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Error Estimates for Parabolic Optimal Control
Problems with Control Constraints

A. Rosch

Abstract. An optimal control problem for the 1-d heat equation is investigated
with pointwise control constraints. This paper is concerned with the discretization
of the control by piecewise linear functions. The connection between the solutions of
the discretized problems and the continuous one is investigated. Under an additional

assumption on the adjoint state an approximation order o2 is proved for uniform dis-

cretizations. In the general case it is shown that a non-uniform control discretization
o 3 . .

ensures an approximation of order o2. Numerical tests confirm the theoretical part.
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1. Introduction

The paper is concerned with the discretization of parabolic optimal control
problems. We discuss here the case of a boundary control

min  J(u) = 3lly(T,-) — yalls + 5lull
(P): ¢ subject to (1.1)
anduveC={ueUla<u<b ae on|0,T]}

of the 1-d heat equation

y(t,x) = yu(t, x) in (0,7) x (0,1)

y(0,z) = y°(x) in (0,1)

yz(t, 0) 0 in (0,7) (1-1)
Yo (t, 1) u(t) in (0,7)
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where U = L?(0,T), Y = L?(0,1), and y°,yq € Y. Moreover, v > 0, a, b are
real numbers with a > b. Control and state have to be discretized for practical
calculations. A numerical approximation of the problem has to include the
discretization of both the control and the state. The discretization of the state
causes other effects in comparison with that of the control. Roughly speaking,
the discretization of the state equation causes different effects than that of the
control. It turns out that the control discretization is the real bottleneck in
proving error estimates. Therefore, we concentrate here on the discretization of
the control.

For this purpose, we introduce a finite dimensional space U, approximating
the control space U. In this way, we obtain the control discretized counterpart

min  J(u) = 3lly(T,.) — yally + 5lullf
(P,) : < subject to (1.1)
andueC,={uelU,a<u<b ae on0,T]}

of problem (P). Here, the state space Y is not discretized. In this paper, we
discuss a space U, of piecewise linear functions on uniform and non-uniform
grids. The notation o represents here the grid size.

Elliptic optimal control problems discretized by piecewise constant functions
are well investigated, we refer to Falk [3], Geveci [4], and Arada, Casas, and
Troltzsch [1]. The authors show for different examples the convergence order o,
ie.

”,a - ua”U < Cao,

where % and u, denote the solutions of P and P,, respectively. The parabolic
case with controls piecewisely constant in time is discussed in Malanowski [13].
In that paper, a convergence rate o2 is proved for parabolic optimal control
problems with boundary control.

Two difficulties occur in our simple problem (P) which are typical for
parabolic optimal control problems. First, the optimal control does not be-
long to the space H'(0,T) in general. Therefore, it is not possible to apply the
results of Casas and Troltzsch [2] or Rdsch [15] directly. Moreover, we cannot
expect approximation order ¢ or higher for uniform grids in general. In [15] it
is shown that in sufficiently regular cases the convergence rate o2 is obtained
for uniform grids. We will describe situations where the assumptions for this
result are fulfilled. Moreover, the convergence rate o3 is proved for suitable
non-uniform grids in a general case. A completely different way is gone by
Hinze [8]. In that approach, the state space is discretized only. The optimal
control can be obtained by projection of the adjoint state to the set of admis-
sible controls. Therefore, the set of possible controls do not belong to a finite
dimensional subspace of U for every fixed space discretization in this approach.
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Subproblems of SQP-algorithms and other higher order methods solving
nonlinear optimal control problems are linear-quadratic optimal control prob-
lems, see for instance Heinkenschloss and Troltzsch [7], Kelley and Sachs [9],
Kunisch and Sachs [11], Tréltzsch [17] and the references therein. The linear-
quadratic optimal control problems can be attacked by a primal-dual active set
strategy, see Hager [6] or Kunisch and Résch [10]. The undiscretized optimal
control problem can be solved theoretically using this active set strategy with
an arbitrary high accuracy. Unfortunately, we are not able to solve the ap-
pearing system of equations exactly. Thus, it is necessary to discretize control
and state. Therefore the approximation error of the solution of the discretized
problem with respect to the continuous one plays an important role.

We describe the discretized space U, in the following form: For a given grid
t; € [0,T] (¢ = 0..n) with ¢t = 0 and ¢, = T we define the functions e; by

rT—ti—1 .
Sl fr et ot
t; —ti1 i1, %)
R tiv1—
€ = A if x € [ti7ti+1]
liv1 — 1
0 otherwise.

