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Asymptotic Behavior of the Solutions of an
Elliptic-Parabolic System

Arising in Flow in Porous Media

Y. Amirat and A. Ziani

Abstract. We study the asymptotic behavior, with respect to high Péclet numbers,
of the solutions of the nonlinear elliptic-parabolic system governing the displacement
of one incompressible fluid by another, completely miscible with the first, in a porous
medium. Using compensated compactness techniques, we obtain the existence of a
global weak solution to the nonlinear degenerate elliptic-parabolic system modelling
the flow when the molecular diffusion effects are neglected.
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1. Introduction and formulation of the problem

This paper is concerned with the mathematical analysis of a model describing
fluid flow and transport processes in porous media that arise in petroleum
engineering simulation or in subsurface contaminant transport. We consider
a model problem consisting of the isothermal miscible displacement of an
incompressible binary mixture.

Let Ω be a bounded domain of Rd (d = 2, 3) representing the porous reser-
voir, (0, T ) a time interval and ΩT = Ω× (0, T ). Under appropriate physical
assumptions, the equations describing the displacement of one incompressible
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fluid by another, completely miscible with the first, are given by

div u = q+ − q−

u = −κ(x)
µ(c)

grad p

φ(x) ∂tc + u · grad c + c q+ − div (D(x, u)grad c) = ĉ q+





(1.1)

for (x, t) ∈ ΩT . We refer to Bear [3], Chavent and Jaffré [4], Douglas [7], and
Scheidegger [16] for a detailed description of the model.

Here, the gravitational terms are omitted for simplicity of exposition, p
is the pressure in the fluid mixture, u is the Darcy velocity, c denotes the
concentration of one of the two components of the fluid mixture, κ = κ(x) is
the absolute permeability of the rock, φ = φ(x) is the porosity, and µ is the
concentration-dependent viscosity. φ and κ (case of isotropy) are arbitrary
bounded measurable functions on Ω that satisfy

0 < φ∗ ≤ φ(x) ≤ φ−1
∗

0 < κ∗ ≤ κ(x) ≤ k−1
∗

}
(x ∈ Ω) (1.2)

where φ∗ and κ∗ are given real numbers. Note that, by definition,

0 ≤ c(x, t) ≤ 1 ((x, t) ∈ ΩT ).

The viscosity µ = µ(c) is assumed to follow the quarter-power mixing rule,
widely used (see Koval [12])

µ(c) = µ(0)
(
1 + (M

1
4 − 1)c

)−4 (c ∈ (0, 1)) (1.3)

where M = µ(0)
µ(1) is the mobility ratio. The stability of the flow is characterized

by the mobility ratio; it has been observed experimentally that for M > 1
instabilities in the flow will grow into viscous fingers.

The functions q+ and q− are the injection and production source terms,
respectively, and ĉ is specified at the sources and is equal to the resident
concentration at the sinks.

The hydrodynamic dispersion tensor D(x, u) has the form

D(x, u) = φ(x)
(
dm I + D◦(u)

)

D◦(u) = |u|(dlE(u) + dt(I − E(u))
) (1.4)

where I is the identity matrix, E is the matrix
(ui uj

|u|2
)
, dm is the molecular

diffusion coefficient, D◦(u) is the mechanical dispersion tensor, dl and dt (dl ≥
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dt) are the longitudinal and transverse dispersion coefficients, respectively. We
notice that the hydrodynamic dispersion tensor satisfies

D(x, u) ξ · ξ ≥ φ∗ (dm + dt|u|) |ξ|2m
|D(x, u) ξ| ≤ φ−1

∗ (dm + dl |u|) |ξ|
(1.5)

for ξ ∈ Rd and x ∈ Ω. At relatively high flow velocities, corresponding to
Péclet numbers Pe À 1, the effects of mechanical dispersion are much greater
than those of molecular diffusion, the contribution of molecular diffusion often
is negligible (see Bear [3], Anderson [2], Coutinho and Alvez [6], Pearson and
Tardy [15], Shubin and Bell [17], and Young [19]).

Equation (1.1)1 (with (1.1)2) is the pressure equation derived from the
conservation of the total mass and (1.1)3 is the concentration equation derived
from the conservation of mass for one of the two components of the mixture.
The pressure equation is of elliptic nature while the concentration equation is
an advection-diffusion equation, advection being the dominant phenomenon.

