Another Version of Maher's Inequality

Salah Mecheri

Abstract. Let H be a separable infinite dimensional complex Hilbert space, and let $L(H)$ denote the algebra of bounded linear operators on H into itself. Let $A =$ $(A_1, A_2, \ldots, A_n), B = (B_1, B_2, \ldots, B_n)$ be n-tuples of operators in $L(H)$. We define the elementary operator $\Delta_{A,B}: L(H) \to L(H)$ by $\Delta_{A,B}(X) = \sum_{i=1}^{n} A_i X B_i - X$. In this paper we minimize the map $F_p(X) = ||T - \Delta_{A,B}(X)||_p^p$ $_p^p$, where $T \in \ker \Delta_{A,B} \cap C_p$, and we classify its critical points.

Keywords: Orthogonality, derivation, elementary operators MSC 2000: Primary 47B47, 47A30, 47B20, secondary 47B10

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let $L(H)$ denote the algebra of bounded linear operators on H into itself. Given $A, B \in$ $L(H)$, we define the generalized derivation $\delta_{A,B}: L(H) \mapsto L(H)$ by $\delta_{A,B}(X) =$ $AX - XB$. Let $A = (A_1, A_2, ..., A_n), B = (B_1, B_2, ..., B_n)$ be n-tuples of operators in $L(H)$. We define the elementary operator $\Delta_{A,B}: L(H) \mapsto L(H)$, $\Delta_{A,B}^*$: $L(H) \mapsto L(H)$ by

$$
\Delta_{A,B}(X) = \sum_{i=1}^{n} A_i X B_i - X
$$

and

$$
\Delta_{A,B}^*(X) = \sum_{i=1}^n A_i^* X B_i^* - X
$$

 $\sum_{i=1}^{n} A_i X A_i - X$. A well-known result of J. Anderson [1: p.136-137] says that respectively. Denote $\delta_{A,A}(X) = \delta_A(X) = AX - XA$ and $\Delta_{A,A} = \Delta_A =$ if A is a normal operator such that $AS = SA$, then for all $X \in L(H)$,

$$
||S - (AX - XA)|| \ge ||S||.
$$
 (1.1)

ISSN 0232-2064 / \$ 2.50 c Heldermann Verlag Berlin

Salah Mecheri: Department of Mathematics, King Saud University, College of Science, P.O. Box 2455, Riyadh 11451, Saudi Arabia; mecherisalah@hotmail.com This work was supported by our research center project No. Math/1422/10.

The related inequality (1.1) was obtained by P. J. Maher [9: Theorem 3.2]. It shows that, if A is a normal operator and $AS = SA$, where $S \in C_p$, $1 \leq p < \infty$ and $S \in \text{ker } \delta_{A,B} \cap C_p$, then the map F_p defined by

$$
F_p(X) = ||S - (AX - XA)||_p^p
$$

has a global minimizer at V if, and for $1 < p < \infty$ only if, $AV - VA = 0$. In other words, we have

$$
||S - (AX - XA)||_{p} p \ge ||T||_{p}^{p}, \qquad (1.2)
$$

where C_p is the von Neumann-Schatten class, $1 \leq p < \infty$ and $\|.\|_p$ its norm. In [6] and [3] the authors generalized P. J. Maher's result, showing that if the pair (A, B) has the property $(FP)_{C_p}$ (i.e. $AT = TB$, where $T \in C_p$ implies $A^*T = TB^*$, $1 \leq p < \infty$, and $S \in \text{ker } \delta_{A,B} \cap C_p$, then the map F_p defined by

$$
F_p(X) = ||S - (AX - XB)||_p^p
$$

has a global minimizer at V if, and for $1 < p < \infty$ only if, $AV - VB = 0$. In other words, we have

$$
||S - (AX - XB)||_p^p \ge ||T||_p^p \tag{1.3}
$$

if, and for $1 \leq p \leq \infty$ only if, $AV - VB = 0$. In this paper we obtain an inequality similar to (1.3), where the operator $AX - XB$ is replaced by the operator $\Delta_{A,B}(X) = \sum_{i=1}^n A_i X B_i - X$. We prove that if $\Delta_{A,B}(T) = 0$ $\Delta_{A^*,B^*}(T)$ and $T \in \text{ker } \Delta_{A,B} \cap C_p$, then the map F_p defined by