Now, the space U, is defined by
U,={ueU: u:Zuiei}.
i=0

The condition u € C, with
Co={uelU,/a<u<b ae. onl0,T]}
can be expressed in the form
a<u; <b Vi=0,...,n.
Thus, problem (P,) can be equivalently written as
((min  J(u) = 5lly — vall3 + 5llully

subject to (1.1) and

n
u = E U; €5
=0

a<u; <b Vi=0,...,n

in this case.

The paper is organized as follows: In section 2 we formulate the optimal-
ity conditions and state the main results. Section 3 contains several auxiliary
results. The proof of the error estimates is presented in section 4. The paper
ends with numerical tests in section 5.
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2. Optimality conditions

First, we introduce the spaces V = H'(0,1) and W(0,7T) = {v € L*(0,T;V) :
vy € L?(0,T;V*)}. A weak solution y € W(0,T) is defined by the equations

1
(yt,U)(v*,v)-i-/ Yp - Vg dz = u-v(1)
0

y(0) = y°

for almost all ¢ and all v € V. For the theory of weak solutions in W (0,7, we
refer to Lions and Magenes [12].

Lemma 2.1. [12] For eachu € L?(0,T), equation (1.1) admits a unique solution
y € W(0,T). Hence, y(T,.) belongs to Y.

We introduce now the adjoint equation

—pe(t,z) = pea(t,x) in (0,7) x (0,1)
p(T, l’) = y(T’ l’) - yd(x) in (0’ 1)
p(t,0) = 0 in (0,7) (2.1)
pe(t,1) = 0 in (0,7).

Lemma 2.2. For each y € W(0,T), the adjoint equation (2.1) admits a unique
solution p € W(0,T). Hence, p(.,1) belongs to U.

Analogously, the existence of a unique solution p € W(0,T) follows from
[12]. Hence, the trace p(.,1) belongs to L?(0,7) = U because of the trace
theorem.

Now we are able to formulate the necessary and sufficient optimality con-
ditions for (P) and (P,). In the following, we denote by @ the optimal control
and by ¥, p the corresponding optimal state and the adjoint state associated to
the problem (P). The optimal triple corresponding to problem (P,) is denoted
by (e, Yo, Po)-

Lemma 2.3. Let u € C be an admissible control for problem (P) with associated
state § and adjoint state p defined by (1.1) and (2.1). Then @ is the optimal
solution of (P) if and only if

(-, 1) + v, u—u)y >0 (2.2)

holds for all uw € C. Moreover, let u, € Cy be an admissible control for problem
(Py) with associated state §j and adjoint state p defined by (1.1) and (2.1). Then,
uy 18 optimal for (Py) if and only if

(pa('71)+yuaau_uU)U Z 0 (23)

15 fulfilled for all u € C,.
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The set C, is closed and convex. Therefore, the variational inequality (2.3)
can be obtained by standard arguments.

The regularity of the adjoint state p plays an important role for error es-
timates. This regularity is influenced by the desired state y,. Therefore, we
require here an additional regularity assumption for yg.

Assumption (A): The desired state y4 belongs to H?(0,1).

Now we are able to state the main results of the paper.

Theorem 2.1. Suppose that

p(T,1)

¢ [a, 0] (2.4)

and Assumption (A) holds. Moreover, assume that [0, T] is discretized uniformly
(ti =1i-L). Then the estimate

3
2

o —uslly <c-o (2.5)

is fulfilled for the optimal solutions @ of problem (P) and u, of problem (P,)

with a positive constant ¢ > 0 and 0 = %

The assumption —’@ ¢ [a, b] implies that the control have an active part
at the end of the time interval. Clearly, this is an important case, but we cannot
expect that all practical examples fit to this assumptions.

For the general case it needs non-uniform grids to obtain the same conver-
gence rate. We show for a special non-uniform discretization that the conver-
gence rate o2 can be obtained also for the general case. However, the following
result can also be derived for other suitable chosen non-uniform grids.