System (1.1) is provided with the boundary and initial conditions

u · ν = 0

D(x, u) grad c · ν = 0 on ΓT

c(x, 0) = c0(x) on Ω





(1.6)

where ΓT = Γ×(0, T ), Γ denoting the boundary of Ω, and ν is the unit normal
pointing outward Ω. Since the pressure is only determined up to a constant
we additionally require that the pressure is normalized, i.e.

∫
Ω

p(x, t) dx = 0
for all t ∈ (0, T ).

The aim of the present paper is to report on the case where the molecular
diffusion is neglected. One important character of the corresponding mathe-
matical model is the possible degeneracy, in the stagnant zone, of the second
order diffusion operator in the concentration equation. The diffusion operator
may be zero pointwise, it can be small or zero in regions of the solution space,
and fairly large for other values of the solution. Consequently, solutions of
the concentration equation will, in general, possess minimal smoothness. The
main difficulty in studying system (1.1) is due to the strong coupling of the
equations, we do not know a priori the regions where u has zero, small or
large values.

We make the following assumptions:

(A1) Ω is a simply connected bounded domain in Rd (d ≤ 3) with boundary
Γ in the class C1,1.

(A2) c0 ∈ L∞(Ω) and 0 ≤ c0(x) ≤ 1 a.e. in Ω.
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(A3) ĉ ∈ L∞(ΩT ) and 0 ≤ ĉ(x, t) ≤ 1 a.e. in ΩT .

(A4) q+, q− ∈ L∞(0, T ; L2(Ω)) and
∫
Ω
(q+ − q−) dx = 0.

(A5) The function µ ∈ C2([0, 1]) is such that µ and 1
µ are strictly convex

and 0 < µ− ≤ µ(c) ≤ µ+ for all c ∈ (0, 1).

where µ− and µ+ are two fixed real numbers. Obviously, the function µ
defined by (1.3) satisfies (A5). In addition, we suppose the porosity and the
permeability of the medium constant and equal to 1; the same analysis applies
at least for κ in W 1,∞(Ω) and φ satisfying (1.2).

We first recall the following well-known result (see Mikelić [14], Fabrie and
Langlais [8], Feng [9], and Chen and Ewing [5]).

Theorem 1.1. Assume that hypotheses (A1) - (A5) hold, dl ≥ dt > 0 and
dm > 0. Then there exists a pair (p, c) of functions p ∈ L∞(0, T ;H1(Ω)) and
c ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ;H1(Ω)), satisfying

∫

Ω

p(x, t) dx = 0

0 ≤ c(x, t) ≤ 1 for a.e. x ∈ Ω
(t ∈ (0, T ))

solution to system (1.1) provided with conditions (1.6).

In the sequel, we take dm = ε with 0 < ε ¿ 1 and dl ≥ dt > 0 in (1.4),
thus

D(uε) = ε I + D◦(uε).

We consider the elliptic-parabolic system

div uε = q+ − q−

uε = − 1
µ(cε) grad pε

uε · ν|ΓT
= 0∫

Ω
pεdx = 0

∂tc
ε + uε · grad cε + cεq+ − div (D(uε) grad cε) = ĉ q+

D(uε) grad cε · ν|ΓT = 0

cε|t=0 = c0





(1.7)

We examine the asymptotic behavior, as ε →, 0, of the weak solutions (pε, cε)
of this problem. The main objective of the paper is to prove the existence of
a weak solution, in the sense hereafter, to problem (1.7) in the case ε = 0,
that is when the molecular diffusion effects are neglected. The limit problem
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is a degenerate elliptic-parabolic system which writes as

div u = q+ − q−

u = − 1
µ(c) grad p

u · ν|ΓT
= 0∫

Ω
p dx = 0

∂tc + u · grad c + c q+ − div (D◦(u) grad c) = ĉ q+

D◦(u) grad c · ν|ΓT
= 0

c|t=0 = c0





(1.8)

where D◦(u) is the mechanical dispersion tensor which writes also

D◦(u) = (dl − dt)
u u>

|u| + dt|u| I. (1.9)

Definition 1.2. A pair (p, c) is said to be a weak solution of Problem (1.8)
if:

(i) p ∈ L∞(0, T ; H1(Ω)) and p is a solution of the elliptic problem defined
by the first four equations of system (1.8).