> $F_p(X) = ||T - \Delta_{A,B}(X)||_p^p$ p (1.4)

has a global minimizer at V if, and for $1 < p < \infty$ only if, $\sum_{i=1}^{n} A_i V B_i - V = 0$. Moreover, we show that if $\Delta_{A,B}(T) = 0 = \Delta_{A^*,B^*}(T)$ and $T \in \text{ker } \Delta_{A,B} \cap$ $C_p, 1 \leq p \leq \infty$, then the map F_p has a critical point at W if and only if $\sum_{i=1}^{n} A_i \overline{W} B_i - W = 0$, i.e. if $D_{\overline{W}} F_p$ is the Frechet derivative at W of F_p , then the set

$$
\{W \in L(H): D_W F_p = 0\}
$$

coincides with ker $\Delta_{A,B}$ (the kernel of $\Delta_{A,B}$).

2. Preliminaries

Let $T \in L(H)$ be compact, and let $s_1(X) \geq s_2(X) \geq ... \geq 0$ denote the singular values of T, i.e. the eigenvalues of $|T| = (T^*T)^{\frac{1}{2}}$ are arranged in their decreasing order. The operator T is said to belong to the Schatten p−class C_p if

$$
||T||_p = \left[\sum_{j=1}^{\infty} s_j(T)^p\right]^{\frac{1}{p}} = [tr(T)^p]^{\frac{1}{p}}, \quad 1 \le p < \infty,
$$

where tr denotes the trace function. Hence C_1 is the trace class, C_2 is the Hilbert-Schmidt class, and C_{∞} is the class of compact operators where

$$
||T||_{\infty} = s_1(T) = \sup_{||f||=1} ||Tf||
$$

denotes the usual operator norm. For the general theory of the Schatten p− classes the reader is referred to [11] and [12]. Let $\Re z$ be the real part of a complex number z, $X = U |X|$ be the polar decomposition of the operator X and let tr denote trace.

Theorem 2.1. [2] If $1 < p < \infty$, then the map $F_p : C_p \longmapsto \mathbb{R}^+$ defined by $X \longmapsto \|X\|_p^p$ $_{p}^{p},$ is differentiable at every $X\in C_{p}$ with derivative $\mathcal{D}_{X}F_{p}$ given by

$$
\mathcal{D}_X F_p(T) = p \cdot \Re tr(|X|^{p-1} U^* T), \qquad (2.1)
$$

If dim $H < \infty$, then the same result holds for $0 < p \leq 1$ at every invertible X.

Theorem 2.2. [9] If U is a convex subset of C_p with $1 < p < \infty$ and $X \in U$, then the map $X \mapsto ||X||_n^p$ $_{p}^{p}$ has at most one global minimizer.

Lemma 2.1. [13] Let C denote the n-tuple of operators (C_1, C_2, \ldots, C_n) in $L(H)$. Suppose that $\sum_{i=1}^n C_i C_i^* \leq 1$ and $\sum_{i=1}^n C_i^* C_i \leq 1$. If $\Delta_C(T) = 0 = \Delta_C^*(T)$ for some compact operator T, then the operator $|T|$ commutes with C_i for all $1 \leq i \leq n$.

Definition 2.1. Let F and G be two subspaces of a normed linear space E . If $||x + y|| \ge ||y||$ for all $x \in F$ and for all $y \in G$, then F is said to be orthogonal to G.

3. Main Results

Let $\mathcal{U}(A, B) = \{ X \in L(H): (\sum_{i=1}^{n} C_i X C_i - X) \in C_p \}$ and $F_p : \mathcal{U} \longmapsto \mathbb{R}^+$ be the map defined by $F_p(X) = ||T - (\sum_{i=1}^n C_i X C_i - X) ||_p^p$ $_p^p$, where $T \in \ker \Delta_C \cap$ $C_p, 1 \leq p < \infty$. We start with the following lemma which will be used in the proof of Theorem 3.1.