Theorem 2.2. Suppose that

_p(T1,1)

p(1', 1
7é a, _M 7é b: (26)
and Assumption (A) holds. Moreover, [0,T] is discretized in the following man-
ner: t; =T —T - (11;—41)4 (t=0,...,n). Then the estimate

3
2

g — uslly <c-o (2.7)

is fulfilled for the optimal solutions u of (P) and u, of (P,) with a positive

constant ¢ > 0 and o = %

The proofs of Theorem 1 and Theorem 2 are contained in section 4.
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3. Auxiliary results

First, we introduce the Greens function

G(t,7,€) =Y _va(z)va(&)e™ ™, (3.1)

n=0

where v,(x) = v/2cosnmz denote the normalized eigenfunctions of a Sturm-
Liouville eigenvalue problem associated with the problem (1.1): v,, = Av in
(0,1),v, =0atz =0,z =1.

For further investigations we need some estimates concerning the infinite
series in this function:

Lemma 3.1. For 0 <t <T the following estimates hold true:

267"2”275 < ct 2 (3.2)
n=0
d o1 —e™) < o (3.3)
n=0
ane’"%% < a2 (3.4)

Zn4 B (3.5)

Proof. We use a generic constant ¢ > 0

00 9]
St < ey
n=0
o0
< / —z27%t dz
0
< 1 —|—c-t_5
1
< c-t 2.

For the last inequality we used that ¢ -t 2 > 1 on (0,7] is fulfilled for a
sufficiently large constant c. Therefore, estimate (3.2) holds true. Integrating
this inequality, we obtain

S

s 1
2
/Ze ~tdt<c-s2.

0

n=0
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Changing integration and summation, we get

o0

Z(Wn) 2(1— e ) <e

n=0

MI»—A

The last two inequalities can be proved by the following arguments: First, we
find for the corresponding integrals

& 2 2 Zt ]_ 3
/ e T der = —t 2dux,
0 Am
* 4 —ata 3 s
T"e dr = —t 5dx.
0 877'2

The idea is to estimate the series in (3.4) and (3.5) by the corresponding inte-
grals. This is not directly possible, since the functions z2e **t and z*e =7t
have two monotonicity intervals. A simple calculation of the maxima of these
functions delivers

2.2 1
x2€$ﬂ't§ 5 ,
et

4 —x272 4
xe 4,242
Trest

for all z € [0, 00). Now, the estimates

St e

2.2 2.2 2.2
§:n2en7rt S 2(/ $2€z7rtd$+ maxeezwt>
n=0

z€[0,00)

1
< 2- —t_id:r + —)

et

o0 e}

_m2.2 2.2
E nple T < 2. (/ e T g + maxx4e””7rt>
n=0 0

z€[0,00)

3 5
< 2. (2434 )
- 82 7r462t2

imply the formulas (3.4) and (3.5). |

By the Fourier method, we get for the solution of (1.1)

y(t,z) = / Gt — 5,2, 1)u(s) ds + / G(t, o, €)y°(€) de. (3.6)

Using Greens function for the adjoint equation (2.1), we obtain the formula

/G —t,2,8)(y(T, &) — ya(&)) d€
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and in particular for the boundary values of the adjoint state,

p(t,1) /G L, E)(W(TE) - yal€)) de. (3.7)

The boundary values of the optimal adjoint state p are directly coupled with
the optimal control u via the formula

u(t) = T (~— p(t,1) (38)

with the projection operator

a forr<a
Higg(r) =4 r forrea,b] (3.9)
b forr >b.

This is a consequence of the optimality condition (2.2).

Next, we discuss the regularity of the optimal control and the optimal ad-
joint state.

Lemma 3.2. The optimal control @ belongs to the space C’O’%[O,T].

Proof. The proof is mainly standard. We sketch here only the main ideas.
Inserting (3.6) in (3.7), we obtain

1 T
p(t,1) = / / G(T —1,1,6)G(T — 5,€,1)a(s) ds d
0

_|_

//G C 1 1,6)G(T, €, Oy(C) dC dé
0

/G tal,é- yd(&) 5
TO (3.10)

e RT=t=5) () ds

S
I \

I
o\

+

O\H O\H

e "m0y, (e (C) d¢

€ v (€)ya(§) d&

R

S
Il
=)
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Hence, p(., 1) is analytic in every interval [0, o] with o < T'. For the regularity we
investigate the crucial point ¢ = T. We obtain for the difference p(7,1) —p(¢,1)

o0
=0

T
p(T,1) —p(t,1) = /Z —n*r(T—s) _ —n’m?(2T—t— S))ﬂ(s) ds
0

n

1

/ T Iy (()y0(C) d

_|_

n=0

/ S (1= e DY g ()yalE) d

n=

(=]