(ii) c ∈ L∞(ΩT ) with 0 ≤ c(x, t) ≤ 1 a.e. on ΩT , with |u| 12 grad c ∈
(L2(ΩT ))d, and c satisfies the last three equations of system (1.8) in
the sense that

∫

ΩT

{
c ∂tϕ + c u · gradϕ−D◦(u) grad c · gradϕ− c q−ϕ

}
dxdt

= −
∫

ΩT

ĉ q+ϕ dxdt−
∫

Ω

c0(x)ϕ(x, 0) dx

for any ϕ ∈ C1(ΩT ) with compact support in Ω× [0, T ).

Note here that the conditions u ∈ (
L∞(0, T ;L2(Ω))

)d and |u| 12 grad c ∈
(L2(ΩT ))d imply, by Hölder’s inequality, that |u| grad c ∈ (

L2(0, T ; L
4
3 (Ω))

)d,
and then, by the last inequality of (1.5) with dm = 0, that D◦(u) grad c ∈(
L2(0, T ; L

4
3 (Ω))

)d.

Our main result is the following one.

Theorem 1.3. Assume that hypotheses (A1) - (A5) hold. Let ε > 0 and
dl ≥ dt > 0 in (1.9) and let (pε, cε) denote a corresponding weak solution to
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system (1.7). Then there are extracted subsequences from (pε), (uε), (cε), not
relabelled for convenience, and functions p, u, c such that, as ε → 0,

pε → p strongly in L2(0, T ; H1(Ω))

uε → u strongly in (L4(ΩT ))d

cε ⇀ c weak-* in L∞(ΩT )

cεuε → cu strongly in (L2(ΩT ))d.

Moreover, the pair (p, c) is a weak solution of the degenerate elliptic-parabolic
system (1.8) in the sense of Definition 1.2.

This result is, in a way, an extension to the d-dimensional case of the one
we obtained in [1] for the 1-dimensional case. We note (as in [1]) that the
convergence of the sequence (cε) is only weak-* in L∞(ΩT ), and Hypothesis
(A5) is crucial in the proof of Theorem 1.3.

The next section is devoted to the proof of Theorem 1.3. Let us men-
tion that uniqueness of the weak solution of the degenerate elliptic-parabolic
system (1.7) is an open problem.

2. Proof of Theorem 1.3

The proof consists of two parts. In the first one we derive some estimates for
pε, uε, cε that are independent of ε. In the second part we pass to the limit,
as ε → 0, using compensated compactness techniques.

In the sequel, for convenience, the convergent extracted subsequences are
not relabelled, i.e. they are denoted likewise the original sequences.

2.1 Some estimates. Let, for any ε > 0, (pε, cε) denote a corresponding
weak solution to problem (1.7). We first establish the following estimates.

Lemma 2.1. The following assertions hold:
(i) The sequence (pε) is bounded in L∞(0, T ; H1(Ω)).

(ii) The sequences (
√

ε grad cε) and (|uε| 12 grad cε) are bounded in the
space (L2(ΩT ))d, and the sequences (uε ·grad cε) and

(
D(uε) grad cε ·

grad cε
)

are bounded in the spaces L2(0, T ; L
4
3 (Ω)) and L1(ΩT ), re-

spectively.
(iii) The sequence (pε) is bounded in L2

(
0, T ; W 2, 4

3 (Ω)
)

and the sequence

(uε) is bounded in
(
L2(0, T ; W 1, 4

3 (Ω))
)d.