Lemma 3.1. Let C denote the n-tuple of operators $(C_1, C_2, ..., C_n)$ in $L(H)$ such that $\sum_{i=1}^{n} C_i C_i^* \leq 1$, $\sum_{i=1}^{n} C_i^* C_i \leq 1$. Let S be compact and $\Delta_c(S) = 0$ $\Delta_{c}^{*}(S)$. If

$$
\sum_{i=1}^{n} C_i |S|^{p-1} U^* C_i = |S|^{p-1} U^*,
$$

where $p > 1$ and $S = U |S|$ is the polar decomposition of S, then

$$
\sum_{i=1}^{n} C_i |S| U^* C_i = |S| U^*.
$$

306 S. Mecheri

Proof. If $T = |S|^{p-1}$, then

$$
\sum_{i=1}^{n} C_i T U^* C_i = T U^*.
$$
\n(3.1)

We prove that

$$
\sum_{i=1}^{n} C_i T^n U^* C_i = T^n U^*.
$$
\n(3.2)

It is known that if $\sum_{i=1}^n C_i C_i^* \leq 1$, $\sum_{i=1}^n C_i^* C_i \leq 1$ and $\Delta_c(S) = 0 = \Delta_c^*(S)$, then the eigenspaces corresponding to distinct non-zero eigenvalues of the compact positive operator $|S|^2$ reduce each C_i (see [4: Theorem 8], [13: Lemma 2.3]). In particular, |S| commutes with C_i for all $1 \leq i \leq n$. This implies also that $|S|^{p-1} = T$ commutes with each C_i for all $1 \leq i \leq n$. Hence

$$
C_i |T| = |T| Ci,
$$

and $C_i T^2 = T^2 C_i$. Since C_i commutes with the positive operator T^2 , then C_i commutes with its square root, that is

$$
C_i T = T C_i \tag{3.3}.
$$

By (3.3) and (3.1) , we obtain (3.2) .

By using an argument similar to the proof of Theorem 3.2 in [9], we can consider the map f defined on $\sigma(T) \subset \mathbb{R}^+$ by $f(t) = t^{\frac{1}{p-1}}$, $1 < p < \infty$. Since f is the uniform limit of a sequence (P_i) of polynomials without constant term (since $f(0) = 0$, it follows from (3.2) that $\sum_{i=1}^{n} C_i P_i(T) U^* C_i = P_i(T) U^*$. Therefore $\sum_{i=1}^{n} C_i T^{\frac{1}{p-1}} U^* C_i = U^* T^{\frac{1}{p-1}}.$ \blacksquare

Now we are ready to present our first result on the global minimizer.

Theorem 3.1. Let $C = (C_1, C_2, ..., C_n)$ be an *n*-tuple of operators in $L(H)$. If

$$
\sum_{i=1}^{n} C_i C_i^* \le 1, \quad \sum_{i=1}^{n} C_i^* C_i \le 1, \n\Delta_c(T) = 0 = \Delta_c^*(T)
$$

and $T \in \text{ker } \Delta_{A,B} \cap C_p$, then for $1 \leq p < \infty$, the map F_p has a global minimizer at $W \in L(H)$ if, and for $1 < p < \infty$ only if,

$$
\sum_{i=1}^{n} C_i W C_i - W = 0.
$$

Proof. If

$$
\sum_{i=1}^{n} C_i W C_i - W = 0,
$$

then $F_p(W) = ||T||_p^p$ $_{p}^{p}$. It follows from [13: Theorem 2.4] that

$$
F_p(X) \ge F_p(W).
$$

Conversely, if F_p has a minimum then

$$
\left\|T - \left(\sum_{i=1}^{n} C_i W C_i - W\right)\right\|_{p}^{p} = \left\|T\right\|_{p}^{p}.
$$

Since U is convex, the set $V = \{T - (\sum_{i=1}^{n} C_i X C_i - X); X \in U\}$ is also convex. Thus, Theorem 2.2 implies that $T - \overline{\left(\sum_{i=1}^{n} C_i W C_i - W\right)} = T$.