The second term contains no singularity for ¢  T. The assumption y; €
H?(0,1) implies y}j € L*(0,1). Therefore, we have

1
GG B e
0

Integrating two times by parts and using the homogeneous Neumann data of

Up, We obtain
1
[ et de| < 5
0

From this estimate and (3.3), we get

‘ /Z(l — e D)0, (€)ya(€) df‘ < VT —t.
0 n=0

It remains the first term. We denote the expression by I:

T %
:‘/Z —n?r2(T—s) _ e—nﬂ(?T t— S))ﬂ(s)ds.
0

n=0

Using the positivity of each addend, we obtain

n=0

T
< Cm/z —n272(T—s) _ e—n27r2(2T—t—s)) ds
0
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with ¢, = max(|al, |b|). We continue by

T
< 0+cm/ ¢ ds
t

< evVT —t

using inequality (3.2) in the last step. Combining the results, we end up with

BT, 1) — Bt 1)] < VT — .

Let us shortly derive a corresponding estimate for ¢t; < t5 < I'. We obtain for

the difference

D(te, 1) — p(t1,1)

T
0

n=0

—_

+/Z (e—n 2r22T—ty e—n w2(2T— tl))vn(C)yo(C) dC
0 n=0

=[S0 (e T €a(e) de
0

Since 27—ty > T > 0 the second term can easily be estimated uniformly. For
the third term we find

13:

/Z —n2r¥(T—t2) _ e 272(T— t1))’l)n(§)yd(f) d§

_/ / in2ﬂ26"2”2<Ts>vn(£)yd(5> dsd¢
0 t; =0

tzoo

1
_/ZnQﬂje—n?ﬂQ(T—s)/vn(g)yd(é-) dde
n=0 0

t1
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Using (3.2), we get

to

o0
2,2 fn27r2(Tfs)£
|I3] < /;nwe nst

t1
t2

c/(T—s)—% ds

t1
= C(\/T—tl—\/T—tQ)
S C\/tg—tl.

For the last inequality we used the inequality v/v + w < /v + y/w, which holds
for all non-negative real numbers v and w. We point out that the constant c is
independent of ¢; and ¢5. It remains the first integral. We continue by

IN

S (=Tt _ (T dy

n

]1:

to

0
/Zn2w26"2“2(2Tt5)ﬂ(s) dtds

t n=0

Ot~ T

Next, we use (3.4) and obtain

T to

L < c//(zT—t—s)S dtds
0 t
T

< c/(?T—tg—s)_%—(2T—t1—s)_% ds

< (T =t — /T —ty) + ¢(\/2T —ty — /2T — 1)
S C(\/T—tl—\/T—tz)

< eVite — .

Again, the constant c is independent of £; and #,. Summarizing the results, we
get

|ﬁ(t2a 1) - ﬁ(tla 1)| S Cv t2 - tl
for all t1, ¢y € [0,T]. This implies directly

|ﬂ(t2) — ’lj,(tl)| S C\/ tz — tl,
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because of (3.8), and the projection operator II is Lipschitz continuous with
constant 1.

Remark. The result of Lemma 5 can also be proved for free or unilateral
constrained parabolic optimal control problems. In this case, it has to be proved
the boundedness of the optimal control in a first step.

Remark. Compatibility conditions have to be fulfilled for higher regularity of
p(., 1), especially

We cannot expect this property in general.

The behaviour of the Greens function G(T — t) for t = T has the main
influence of the regularity of the solution. For incompatible boundary condition
and final condition the result derived in Lemma 5 is optimal. If compatibility
condition hold and the data are sufficiently smooth, then the boundary value
p(t, 1) are Lipschitz continuous, see for instance [14].

Remark. It is possible to prove that p(.,1) belongs to the Sobolev space
H'7¢(0,T) for all £ > 0 using similar arguments like in the proof of Lemma 5.
Again, the compatibility condition is needed for higher regularity.

The properties of p(., 1) are transferred to @ by the projection formula (3.8).
Clearly, @ is smoother than j(., 1) if the projection cuts the singular behaviour
in a neighbourhood of 7". This will be the key point in the proof of Theorem 1
in the next section. The situation is much more complicated if the projection
is simply the identity. For this purpose, we formulate the next lemma.