Proof. Assertion (i). On multiplying the first equation in (1.7) by pε and
integrating over Ω, we obtain∫

Ω

1
µ(cε)

|grad pε|2dx =
∫

Ω

(q+ − q−)pεdx.
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Using the inequality
∫

Ω

|(q+ − q−)|pεdx ≤ δ

∫

Ω

|pε|2dx +
1
4δ

∫

Ω

|q+ − q−|2dx

for any δ > 0 and the Poincaré inequality we obtain
∫

Ω

1
µ(cε)

|grad pε|2dx ≤ 1
4δ

∫

Ω

|q+ − q−|2dx + Cδ

∫

Ω

|grad pε|2dx

where C is a constant independent of ε. According hypothesis (A5) and
choosing δ small enough, we infer that the sequence (pε) is bounded in the
space L∞(0, T ; H1(Ω)), and therefore (uε) is bounded in

(
L∞(0, T ;L2(Ω))

)d.
Assertion (ii). We multiply the fourth equation of system (1.7) by cε

and integrate over Ω. This gives

1
2

d

dt

∫

Ω

|cε|2dx +
∫

Ω

D(uε) grad cε · grad cεdx

= −
∫

Ω

(uε · grad cε) cεdx +
∫

Ω

(ĉ− cε) q+ cεdx.

By Theorem 1.1 we have 0 ≤ cε(x, t) ≤ 1, then
∫

Ω

∣∣(uε · grad cε) cε
∣∣ dx ≤ δ

∫

Ω

|uε| |grad cε|2dx +
1
4δ

∫

Ω

|uε| dx

for any δ > 0. Using the first inequality of (1.5), we then have

1
2

d

dt

∫

Ω

|cε|2dx + (dt − δ)
∫

Ω

|uε| |grad cε|2dx + ε

∫

Ω

|grad cε|2dx

≤ 1
4δ

∫

Ω

|uε| dx +
∫

Ω

(ĉ + 1) |q+| dx.

Integrating with respect to t and choosing δ small enough, we obtain that the
sequences (|uε| 12 grad cε) and (

√
ε grad cε) are bounded in (L2(ΩT ))d. Then,

writing
|uε · grad cε| ≤ |uε| |grad cε| = |uε| 12 |uε| 12 |grad cε|

and using Hölder’s inequality and the previous estimates, we find that the
sequence (uε · grad cε) is bounded in L2(0, T ;L

4
3 (Ω)). Then, by the last in-

equality of (1.5), the sequence (D(uε) grad cε · grad cε) is bounded in L1(ΩT ).
Assertion (iii). Writing the pressure equation in the form

−∆pε = −µ′(cε)uε · grad cε + µ(cε) (q+ − q−)

uε · ν|ΓT = 0∫

Ω

pε(x, t) dx = 0
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we deduce, following Grisvard [10], that

(pε) is bounded in L2(0, T ;W 2, 4
3 (Ω))

(uε) is bounded in
(
L2(0, T ; W 1, 4

3 (Ω))
)d.

Thus Lemma 2.1 is proved.

Now we investigate the limit behavior, as ε → 0, of the weak solutions
(pε, cε) of problem (1.7). By Lemma 2.1, there are functions

p ∈ L∞(0, T ;H1(Ω))

u ∈ (
L∞(0, T ; L2(Ω))

)d

c ∈ L∞(ΩT )

such that, for an appropriate subsequence,

pε ⇀ p weak-* in L∞(0, T ;H1(Ω))

uε ⇀ u weak-* in
(
L∞(0, T ; L2(Ω))

)d

cε ⇀ c weak-* in L∞(ΩT ).

Note that, in virtue of Theorem 1.1, 0 ≤ c(x, t) ≤ 1 a.e. in ΩT .
The objective is to characterize the triplet (p, u, c). First, we write the

fourth equation of system (1.7) in the form

∂tc
ε + div

(
cεuε −D(uε) grad cε

)
+ cεq− = ĉ q+.

After multiplication by a test function ϕ in C1(ΩT ) with compact support in
Ω× [0, T ) and integration by parts, we obtain

∫

ΩT

{
cε∂tϕ + (cεuε −D(uε) grad cε) · grad ϕ− cεq− ϕ

}
dxdt

= −
∫

ΩT

ĉ q+ϕdxdt−
∫

Ω

c0(x)ϕ(x, 0) dx.

(2.1)

It follows from the second inequality of (1.5) and Lemma 2.1/(ii) that the
sequence

(
D(uε) grad cε

)
is bounded in

(
L2(0, T ; L

4
3 (Ω))

)d. Then letting ε →
0 in (2.1) yields

∫

ΩT

{
c ∂tϕ + c u · grad ϕ−D · gradϕ− c q−ϕ

}
dxdt

= −
∫

ΩT

ĉ q+ϕdxdt−
∫

Ω

c0(x)ϕ(x, 0) dx
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where, for extracted subsequences,

cε uε ⇀ cu weak-* in
(
L∞(0, T ;L2(Ω))

)d

D(uε) grad cε ⇀ D weakly in
(
L2(0, T ; L

4
3 (Ω))

)d
.

