
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 23 (2004), No. 2, 303–311

Another Version of Maher’s Inequality

Salah Mecheri

Abstract. Let H be a separable infinite dimensional complex Hilbert space, and
let L(H) denote the algebra of bounded linear operators on H into itself. Let A =
(A1, A2..., An), B = (B1, B2..., Bn) be n-tuples of operators in L(H). We define the
elementary operator ∆A,B : L(H) 7→ L(H) by ∆A,B(X) =

∑n
i=1 AiXBi −X. In this

paper we minimize the map Fp(X) = ‖T −∆A,B(X)‖p
p, where T ∈ ker ∆A,B ∩ Cp,

and we classify its critical points.
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1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let L(H)
denote the algebra of bounded linear operators on H into itself. Given A, B ∈
L(H), we define the generalized derivation δA,B : L(H) 7→ L(H) by δA,B(X) =
AX−XB. Let A = (A1, A2..., An), B = (B1, B2..., Bn) be n-tuples of operators
in L(H). We define the elementary operator ∆A,B : L(H) 7→ L(H), ∆∗

A,B :
L(H) 7→ L(H) by

∆A,B(X) =
n∑

i=1

AiXBi −X

and

∆∗
A,B(X) =

n∑
i=1

A∗i XB∗
i −X

respectively. Denote δA,A(X) = δA(X) = AX − XA and ∆A,A = ∆A =∑n
i=1 AiXAi −X. A well-known result of J. Anderson [1: p.136-137 ] says that

if A is a normal operator such that AS = SA, then for all X ∈ L(H),

‖S − (AX −XA)‖ ≥ ‖S‖ . (1.1)
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The related inequality (1.1) was obtained by P. J. Maher [9: Theorem 3.2]. It
shows that, if A is a normal operator and AS = SA, where S ∈ Cp, 1 ≤ p < ∞
and S ∈ ker δA,B ∩ Cp, then the map Fp defined by

Fp(X) = ‖S − (AX −XA)‖p
p

has a global minimizer at V if, and for 1 < p < ∞ only if, AV − V A = 0. In
other words, we have

‖S − (AX −XA)‖p p ≥ ‖T‖p
p , (1.2)

where Cp is the von Neumann-Schatten class, 1 ≤ p < ∞ and ‖.‖p its norm.
In [6] and [3] the authors generalized P. J. Maher’s result, showing that if the
pair (A, B) has the property (FP )Cp (i.e. AT = TB, where T ∈ Cp implies
A∗T = TB∗ ), 1 ≤ p < ∞, and S ∈ ker δA,B ∩ Cp, then the map Fp defined by

Fp(X) = ‖S − (AX −XB)‖p
p

has a global minimizer at V if, and for 1 < p < ∞ only if, AV − V B = 0. In
other words, we have

‖S − (AX −XB)‖p
p ≥ ‖T‖p

p (1.3)

if, and for 1 < p < ∞ only if, AV − V B = 0. In this paper we obtain
an inequality similar to (1.3), where the operator AX − XB is replaced by
the operator ∆A,B(X) =

∑n
i=1 AiXBi − X. We prove that if ∆A,B(T ) = 0 =

∆A∗,B∗(T ) and T ∈ ker ∆A,B ∩ Cp, then the map Fp defined by

Fp(X) = ‖T −∆A,B(X)‖p
p (1.4)

has a global minimizer at V if, and for 1 < p < ∞ only if,
∑n

i=1 AiV Bi−V = 0.
Moreover, we show that if ∆A,B(T ) = 0 = ∆A∗,B∗(T ) and T ∈ ker ∆A,B ∩
Cp, 1 < p < ∞, then the map Fp has a critical point at W if and only if∑n

i=1 AiWBi−W = 0, i.e. if DW Fp is the Frechet derivative at W of Fp, then
the set

{W ∈ L(H): DW Fp = 0}

coincides with ker ∆A,B (the kernel of ∆A,B).

2. Preliminaries

Let T ∈ L(H) be compact, and let s1(X) ≥ s2(X) ≥ ... ≥ 0 denote the singular

values of T , i.e. the eigenvalues of |T | = (T ∗T )
1
2 are arranged in their decreasing

order. The operator T is said to belong to the Schatten p−class Cp if

‖T‖p =
[ ∞∑

j=1

sj(T )p
] 1

p
= [tr(T )p]

1
p , 1 ≤ p < ∞,
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where tr denotes the trace function. Hence C1 is the trace class, C2 is the
Hilbert-Schmidt class, and C∞ is the class of compact operators where

‖T‖∞ = s1(T ) = sup
‖f‖=1

‖Tf‖

denotes the usual operator norm. For the general theory of the Schatten p−
classes the reader is referred to [11] and [12]. Let <z be the real part of a
complex number z, X = U |X| be the polar decomposition of the operator X
and let tr denote trace.