Lemma 3.3. Assume that Assumption (A) holds. Then we have for py(t,1)
the estimate

pu(t,1)] < c|T —t|72 (3.11)

in the interval [0,T)

Proof. We start again with the formula (3.10)

T o0 1 o
pe1) = [ Yoe T us) ds [ 3 e 0, O (0) de
0 n=0 0 n=0
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Of course, p(t, 1) is analytic in every interval [0, ] with o < T. We differentiate
twice (t < T') and obtain

T o
pu(t,1) = /Zn47r4e_n27r2(2T—t—s)u(S) ds
0

n=0

3 ntate TR0y, (C)y?(C) dC
=0

n

O\H O\H

To get estimate (3.11), we have to estimate the absolute values of these three
integrals. The first integral can be estimated by using (3.5) since u is pointwise
bounded. The second integral has no singularity at 7. It remains the last
integral. Assumption (A) implies

‘/vn(f)yd(f) de| < c-n2.

Therefore, we can use (3.4) to estimate the third integral. Consequently, we
obtain

T
Pu(t, 1) /2T—t—s “Sdt+ctc- (T—t)"2<c[T—t]2
0
and the assertion is proved. [ |

Clearly, estimate (3.11) is transferred to the optimal control @ by the pro-
jection formula (3.8) if —1p € (a,b). We are now able to prove a first approx-
imation result. Here, we use the representation of functions v € U, defined in
the introduction.

Lemma 3.4. Let the discretization t; = T — T - (” ki (1 = 0..n) be given.

n
Furthermore, let v = Y. p(t;,1)e; be the linear mterpolate of p. Then, the
=0
estimate
c

lv=p( Dllo < — (3.12)

holds true. Here, the constant ¢ depends only on T and ||p(.,1)]|cfo,17-
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Proof. Let i < n. Then, in every interval [t; 1,t;] we have
ﬁ(ti_l, 1) = U(ti_l) and ﬁ(tz, 1) = U(tz)
From this, we obtain

1
Pt 1) —v(t) < g max [Puls Dt —tial* VEE [tis 1,

see [5]. Using (3.11), we obtain
p(t, 1) —v(t)] < (T — )2t — tia|* VYt € [tiiy, ti].

Therefore, we can estimate the integral
t;
/ (p(t, 1) —v(®))? dt < (T —t;) 3|t; — tica|* < (T —t;) 3|t; — tiza .
ti—1

We continue by

lo =5 DI / ({2, 1) — v(0))? dt

(3.13)

IN
T
I S
- —

=

—~

\.PF

—_

p—

I

4

—

~

N—r

SN—r

N

U

o~

Because of the continuity of p(., 1) we can estimate the second integral by

(3.14)

c
s€[0,T] nt

/t" (B(t,1) —v(t))? dt < 2- max |p(s)|(tn —tn 1) <

n—

It remains to discuss the sum in (3.13). We have

3 | e - vy a

< e Y (T —t) Pt —tia

< C; (T(#)‘l _T(n;i>4>5_ (T(n;¢>4>—s

Inverting (i := n — 1) the summation order, we obtain
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< B0 Q) ()

nXi(T 4i3+6i2+4i+1)5<T<1’>4)3 (3.15)

nt n

(AN
o

=1
n—1

1
T5(4+6+4+1)° ¢ . 4712773

< c- —
- 8

n
1

1
nt

Inserting (3.15) and (3.14) in (3.13), we end up with

< c-

_ 1
o= p(, DI < e
that implies the assertion. |

Remark. Using the argumentation of Lemma 5, it is possible to find a estimate
of ||p(-, 1)||cro,r) in terms of @, b, and T. Consequently, then the constant c
depends only on a, b, and T'.

4. Error estimates

First, we recall a result of Casas and Troltzsch [2]. For this purpose we define

a function .
Vg = Z vf,ei
i=0
via
a if min a(t)=a
' t€[ti—1,ti41]
Ve(t;) =v, =4 b if max a(t)=0»b
tE[tifl,ti+1]
u(t;) else .

If the mesh size o is sufficiently small, then u(t) = a and @(¢') = b cannot
happen in the same interval [¢; 1, t;11].