(2.2)

We then have, in the sense of distributions in ΩT ,

∂tc + div (c u)− div D + c q− = ĉ q+. (2.3)

In what follows, we try to get more information on c u, u and D.

2.2 Passing to the limit as ε → 0. We begin by recalling the following
compensated compactness result, derived from the characterization of com-
pact sets of Aubin-Simon type as described in Lions [13], and due to Kazhikhov
[11: Lemma 6].

Lemma 2.2. Let V, W, V1 be Banach spaces such that

D(Ω) ⊂ V ⊂ W ⊂ D′(Ω)

V ′ ⊂ V ′
1 ⊂ D′(Ω)

with continuous embedding, the embedding V ⊂ W being compact. Further,
let (αε) and (βε) be sequences such that, for some 1 < p < ∞,

(αε) is bounded in Lp(0, T ; V )

αε ⇀ α weak in Lp(0, T ; W )

(βε) is bounded in Lq(0, T ; W ′)

βε ⇀ β weak in Lq(0, T ;W ′) (q ≥ p
p−1 )

(∂tβ
ε) is bounded in Lp1(0, T ;V ′

1) (1 ≤ p1 ≤ ∞).

Then one can extract subsequences such that αεβε ⇀ αβ in D′(ΩT ).

The aim is first to prove that c u = c u.

Lemma 2.3. For extracted subsequences, cεuε ⇀ cu weak-* in the space(
L∞(0, T ; L2(Ω))

)d.

Proof. According to Lemma 2.1/(iii), it follows from the fourth equation of
system (1.7) that (∂tc

ε) is uniformly bounded in L2(0, T ; W−1, 4
3 (Ω)). Let

V = W 1, 4
3 (Ω), W = L

4
3 (Ω), V1 = W 1,4(Ω).

Then D(Ω) ⊂ V , W ⊂ D′(Ω) and V is compactly embedded into W . More-
over, V1 ⊂ V so that the sequence (∂tc

ε) is bounded in L2(0, T ; (W 1,4(Ω))′).
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Since 0 ≤ cε(x, t) ≤ 1 a.e. in ΩT , the sequence (cε) is bounded in the space
Lq(0, T ; L4(Ω)) for any q ≥ 1. Thus

(uε) is bounded in (L2(0, T ;V ))d

uε ⇀ u weak in (L2(0, T ; W ))d

(∂tc
ε) is bounded in L2(0, T ;V ′)

cε ⇀ c weak in L2(0, T ;W ′).

Then the proof follows from Lemma 2.2 and the fact that the sequence (cεuε)
is bounded in the space

(
L∞(0, T ;L2(Ω))

)d.

We have the following characterization of the flux u in terms of the pres-
sure p and the concentration c.

Lemma 2.4. The limit flux function u is given by u = − 1
µ(c) grad p.

Proof. We proceed as in [1]. The sequence (µ(cε)) is bounded in L∞(ΩT ).
According to hypothesis (A5), there are µ, µ−1 ∈ L∞(ΩT ) such that, for
extracted subsequences, µ(cε) ⇀ µ and 1

µ(cε) ⇀ 1
µ−1 weak-* in L∞(ΩT ). We

multiply the fourth equation of system (1.7) by µ′(cε). This writes in the form

∂tµ(cε) + µ′(cε)uε · grad cε

+ µ′(cε) cεq+ − div (µ′(cε)D(uε) grad cε)

= −µ′′(cε)D(uε) grad cε · grad cε + µ′(cε) ĉ q+.

In view of Lemma 2.1/(ii), the right-hand side herein is bounded in L1(ΩT ).
Then the sequence (∂tµ(cε)) is bounded in L2

(
0, T ; (W 1, 4

3 (Ω))′
)
. Arguing as

in Lemma 2.3 we obtain for a subsequence

µ(cε) uε ⇀ µu weak-* in
(
L∞(0, T ; L2(Ω))

)d
. (2.4)

This gives u = − grad p
µ .