In the following theorem we will classify the critical points of the map $F_p (p > 1).$

Theorem 3.2. Let $C = (C_1, C_2, \ldots, C_n)$ be an n-tuple of operators in $L(H)$. If

$$
\sum_{i=1}^{n} C_i C_i^* \le 1, \sum_{i=1}^{n} C_i^* C_i \le 1, \Delta_c(T) = 0 = \Delta_c^*(T)
$$

and $T \in \text{ker } \Delta_{A,B} \cap C_p$, then for $1 \leq p < \infty$, the map F_p has a critical point at $W \in L(H)$ if, and for $1 < p < \infty$ only if,

$$
\sum_{i=1}^{n} C_i W C_i - W = 0.
$$

Proof. Since the Frechet derivative of F_p is given by

$$
\mathcal{D}_W F_p(T) = \lim_{h \to 0} \frac{F_p(W + hT) - F_p(W)}{h},
$$

it follows that

$$
\mathcal{D}_W F_p(T) = \left[\mathcal{D}_{S-(\sum_{i=1}^n C_i WC_i-W)} \right] \left(\sum_{i=1}^n C_iTC_i - T \right).
$$

If W is a critical point of F_p , then $\mathcal{D}_W F_p(T) = 0 \,\forall T \in \mathcal{U}$. By applying Theorem 2.1 we get

$$
\mathcal{D}_{W}F_{p}(T) = p \Re \{tr} \Big[\Big| S - \Big(\sum_{i=1}^{n} C_{i}WC_{i} - W \Big) \Big|^{p-1} U_{1}^{*} \Big(\sum_{i=1}^{n} C_{i} TC_{i} - T \Big) \Big]
$$

= p \Re \{tr} \Big[Y \Big(\sum_{i=1}^{n} C_{i} TC_{i} - T \Big) \Big]
= 0,

308 S. Mecheri

where $S - (\sum_{i=1}^{n} C_i WC_i - W) = U_1 |S - (\sum_{i=1}^{n} C_iWC_i - W)|$ is the polar decomposition of the operator $S - (\sum_{i=1}^{n} C_i \widetilde{W C_i} - W)$ and

$$
Y = \left| S - \left(\sum_{i=1}^{n} C_i W C_i - W \right) \right|^{p-1} U_1^*.
$$

An easy calculation shows that $(\sum_{i=1}^{n} C_i Y C_i - Y) = 0$, that is

$$
\sum_{i=1}^{n} C_i \Big| S - \Big(\sum_{i=1}^{n} C_i W C_i - W \Big) \Big|^{p-1} U_1^* C_i = \Big| S - \Big(\sum_{i=1}^{n} C_i W C_i - W \Big) \Big|^{p-1} U_1^*.
$$

It follows from Lemma 3.1 that

$$
\sum_{i=1}^{n} C_i |S - \left(\sum_{i=1}^{n} C_i W C_i - W\right) |U_1^* C_i = \left| S - \left(\sum_{i=1}^{n} C_i W C_i - W\right) |U_1^*.
$$

By taking adjoints and since $\Delta_C = 0 = \Delta_{C^*}$, we get

$$
\sum_{i=1}^{n} C_i \Big(T - \Big(\sum_{i=1}^{n} C_i W C_i - W \Big) \Big) C_i = \Big(T - \Big(\sum_{i=1}^{n} C_i W C_i - W \Big) \Big).
$$

Then

$$
\sum_{i=1}^{n} C_i \Big[\Big(\sum_{i=1}^{n} C_i W C_i - W \Big) \Big] C_i = \Big(\sum_{i=1}^{n} C_i W C_i - W \Big).
$$

Hence

$$
\sum_{i=1}^{n} C_i W C_i - W \in R(\Delta_C) \cap \ker \Delta_C,
$$

where $R(\Delta_C)$ is the range of Δ_C . It is easy to see that (arguing as in the proof of [13: Theorem 2.4]), $\Delta_C(T) = 0 = \Delta_{C^*}(T)$ and $T \in \text{ker } \Delta_C$, where $T \in L(H)$. Then

$$
||T - \Delta_C(X|| \ge ||T||
$$

holds for all $X \in L(H)$ and for all $T \in \text{ker } \Delta_c$. Hence $\sum_{i=1}^n C_i W C_i - W = 0$. Conversely, if $\sum_{i=1}^{n} C_i W C_i = W$, then W is a minimum of F_p , and since F_p is differentiable, W is a critical point.