Theorem 2.1. [2] If 1 < p < ∞ , then the map Fp : Cp 7−→ R+ defined by
X 7−→ ‖X‖p

p, is differentiable at every X ∈ Cp with derivative DXFp given by

DXFp(T ) = p · <tr(|X|p−1 U∗T ), (2.1)

If dim H < ∞, then the same result holds for 0 < p ≤ 1 at every invertible X.

Theorem 2.2. [9] If U is a convex subset of Cp with 1 < p < ∞ and X ∈ U,
then the map X 7−→ ‖X‖p

p has at most one global minimizer.

Lemma 2.1. [13] Let C denote the n-tuple of operators (C1, C2..., Cn) in L(H).
Suppose that

∑n
i=1 CiC

∗
i ≤ 1 and

∑n
i=1 C∗

i Ci ≤ 1. If ∆C(T ) = 0 = ∆∗
C(T )

for some compact operator T , then the operator |T | commutes with Ci for all
1 ≤ i ≤ n.

Definition 2.1. Let F and G be two subspaces of a normed linear space E. If
‖x + y‖ ≥ ‖y‖ for all x ∈ F and for all y ∈ G, then F is said to be orthogonal
to G.

3. Main Results

Let U(A, B) = {X ∈ L(H): (
∑n

i=1 CiXCi −X) ∈ Cp} and Fp : U 7−→ R+ be
the map defined by Fp(X) = ‖T − (

∑n
i=1 CiXCi −X)‖p

p, where T ∈ ker ∆C ∩
Cp, 1 ≤ p < ∞. We start with the following lemma which will be used in the

proof of Theorem 3.1.

Lemma 3.1. Let C denote the n-tuple of operators (C1, C2..., Cn) in L(H)
such that

∑n
i=1 CiC

∗
i ≤ 1,

∑n
i=1 C∗

i Ci ≤ 1. Let S be compact and ∆c(S) = 0 =
∆∗

c(S). If
n∑

i=1

Ci |S|p−1 U∗Ci = |S|p−1 U∗,

where p > 1 and S = U |S| is the polar decomposition of S, then

n∑
i=1

Ci |S|U∗Ci = |S|U∗.
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Proof. If T = |S|p−1, then

n∑
i=1

CiTU∗Ci = TU∗. (3.1)

We prove that
n∑

i=1

CiT
nU∗Ci = T nU∗. (3.2)

It is known that if
∑n

i=1 CiC
∗
i ≤ 1,

∑n
i=1 C∗

i Ci ≤ 1 and ∆c(S) = 0 = ∆∗
c(S),

then the eigenspaces corresponding to distinct non-zero eigenvalues of the com-
pact positive operator |S|2 reduce each Ci (see [4: Theorem 8], [13: Lemma
2.3]). In particular, |S| commutes with Ci for all 1 ≤ i ≤ n. This implies also
that |S|p−1 = T commutes with each Ci for all 1 ≤ i ≤ n. Hence

Ci |T | = |T |Ci,

and CiT
2 = T 2Ci. Since Ci commutes with the positive operator T 2, then Ci

commutes with its square root, that is

CiT = TCi (3.3).

By (3.3) and (3.1), we obtain(3.2).

By using an argument similar to the proof of Theorem 3.2 in [9], we can

consider the map f defined on σ(T ) ⊂ R+ by f(t) = t
1

p−1 , 1 < p < ∞. Since f is
the uniform limit of a sequence (Pi) of polynomials without constant term (since
f(0) = 0), it follows from (3.2) that

∑n
i=1 CiPi(T )U∗Ci = Pi(T )U∗. Therefore∑n

i=1 CiT
1

p−1 U∗Ci = U∗T
1

p−1 .

Now we are ready to present our first result on the global minimizer.