We observe that 1
µ(cε) satisfies

∂t

(
1

µ(cε)

)
− µ′(cε)

µ(cε)2
uε · grad cε

− µ′(cε)
µ(cε)2

cεq+ − div
(

D(uε) grad
( 1
µ(cε)

))

=

(
µ′′(cε) µ(cε)− 2 µ′(cε)2

)

µ(cε)3
D(uε) grad cε · grad cε − µ′(cε)

µ(cε)2
ĉ q+.
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The sequence ( 1
µ(cε) ) has the same properties as (µ(cε)), and the sequence

(grad pε) has the same properties as (uε). Then we can apply the same anal-
ysis. We obtain, for an appropriate subsequence,

grad pε

µ(cε)
⇀

grad p

µ−1
= −u weak-* in

(
L∞(0, T ;L2(Ω))

)d
.

We get µu = µ−1 u. Then, following Tartar [18], the convexity of the function
µ gives µ ≥ µ(c). By considering the function 1

µ we get 1
µ−1

≥ 1
µ(c) . Therefore

µ ≥ µ(c) ≥ µ−1 and

µu = µ(c)u = µ−1 u = −grad p. (2.5)

This ends the proof of Lemma 2.4.

Let us now state and prove the following result.

Lemma 2.5. Up to a subsequence, grad pε → grad p strongly in the space
(L2(ΩT ))d.

Proof. According to Lemma 2.4, the weak limit u satisfies

div u = q+ − q−, u = − 1
µ(c)

grad p, u · ν = 0 on ΓT . (2.6)

We also have div (uε − u) = 0. After multiplication by pε − p and integration
over ΩT we get

∫

ΩT

div (uε − u) (pε − p) dxdt = −
∫

ΩT

(uε − u) · grad (pε − p) dxdt = 0.

Then ∫

ΩT

1
µ(cε)

∣∣grad (pε − p)
∣∣2dxdt

=
∫

ΩT

( 1
µ(c)

− 1
µ(cε)

)
grad p · grad (pε − p) dxdt

=
∫

ΩT

(
uε +

1
µ(cε)

grad p
)
· grad p dxdt

+
∫

ΩT

1
µ(c)

grad p · grad (pε − p) dxdt.

(2.7)

Sending ε → 0, taking into account Lemma 2.4, the right-hand side herein
converges to ∫

ΩT

(
− 1

µ(c)
+

1
µ−1

)
grad p · grad p dxdt

and this limit is 0, according to (2.5). To conclude, we note that the left-hand
side of (2.7) is bounded below by µ−1

+ ‖grad (pε − p)‖2L2(ΩT ). This completes
the proof of Lemma 2.5.
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We can now establish results of strong convergence for the sequences (uε)
and (cεuε).

Lemma 2.6. It holds that

uε → u strongly in (L2(ΩT ))d (2.8)

cεuε → cu strongly in (L2(ΩT ))d (2.9)

uε · grad cε ⇀ u · grad c weak in L2(0, T ; L
4
3 (Ω)). (2.10)

Proof. It follows from (2.4) and (2.5) that the sequence (µ(cε)u) converges
weakly in (L2(ΩT ))d to µ(c) u. We have

µ(cε)− µ(c)− (cε − c)µ′(c) = 1
2 (cε − c)2 µ′′(dε)

with dε ∈ (0, 1) and, multiplying this relation by u,

µ(cε) u− µ(c)u− (cε − c)µ′(c)u = 1
2 (cε − c)2 µ′′(dε)u.

The left-hand side herein goes weakly to zero in (L2(ΩT ))d as ε → 0, then
also the right-hand side. Hence∫

ΩT

µ′′(dε) (cε − c)2u · u dxdt → 0.

The strict convexity of µ implies that∫

ΩT

(cε − c)2u · u dxdt → 0.

This proves that the sequence (cεu) converges strongly in (L2(ΩT ))d to cu.
It holds also that (µ(cε)u) converges strongly in (L2(ΩT ))d to µ(c)u. Then,
writing

µ(cε) |uε − u| = ∣∣µ(cε)uε − µ(cε) u
∣∣

≤
∣∣µ(cε)uε − µ(c)u

∣∣ +
∣∣(µ(c)− µ(cε)) u

∣∣
= |∇pε −∇p|+

∣∣(µ(c)− µ(cε)) u
∣∣

we deduce, using Lemma 2.5 and hypothesis (A5), that the sequence (uε)
converges strongly in (L2(ΩT ))d to u. Then (2.8) is proved.