Lemma 4.1. [2] The function v, fulfils the condition

(ﬁ-i—m],v—v,,)U Z 0 (41)
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for all v € C,. Moreover, it holds
[e = uollu < el| = vellu- (4.2)
For the proof we refer to [2] Lemma 2.1 and the discussion afterwards. Now,

we are able to prove the main results presented in Section 2.

Proof of Theorem 2.1. Here we have a uniform discretization and o =
We start with condition (2.4). Because of the continuity of p, there exists an
interval [, T| such that

S|=

—2%2¢MM Vvt e [t T).

From (3.8), we know that this interval belongs to the set of active constraints
and we have @ = a or 4 = b on [t', T]. On the other interval [0, ¢'], the adjoint
state p(., 1) is analytic.

Next, we estimate the term ||& — v, ||y, where v, is the function defined
above. For that purpose we subdivide the intervals [t;_1,%;] in three disjoint
classes

L= {[ti,t:] C10,T): v,(tiz1), v (t:) € (a,b)},
Iy = {[tie1,t:] C[0,T]: u(t) =aoru(t)=0bon [ti_1,t]},
I; = [0,T)\ (LUL).

Class I; covers the intervals where the optimal control % is inactive. Intervals
where the optimal control is constant w.r.t. one of the control constraint are
contained in Class I,. Clearly, these classes are disjoint. Class I3 contains the
remaining intervals. We derive now error estimates for each of these classes.

We continue by
1@ = voll7r = 1T = Vo llZ2zy) + 118 = vollZ2(zy) + 18 = o |Z2z,-

By definition we obtain
|7 — Ua||%2(12) =0.

On I, the function v, is the linear interpolate of u. Moreover, on this set u is
analytic and belongs therefore especially to C?. Hence, we obtain

1
_ 2 —1112 4
| — UU”L?(Il) < 6_4”“””(1(11) ‘0.

It remains to estimate the last norm. However, the set I3 can intersect the
interval [¢',T]. This is the problem. Next, we will proceed with a Lipschitz
argument for this set. The existence of such a Lipschitz constant is justified by
the following argumentation: For sufficiently fine discretization, it is possible
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to find a t" with ¢ < " < T such that I3 N [t",T] = (). Hence, there exists a
positive constant L such that

la(t) —a(s)| < Lt —s|  forall t,s € [0,¢"].

On intervals [t;_1,t;] of the set I3 we have v, = a or v, = b. By definition of
v, the optimal control u has at least one point ¢ with 4(t) = a or u(t) = b
belonging to the larger interval [t; 1,%;11]. Consequently, we obtain for each
interval [t; 1,%;] C I3

||ﬂ — Ua’||%2([ti—1,ti]cl3) - /

[ti—1,t:]

(1 —v,)? dt < / (2Lo)* dt < 4L* - &°.
[ti—1,t:]

Since p(., 1) is analytic on [0,t"], there exist at most finitely many points with

—2p(t,1) = a or —2p(¢,1) = b on [0,¢"]. Therefore, the total number of in-

tervals [t; 1,;] which are subsets of I3 can be bounded by a finite number K

independent of the discretization. Hence, we obtain

1% — v |72,y < AKL? -0,

From this, we get ,
[z —vollv <c-o7,

and formula (4.2) implies the assertion. |

Let us point out that the quantities ¢, ¢, L, and K depend on the optimal
adjoin t state p. It is not possible to estimate this quantities in terms of a,
b, and T'. In this proof, we benefit from the active control part at the end of
the interval [0, 7). If inequality (2.4) is not valid, then the projection formula
(3.8) does not cut the problematic part at the end of the time interval. It may
happen that the set I; contains an interval [t*,7]. From Section 3, we know
that then u belongs to C’%[O, T] (see Lemma 5) or H'™¢(0,T), only. Applying
the same technique as in the proof before, we obtain the following result.

Remark. Let Assumption (A) be fulfilled and let inequality (2.4) not be valid.
Then an error estimate

& — uo|ly < c- ol¢

is obtained for all € > 0 for uniform grids.
In this case, a non-uniform grid can improve the convergence rate. In the

proof of Theorem 2 we combine the technique of the last proof with the result
of Lemma 7.

