -ICP) has a solution.
Furthermore, the solutions set of (F -ICP) is compact.

Proof. It follows from the Theorems 3.1 and 3.4 that the conclusion holds.

Remark 3.2. In [24], Yin, Xu and Zhang proved the existence theorems for
(F -VIP) under some assumptions with the F -pseudo-monotonicity. But here,
we derive some existence theorems of solutions for (F -IVIP) and (F -ICP) under
some different assumptions without the F -pseudo-monotonicity.
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