Writing
cε uε − c u = cε (uε − u) + (cε − c)u

we conclude that the sequence (cεuε) converges strongly in (L2(ΩT ))d to cu,
i.e. (2.9) is proved.

We note that the sequence (uε · grad cε) is bounded in L2(0, T ; L
4
3 (Ω))

according to Lemma 2.1/(ii). Using the first equation of system (1.7) we have

uε · grad cε = div (cεuε)− cε(q+ − q−).

Passing to the limit as ε → 0, using (2.6) and (2.9) we deduce (2.10). This
ends the proof of the lemma.
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The next part is concerned with the behavior of the dispersion term. For
this purpose, let ϕ ∈ C1(ΩT ) with compact support in Ω× [0, T ) and let

Iε(ϕ) =
∫

ΩT

D(uε) grad cε · gradϕdxdt

=
√

ε Iε
1(ϕ) + (dl − dt) Iε

2(ϕ) + dt Iε
3(ϕ)

(2.11)

with
Iε
1(ϕ) =

√
ε

∫

ΩT

grad cε · grad ϕdxdt

Iε
2(ϕ) =

∫

ΩT

uε(uε)>

|uε| grad cε · grad ϕdxdt

Iε
3(ϕ) =

∫

ΩT

|uε| grad cε · grad ϕdxdt.

The convergence of these integrals can be achieved as follows.
Applying the Cauchy-Schwarz inequality and using Lemma 2.1/(ii), we

see that the sequence (Iε
1(ϕ)) is bounded and then limε→0

√
ε Iε

1(ϕ) = 0.
Further, we write Iε

2(ϕ) as

Iε
2(ϕ) =

∫

ΩT

uε

|uε| 12 · grad cε uε

|uε| 12 · gradϕdxdt.

By (2.8), the sequence (uε) converges strongly in (L2(ΩT ))d to u, then there
is an extracted subsequence such that uε → u a.e. in ΩT . From Lemma
2.1/(iii) and the Sobolev embedding theorem, it follows that (uε) is bounded in(
L2(0, T ; Lq(Ω))

)d with q = 4d
3d−4 . Bearing in mind that (uε) is also bounded

in
(
L∞(0, T ; L2(Ω))

)d, we deduce by interpolation that (uε) is bounded in(
Lr(0, T ;LsΩ)

)d with 1
r = α

2 and 1
s = α

q + 1−α
r where 0 < α < 1. We choose

α so that r = s, i.e. α = 2d
d+4 , which gives r = s = d + 4

d . Thus the sequence
(uε) is bounded in (Lr(ΩT ))d and we notice that r > 2.

Consider now the continuous function Ψ:Rd → Rd, defined by Ψ(v) = v

|v| 12
if v 6= 0 and Ψ(v) = 0 otherwise. From the above considerations we deduce
that Ψ(uε) → Ψ(u) a.e. in ΩT and that the sequence (Ψ(uε)) is bounded
in (L2r(ΩT ))d. Noticing that 2r > 4 we deduce that, for an appropriate
subsequence, Ψ(uε) → Ψ(u) strongly in (L4(ΩT ))d which implies

Ψ(uε) · grad ϕ → Ψ(u) · gradϕ strongly in L4(ΩT ). (2.12)

Similarly we have, for an appropriate subsequence,

|uε| 12 → |u| 12 strongly in L4(ΩT ). (2.13)
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Let us denote ξε = Ψ(uε) · grad cε. We know by Lemma 2.1/(ii) that the
sequence (ξε) is bounded in L2(ΩT ). Then there is ξ in L2(ΩT ) such that, for
an appropriate subsequence, ξε ⇀ ξ in L2(ΩT ) weak. We deduce with (2.12)
that

lim
ε→0

Iε
2(ϕ) =

∫

ΩT

ξ Ψ(u) · gradϕdxdt.