In the above theorem we classified the critical points of the map F_p for $p > 1$. In the following theorem we consider the case $0 < p \leq 1$.

Theorem 3.3. Let $C = (C_1, C_2, \ldots, C_n)$ be an n-tuple of operators in $L(H)$. If

$$
\sum_{i=1}^{n} C_i C_i^* \le 1, \quad \sum_{i=1}^{n} C_i^* C_i \le 1
$$

such that $\Delta_C(S) = 0 = \Delta_{C^*}(S)$ and $S \in \text{ker }\Delta_C \cap C_p$, $0 < p \le 1$, $\dim H < \infty$ and $S (\sum_{i=1}^n C_i WC_i - W)$ is invertible, then F_p has a critical point at W, if $\sum_{i=1}^{n} C_i W C_i - W = 0.$

Proof. Let $W, S \in U$ and let ϕ , be the map defined by

$$
\phi: X \longmapsto S - \Big(\sum_{i=1}^{n} C_{i}XC_{i} - X\Big).
$$

Suppose that dim $H < \infty$. If $\sum_{i=1}^{n} C_i WC_i - W = 0$, then S is invertible by hypothesis. Also |S| is invertible, hence $|S|^{p-1}$ exists for $0 < p \le 1$. Taking $Y = |S|^{p-1} U^*$, where $S = U |S|$ is the polar decomposition of S. As shown in Lemma 3.1, |S| commutes with C_i for all $1 \leq i \leq n$. Hence

$$
C_i |S| = |S| C_i.
$$

Since $\sum_{i=1}^{n} C_i S^* C_i = S^*$, i.e.

$$
\sum_{i=1}^{n} C_i |S| U^* C_i = |S| U^*,
$$

we find

$$
|S| \left(\sum_{i=1}^{n} C_i U^* C_i - U^* \right) = 0 ,
$$

and since

$$
A\,|S|^{p-1} = |S|^{p-1}\,A,
$$

we have

$$
\sum_{i=1}^{n} C_i Y C_i - Y = \sum_{i=1}^{n} C_i |S|^{p-1} U^* C_i - |S|^{p-1} U^*
$$

=
$$
|S|^{p-1} \left(\sum_{i=1}^{n} C_i U^* C_i - U^* \right),
$$

so that $\sum_{i=1}^{n} C_i Y C_i - Y = 0$ and $tr[(\sum_{i=1}^{n} C_i Y C_i - Y) T] = 0$ for all $T \in L(H)$. Since

$$
S = S - \left(\sum_{i=1}^{n} C_i W C_i - W\right),
$$

we have

$$
0 = tr \Big[Y \Big(\sum_{i=1}^{n} C_i T C_i - T \Big) \Big]
$$

\n
$$
= p \Re tr \Big[Y \Big(\sum_{i=1}^{n} C_i T C_i - T \Big) \Big]
$$

\n
$$
= p \Re tr \Big[|S|^{p-1} U^* \Big(\sum_{i=1}^{n} C_i T C_i - T \Big) \Big]
$$

\n
$$
= (\mathcal{D}_S \phi) \Big(\sum_{i=1}^{n} C_i T C_i - T \Big)
$$

$$
= (\mathcal{D}_W F_p)(T),
$$

which proofs the assertion.

At the end we use a familar device of considering 2x2 operator matrices to extend the previous theorems to the elementary operator $\sum_{i=1}^{n} A_i X B_i - X$.

Theorem 3.4. Let $A = (A_1, A_2, ..., A_n), B = (B_1, B_2, ..., B_n)$ be n-tuples of operators in $L(H)$ such that

$$
\sum_{i=1}^{n} A_i A_i^* \le 1, \sum_{i=1}^{n} A_i^* A_i \le 1, \sum_{i=1}^{n} B_i B_i^* \le 1, \sum_{i=1}^{n} B_i^* B_i \le 1.
$$

If $\Delta_{A,B}(T) = 0 = \Delta_{A,B}^*(T)$ and $T \in \text{ker } \Delta_{A,B} \cap C_p$, then it holds for $1 \leq p < \infty$.