Theorem 3.1. Let C = (C1, C2..., Cn) be an n-tuple of operators in L(H). If

n∑
i=1

CiC
∗
i ≤ 1,

n∑
i=1

C∗
i Ci ≤ 1,

∆c(T ) = 0 = ∆∗
c(T )

and T ∈ ker ∆A,B ∩Cp, then for 1 ≤ p < ∞, the map Fp has a global minimizer
at W ∈ L(H) if, and for 1 < p < ∞ only if,

n∑
i=1

CiWCi −W = 0.
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Proof. If
n∑

i=1

CiWCi −W = 0,

then Fp(W ) = ‖T‖p
p. It follows from [13: Theorem 2.4] that

Fp(X) ≥ Fp(W ).

Conversely, if Fp has a minimum then∥∥∥T − (
n∑

i=1

CiWCi −W )
∥∥∥p

p
= ‖T‖p

p .

Since U is convex, the set V = {T − (
∑n

i=1 CiXCi −X); X ∈ U} is also convex.
Thus, Theorem 2.2 implies that T − (

∑n
i=1 CiWCi −W ) = T.

In the following theorem we will classify the critical points of the map
Fp (p > 1).

Theorem 3.2. Let C = (C1, C2..., Cn) be an n-tuple of operators in L(H). If

n∑
i=1

CiC
∗
i ≤ 1,

n∑
i=1

C∗
i Ci ≤ 1,

∆c(T ) = 0 = ∆∗
c(T )

and T ∈ ker ∆A,B ∩ Cp, then for 1 ≤ p < ∞, the map Fp has a critical point at
W ∈ L(H) if, and for 1 < p < ∞ only if,

n∑
i=1

CiWCi −W = 0.

Proof. Since the Frechet derivative of Fp is given by

DW Fp(T ) = lim
h−→0

Fp(W + hT )− Fp(W )

h
,

it follows that

DW Fp(T ) =
[
DS−(

∑n
i=1 CiWCi−W )

]( n∑
i=1

CiTCi − T
)
.

If W is a critical point of Fp, then DW Fp(T ) = 0 ∀T ∈ U . By applying Theorem
2.1 we get

DW Fp(T ) = p <tr
[∣∣∣S − ( n∑

i=1

CiWCi −W
)∣∣∣p−1

U∗
1

( n∑
i=1

CiTCi − T
)]

= p <tr
[
Y

( n∑
i=1

CiTCi − T
)]

= 0,
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where S − (
∑n

i=1 CiWCi −W ) = U1 |S − (
∑n

i=1 CiWCi −W )| is the polar de-
composition of the operator S − (

∑n
i=1 CiWCi −W ) and

Y =
∣∣∣S − ( n∑

i=1

CiWCi −W
)∣∣∣p−1

U∗
1 .

An easy calculation shows that (
∑n

i=1 CiY Ci − Y ) = 0, that is

n∑
i=1

Ci

∣∣∣S − ( n∑
i=1

CiWCi −W
)∣∣∣p−1

U∗
1 Ci =

∣∣∣S − ( n∑
i=1

CiWCi −W
)∣∣∣p−1

U∗
1 .

It follows from Lemma 3.1 that
n∑

i=1

Ci

∣∣∣S − ( n∑
i=1

CiWCi −W
)∣∣∣U∗

1 Ci =
∣∣∣S − ( n∑

i=1

CiWCi −W
)∣∣∣U∗

1 .

By taking adjoints and since ∆C = 0 = ∆C∗ , we get

n∑
i=1

Ci

(
T −

( n∑
i=1

CiWCi −W
))

Ci =
(
T −

( n∑
i=1

CiWCi −W
))

.

Then
n∑

i=1

Ci

[( n∑
i=1

CiWCi −W
)]

Ci =
( n∑

i=1

CiWCi −W
)
.

Hence
n∑

i=1

CiWCi −W ∈ R(∆C) ∩ ker ∆C ,

where R(∆C) is the range of ∆C . It is easy to see that (arguing as in the proof
of [13: Theorem 2.4]), ∆C(T ) = 0 = ∆C∗(T ) and T ∈ ker ∆C , where T ∈ L(H).
Then

‖T −∆C(X‖ ≥ ‖T‖
holds for all X ∈ L(H) and for all T ∈ ker ∆c. Hence

∑n
i=1 CiWCi −W = 0.

Conversely, if
∑n

i=1 CiWCi = W , then W is a minimum of Fp, and since Fp is
differentiable, W is a critical point.

In the above theorem we classified the critical points of the map Fp for
p > 1. In the following theorem we consider the case 0 < p ≤ 1.