From the relation ξε|uε| 12 = uε · grad cε, using (2.10) and (2.13), we deduce
ξ |u| 12 = u · grad c. This gives, for a.e. (x, t) ∈ ΩT such that u(x, t) 6= 0,

ξ(x, t) =
( u

|u| 12 · grad c
)
(x, t).

We notice that, for a.e. (x, t) ∈ ΩT with u(x, t) = 0, (ξ Ψ(u) ·gradϕ)(x, t) = 0.
Hence

ξ Ψ(u) · grad ϕ =
(u · grad c) (u · grad ϕ)

|u|
and then

lim
ε→0

Iε
2(ϕ) =

∫

ΩT

(u · grad c) (u · gradϕ)
|u| dxdt

=
∫

ΩT

uu>

|u| grad c · grad ϕdxdt.

(2.14)

To determine the limit of Iε
3(ϕ) as ε → 0 we introduce the sequence given

by ζε = |uε| 12 grad cε so that

Iε
3(ϕ) =

∫

ΩT

ζε · (|uε| 12 gradϕ) dxdt.

In view of Lemma 2.1/(ii), there is ζ ∈ (L2(ΩT ))d such that, for an appropriate
subsequence, ζε ⇀ ζ weakly in (L2(ΩT ))d. We deduce from (2.13) that, for
an appropriate subsequence, |uε| 12 grad ϕ → |u| 12 gradϕ strongly in (L4(ΩT ))d

and then
lim
ε→0

Iε
3(ϕ) =

∫

ΩT

ζ · (|u| 12 grad ϕ
)
dxdt.

To characterize ζ we write

uε
i ζ

ε = uε
i |uε| 12 grad cε

= |uε| 12 grad (cεuε
i )− cε|uε| 12 grad uε

i

(2.15)

for any component uε
i of uε (1 ≤ i ≤ d). Due to (2.9) and (2.13) we have, for

an appropriate subsequence,

|uε| 12 grad (cεuε
i ) ⇀ |u| 12 grad (cui) in (D′(ΩT ))d (2.16)
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and note here that |u| 12 grad (cui) ∈ (L1(ΩT ))d.
We also have, for an appropriate subsequence,

cε|uε| 12 → c|u| 12 strongly in L4(ΩT ). (2.17)

Indeed, according to (2.9) and (2.13), one can extract subsequences such that

cε|uε| 12 ⇀ c|u| 12 weakly in L4(ΩT )

and ∫

ΩT

|cε|2|uε| dxdt =
∫

ΩT

cε|cεuε| dxdt →
∫

ΩT

c2|u| dxdt.

Thus cε |uε| 12 → c|u| 12 strongly in L2(ΩT ) and therefore, since the sequence
(cε|uε| 12 ) is bounded in L2r(ΩT ) (2r > 4), one can extract subsequences such
that (2.17) holds. This implies

cε|uε| 12 graduε
i ⇀ c|u| 12 gradui in (D′(ΩT ))d. (2.18)

Note also that c|u| 12 gradui ∈ (L1(ΩT ))d. Passing to the limit in (2.15), using
(2.16) and (2.18) we get

uiζ = ui|u| 12 grad c (2.19)

for any component (1 ≤ i ≤ d). Then, for a.e. (x, t) ∈ ΩT such that u(x, t) 6=
0, which implies ui(x, t) 6= 0 for some 1 ≤ i ≤ d, (2.19) gives

ζ(x, t) =
(|u| 12 grad c

)
(x, t).

We notice that, for a.e. (x, t) ∈ ΩT with u(x, t) = 0, (ζ · |u| 12 gradϕ)(x, t) = 0.
Hence ζ · |u| 12 gradϕ = |u| grad c · grad ϕ and then

lim
ε→0

Iε
3(ϕ) =

∫

ΩT

|u| grad c · gradϕ dxdt. (2.20)

Collecting (2.11), (2.14) and (2.20) we conclude that

lim
ε→0

Iε(ϕ) =
∫

ΩT

D◦(u) grad c · gradϕ dxdt

where D◦(u) is given by (1.9) and the limit D in the second relation of (2.2)
is characterized by D = D◦(u) grad c. Therefore, (p, u) satisfies the first three
equations of system (1.8) and equation (2.3) can be written also in form of the
fourth equation of system (1.8). The proof of Theorem 1.3 is now complete.
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