Proof of Theorem 2.2. First, we find for the non-uniform grid with t; =
4
T 7" (i=0,...,n) that
4

o = max\ti—ti_l\ :tl—to S —
i=1..n n
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holds. It is easy to see that o > % for sufficiently large n. We have to discuss
two cases. In the first case, inequality (2.4) is fulfilled. Here, we can directly
apply the arguments of the proof of Theorem 1 to obtain the assertion. In the
second case, we have

1
_;p(Ta 1) € (avb)'
Consequently, there exists an interval [t*, 7] with

1
—;ﬁ(t, 1) € (a,b) for all t € [t*,T).

Clearly, t* must not be a grid point. However, there exists an index j, with t* €
[tj_1,t;]. For sufficiently fine discretization there exists a t** with t; < t** < T
independently of n.

Next, we change the definition of the sets Iy, I5, I3 a little bit. We use the
same definition but replace 1" by t;:

Il = {[tzlutz] C [O,t]] va(ti_l),va(ti) € (a,b)},
I, = {[tz’—l, tz] C [0, t]'] ’L_I,(t) =a or ’a(t) =bon [ti_l,ti]},
I3 = [0, t]] \ (Il U .[2)

On the interval [0, ¢;] we can apply the argumentation of the proof of Theorem 1

and obtain

15 — v |[72(0;) < € 0.

Using the estimate

_ 1. 1,
12" |y = ;||P"||c<11) < ;llp"llcm,t**],

the constant c is independent of the discretization. For the interval [¢;,T] we
find

1 17

_ 2 _ _
o= sl = |-y 1)+ 50

)
L2(t;,T)

where v is the linear interpolate of (., 1) defined in Lemma 7. Now, Lemma 7
implies

1
2

_ &
SlIBC 1) — ol < S <eot

18— |72, ) <

Therefore, we have
12— vl < c- o

and again the assertion follows from inequality (4.2). |
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5. Numerical Tests

In this section we present some illustrating numerical tests confirming the the-
oretical results. The linear-quadratic optimal control problems were solved by
a primal-dual active set strategy, see Hager [6] or Kunisch and Résch [10]. The
parabolic equations are discretized by a Crank-Nicolson scheme. The space
discretization in all numerical examples is n, = 250.

Example 5.1. This example is a modification of an example of Schittkowski
[16]. It is constructed in such a way that no constraint is active. We have

1
T=158 v=001 y;= 5(1 —2%), a=-10, b=10.
First, we present the uniform discretization. We compare all solutions with

U = Ujg24. The last column contains the value

In ||uy, — @l|g — In ||usi2 — 4|y
In512 —Inn

which is an approximation of the convergence rate. This formula is motivated
by the following argumentation:

rate := (5.1)

Assume, that
|tr, — t||g = en™®
holds. This implies
lun —dlly _ n°?
lusio — 4|y 512-¢’

and consequently we find

lun =l _,

In = )
||u512 — u||U 512—¢

This is equivalent to

_In |un — 4||g — In ||usio — 4|

In512 —Inn
n| ||u, —ally | nljug —dllg | n?- ||Ju, —4]|p | rate
8 0.0687 0.5496 4.3966 1.01482
16 0.0670 1.0727 17.1632 1.21075
32 0.0346 1.1067 35.4138 1.27469
64 0.0115 0.7359 47.0956 1.17001
128 0.0026 0.3270 95.3775 0.66998
256 0.0015 0.3726 300.2653 0.52810
512 0.0010 0.5167 264.5663 -

Table 1: Approximation behaviour for the uniform grid
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The convergence is at most linear.

n| ||jup —dllo | nellug —dllo | n? - ||Jup — 4]jp | rate
8| 0.052232 0.4179 3.3429 2.06228
16 | 0.013005 0.2081 3.3292 2.07355
32 | 0.003242 0.1037 3.3199 2.09093
64 | 0.000808 0.0517 3.3094 2.11972
128 | 0.000200 0.0256 3.2743 2.17188
256 | 0.000048 0.0122 3.1356 2.28133
512 | 0.000010 0.0050 2.5801 -

Table 2: Approximation behaviour for the non-uniform grid

Table 2 shows the numerical result for the non-uniform grid. Here, the conver-
gence rate is quadratic. This numerical result confirms the theoretical results
due to the fact I3 = (). The numerical error for the non-uniform grid for 64 in-
tervals is smaller than for the uniform grid with 512 intervals. The solutions for
n = 16 and n = 32 are plotted in Figure 1. These pictures show the problems
of the uniform grids to fit the solution part at the end of the time interval.