- (i) the map F_p has a global minimizer at W if, and for $1 < p < \infty$ only if, $\sum_{i=1}^{n} A_i W B_i - W = 0$
- (ii) the map F_p has a critical point at W if, and for $1 < p < \infty$ only if, $\sum_{i=1}^{n} A_i W B_i - W = 0$
- (iii) the map F_p , $0 < p \le 1$, has a critical point at W if $\sum_{i=1}^n A_i W B_i W = 0$ provided dim $H < \infty$ and $S - (\sum_{i=1}^{n} A_i W B_i - W)$ is invertible.

Proof. It suffices to take the Hilbert space $H \oplus H$, and operators

$$
C_i = \left[\begin{array}{cc} A_i & 0 \\ 0 & B_i \end{array} \right] \ S = \left[\begin{array}{cc} 0 & T \\ 0 & 0 \end{array} \right], X = \left[\begin{array}{cc} 0 & X \\ 0 & 0 \end{array} \right]
$$

and apply Theorem 3.1, Theorem 3.2 and Theorem 3.3. These arguments use operator matrices as in Bouali and Cherki [3] and Mecheri [7].

Remark.

1. In Theorem 3.2, the implication

W is a critical point
$$
\implies \sum_{i=1}^{n} A_i W B_i - W = 0
$$

does not hold in the case $0 < p \le 1$ (cf. Maher [8]).

2. Theorems 3.1, 3.2, 3.3 and 3.4 hold in particular if A and B are contractions. Indeed, it is known from [4] that if A and B are contractions and $\Delta_{A,B}(S) = ASB - S = 0$, where $S \in C_p$, then

$$
\Delta_{A^*,B^*}(S) = \delta_{A^*,B}(S) = \delta_{A,B^*}(S) = 0.
$$

3. If $A \in C_p$, the conclusions of Theorems 3.1, 3.2, 3.3 and 3.4 hold for all $X \in L(H)$ (cf. Maher [9]).

Г

Acknowledgment. The author would like to thank the referee for his careful reading of the paper. His valuable suggestions, critical remarks, and pertinent comments made numerous improvements throughout.

References

- [1] Anderson, J. H.: On normal derivations. Proc. Amer. Math. Soc. 38 (1973), $135 - 140.$
- [2] Almoadjil, A. H.: The commutants of relatively prime powers in Banach alge*bra.* Proc. Amer. Math. Soc. 57 (1976), $243 - 251$.
- [3] Bouali, S. and S. Cherki: Approximation by generalized commutators. Acta Sci. Math. (Sczeged) 63 (1991), 213 – 218.
- [4] Douglas, R.G.: On the operator $S^*XT = X$ and related topics. Acta sci. Math. (Szeged) 30 (1969), 19 – 32.
- [5] Duggal, B. P.: On intertwining operators. Monatsh. Math. 106 (1988), 139 148.
- [6] Gohberg, I. C. and M. G. Krein: Introduction to the Range of Linear Nonselfadjoint Operators. Trans. Math. Monogr. 18. Providence: Amer. Math. Soc. 1969.
- [7] Mecheri, S.: On minimizing $||S (AX XB)||_n^p$ $_{p}^{p}$. Serdica. Math. J. 26 (2000), $119 - 126$.
- [8] Mecheri, S.: Non-normal derivation and orthogonality. Proc. Amer. Math. Soc. (in press).
- [9] Maher, P. J.: Commutator approximants. Proc. Amer. Math. Soc. 115 (1992), $995 - 1000.$
- [10] Maher, P. J.: Some norm inequalities concerning generalized inverses. Lin. Alg. Appl. 174 (1992), 951 – 960.
- [11] Schatten, R.: Norm Ideals of Completely Continuous Operators. Berlin: Springer-Verlag 1960.
- [12] Simon, B.: Trace Ideals and Their Applications. Cambridge: Cambridge Univ. Press 1979.
- [13] Turnsek, A.: Elementary operators and orthogonality. Lin. Alg. Appl. 317 $(2000), 207 - 216$

Received 10.10.2002; in revised form 13.01.2004