Theorem 3.3. Let C = (C1, C2..., Cn) be an n-tuple of operators in L(H). If

n∑
i=1

CiC
∗
i ≤ 1,

n∑
i=1

C∗
i Ci ≤ 1

such that ∆C(S) = 0 = ∆C∗(S) and S ∈ ker ∆C ∩ Cp, 0 < p ≤ 1, dim H < ∞
and S− (

∑n
i=1 CiWCi −W ) is invertible, then Fp has a critical point at W , if∑n

i=1 CiWCi −W = 0.
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Proof. Let W, S ∈ U and let φ, be the map defined by

φ : X 7−→ S −
( n∑

i=1

CiXCi −X
)
.

Suppose that dim H < ∞. If
∑n

i=1 CiWCi − W = 0, then S is invertible by
hypothesis. Also |S| is invertible, hence |S|p−1 exists for 0 < p ≤ 1. Taking
Y = |S|p−1 U∗, where S = U |S| is the polar decomposition of S. As shown in
Lemma 3.1, |S| commutes with Ci for all 1 ≤ i ≤ n. Hence

Ci |S| = |S|Ci.

Since
∑n

i=1 CiS
∗Ci = S∗, i.e.

n∑
i=1

Ci |S|U∗Ci = |S|U∗,

we find

|S|
( n∑

i=1

CiU
∗Ci − U∗

)
= 0 ,

and since
A |S|p−1 = |S|p−1 A,

we have
n∑

i=1

CiY Ci − Y =
n∑

i=1

Ci |S|p−1 U∗Ci − |S|p−1 U∗

= |S|p−1
( n∑

i=1

CiU
∗Ci − U∗

)
,

so that
∑n

i=1 CiY Ci− Y = 0 and tr[(
∑n

i=1 CiY Ci− Y )T ] = 0 for all T ∈ L(H).
Since

S = S −
( n∑

i=1

CiWCi −W
)
,

we have

0 = tr
[
Y

( n∑
i=1

CiTCi − T
)]

= p <tr
[
Y

( n∑
i=1

CiTCi − T
)]

= p <tr
[
|S|p−1 U∗

( n∑
i=1

CiTCi − T
)]

= (DSφ)
( n∑

i=1

CiTCi − T
)
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= (DW Fp)(T ),

which proofs the assertion.

At the end we use a familar device of considering 2x2 operator matrices to
extend the previous theorems to the elementary operator

∑n
i=1 AiXBi −X.

Theorem 3.4. Let A = (A1, A2..., An), B = (B1, B2..., Bn) be n-tuples of oper-
ators in L(H) such that

n∑
i=1

AiA
∗
i ≤ 1,

n∑
i=1

A∗i Ai ≤ 1,
n∑

i=1

BiB
∗
i ≤ 1,

n∑
i=1

B∗
i Bi ≤ 1.

If ∆A,B(T ) = 0 = ∆∗
A,B(T ) and T ∈ ker ∆A,B ∩Cp, then it holds for 1 ≤ p < ∞:

(i) the map Fp has a global minimizer at W if, and for 1 < p < ∞ only if,∑n
i=1 AiWBi −W = 0

(ii) the map Fp has a critical point at W if, and for 1 < p < ∞ only if,∑n
i=1 AiWBi −W = 0

(iii) the map Fp, 0 < p ≤ 1, has a critical point at W if
∑n

i=1 AiWBi−W = 0
provided dim H < ∞ and S − (

∑n
i=1 AiWBi −W ) is invertible.

Proof. It suffices to take the Hilbert space H ⊕H, and operators

Ci =

[
Ai 0
0 Bi

]
S =

[
0 T
0 0

]
, X =

[
0 X
0 0

]
and apply Theorem 3.1, Theorem 3.2 and Theorem 3.3. These arguments use
operator matrices as in Bouali and Cherki [3] and Mecheri [7].

Remark.

1. In Theorem 3.2, the implication

W is a critical point =⇒
∑n

i=1 AiWBi −W = 0

does not hold in the case 0 < p ≤ 1 (cf. Maher [8]).

2. Theorems 3.1, 3.2 , 3.3 and 3.4 hold in particular if A and B are contrac-
tions. Indeed, it is known from [4] that if A and B are contractions and
∆A,B(S) = ASB − S = 0 , where S ∈ Cp, then

∆A∗,B∗(S) = δA∗,B(S) = δA,B∗(S) = 0.

3. If A ∈ Cp, the conclusions of Theorems 3.1, 3.2, 3.3 and 3.4 hold for all
X ∈ L(H) (cf. Maher [9]).
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