Figure 1: Uniform grids n=16 and n=32

Figure 2 illustrates the adapted behaviour of the non-uniform mesh. The grid
n = 16 (left picture) describes the solution part at the end of the time interval
in a sufficient manner. The right picture shows the solution for n = 1024.

Figure 2: Non-uniform grid n=16 and n=1024
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Example 5.2. This example is a real challenge for the non-uniform grid. Again,
the solution oscillates heavily at the end of the time interval. The data are
chosen in such a way that no constraint is active. We have

1
T=158, v=00001, ya=_(1-2), a=-10, b=10.

Table 3 shows the quadratic convergence rate for the non-uniform grid.

n | ||Jug —dlly | n-||lu, —dllg | n?-||u, — 4lly | rate
8 | 0.248817 1.9905 15.9243 1.91795
16 | 0.121227 1.9396 31.0341 2.09406
32 | 0.027076 0.8664 27.7261 2.07692
64 | 0.006543 0.4187 26.7984 2.08620
128 | 0.001611 0.2062 26.3908 2.11824
256 | 0.000390 0.0999 25.5747 2.19116
512 | 0.000086 0.0438 22.4008 -

Table 3: Approximation behaviour for the non-uniform grid

The optimal solution for n = 16 and n = 1024 is plotted in Figure 3.

Figure 3: Non-uniform grid n=16 and n=1024

Example 5.3. This example illustrates the fact that active control constraints
improve the convergence rate for uniform grids. The difference between the
Examples 1 and 3 is the choice of a. We have

1
T =1.58, v=0.01, yd:§(1—x2), a=0, b=10.

n | [un = @y | n- JJun = @lly | 0 - Jun = lly | 0® - |lun = all
8 | 0.0083496 0.0668 0.1889 0.5344
16 | 0.0068280 0.1092 0.4370 1.7480
32 | 0.0040008 0.1280 0.7442 4.0968
64 | 0.0005978 0.0383 0.3060 2.4485
128 | 0.0003959 0.0507 0.5733 6.4859
256 | 0.0001814 0.0464 0.7431 11.8889
512 | 0.0000064 0.0033 0.0745 1.6845

Table 4: Approximation behaviour for the uniform grid
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In Table 4 we slightly change the presentation of the numerical results. Table 4
shows clearly the non-uniform convergence behaviour. This effect can be easily
explained. In the proof of Theorem 1, we have a quadratic convergence order
on the sets I; and I,. In contrast to this, the convergence order on the set
I3 is only linear. Therefore, the Is-part influences heavily the convergence. If
we refine the grid we have two cases. In the first case, the smallest distance
between the corner of the optimal control and a grid point does not change. In
the second case, a new grid point fits the corner much better than all points
of the coarser grid. These two cases lead to faster and slower phases in the
convergence process. In the first two examples, we calculated convergence rates.
Here, we abstain from a presentation of such rates, since the assumption for the
motivation is not fulfilled. Moreover, a change from 512 to 256 in formula (5.1)
causes to large differences in these rates.
The next figure shows the optimal solution for n = 16 and n = 1024.

Figure 4: Non-uniform grid n=16 and n=1024

Table 5 shows the results for the non-uniform grid. The refinement at the
end of the interval is useless in this case.

n | —ally | n-Jfun = allo | 02 - [Jun —ally | n* - |lun —illy
8 [ 0.0482019 0.3856 1.0907 3.0849
16 | 0.0181645 0.2906 1.1625 4.6501
32 | 0.0017108 0.0547 0.3097 1.7519
64 | 0.0004213 0.0270 0.2157 1.7257
128 | 0.0002350 0.0301 0.3403 3.8504
256 | 0.0001613 0.0413 0.6608 10.5720
512 | 0.0000954 0.0488 1.1048 24.9976

Table 5: Approximation behaviour for the non-uniform grid

The numerical solutions for n = 16 and n = 32 are plotted in Figure 5. Here,
the convergence rates of the non-uniform and the uniform grid are the same.
Nevertheless, the uniform grid produces a slightly better solution for the same
discretization in this case.
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Figure 5: Non-uniform grid n=16 and n=1024

We have seen that uniform grids delivers good numerical approximations if the
optimal control u has a part where the control constraints are active at the end
of the time interval. Non-uniform grids improve the approximation rate if the
optimal control # is inactive at T'.
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