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Abstract. Three classes of nonlinear integral equations and first order integro-
differential equations in two variables are dealt with where the quadratic nonlinearity
is given by the correlation-convolution integral. In the case of the quarter plane the
equations are reduced to boundary value problems for holomorphic functions which
can be solved in closed form. In this way existence and constructive formulas for the
solutions to the equations are derived.
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1. Introduction

In the paper the integral and integral-differential equations in two variables
with the correlation-convolution integral in the quarter plane are treated. The
paper continues the first part of it presented in [11] where the equations in the
rectangle and the strip have been dealt with.

In [11] we prove the uniqueness of summable solutions to the equations in
any finite interval (0, T ) of the convolution variable τ . Hence we have uniqueness
of the corresponding solutions to the equations for τ on the semi-axis R+, too.
Therefore, from the very beginning we can concentrate on the construction of
one solution of the equations in the quarter plane.

For deriving the solutions to the equations, at first we apply the Laplace
transform with respect to the convolution variable τ reducing the equations to
autocorrelation equations in the correlation variable t for the Laplace trans-
forms of the solution. In a second step then, applying the Fourier transform
with respect to t, the equations are reduced to boundary value problems for
a holomorphic function in the upper half-plane as in our papers [8, 9], now
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containing the additional parameter q of the Laplace transform. Taking into
account the behaviour of Laplace transforms as Re q → ∞, we construct the
unique solution of the equations under suitable general assumptions on the data
(and an additional existence condition in two cases).

2. Statement of equations and method of solution

We deal with the following integral and integro-differential equations in two
variables:

p(t, τ) + I[p](t, τ) = h(t, τ) (1)

∂p

∂τ
+ µp(t, τ) + I[p](t, τ) = h(t, τ) (2)

∂p

∂t
+ λ

∂p

∂τ
+ µp(t, τ) + I[p](t, τ) = h(t, τ) (3)

for t, τ ∈ R+. Here λ, µ ∈ R are given constant parameters, and I is the
correlation-convolution operator of p:

I[p](t, τ) =

τ∫
0

∞∫
0

p(s, σ)p(s + t, τ − σ)ds dσ

=

τ∫
0

∞∫
0

p(s, τ − σ)p(s + t, σ)ds dσ .

(4)

In addition, the solution p of eq. (2) has to fulfill the initial condition

p(t, 0) = f(t) , t ∈ R+ (5)

and the solution p of eq. (3) the conditions (5) and

p(0, τ) = ϕ(τ) , τ ∈ R+ (6)

with prescribed functions f and ϕ. Looking for summable solutions with respect
to t we expect that in case of eq. (3) with λ = 0, µ ≤ 0 and with λ < 0,
respectively, an existence condition must hold.

In the following, we apply the Laplace transform with respect to τ and the
Fourier cosine transform with respect to t to eqs. (1) - (3). As preparation we
(formally) calculate the corresponding transforms of the correlation-convolution
integral (4) or

I[p](t, τ) =

∞∫
0

p(s, ·) ∗ p(s + t, ·)ds (7)
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where ∗ denotes the convolution with respect to τ .

By the convolution theorem for the Laplace transform from (7) we obtain
the relation

(L I[p](t, ·))(q) ≡
∞∫

0

I[p](t, τ)e−qτdτ =

∞∫
0

W (s, q)W (s + t, q)ds (8)

where

W (t, q) = (L p(t, ·))(q) ≡
∞∫

0

p(t, τ)e−qτdτ . (9)

Applying to (8) the Fourier cosine transform with respect to t, we have (cf. [7])

(Fc L I[p])(x, q)

≡
∞∫

0

cos xt

∞∫
0

I[p](t, τ)e−qτdτ dt =
1

2
[P 2(x, q) + Q2(x, q)]

(10)

where

P (x, q) = (FcW (·, q))(x) ≡
∞∫

0

W (t, q) cos xt dt , (11)

Q(x, q) = (FsW (·, q))(x) ≡
∞∫

0

W (t, q) sin xt dt (12)

are the Fourier cosine and Fourier sine transform of W = L p, respectively.

We further calculate the integral J = (FcI[p](·, τ))(x) =
∞∫
0

I[p](t, τ) cos xt dt .

It holds

J =
1

2

τ∫
0

J0(x, σ)dσ

where

J0(x, σ) =

∞∫
0

∞∫
0

cos xt · [p(s, σ)p(s + t, τ − σ) + p(s, τ − σ)p(s + t, τ)]ds dt .
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From

J0(x, σ) =

∞∫
0

p(s, σ) cos xs

∞∫
s

p(r, τ − σ) cos xr dr dσ

+

∞∫
0

p(s, τ − σ) cos xs

∞∫
s

p(r, σ) cos xr dr dσ

+

∞∫
0

p(s, σ) sin xs

∞∫
s

p(r, τ − σ) sin xr dr dσ

+

∞∫
0

p(s, τ − σ) sin xs

∞∫
s

p(r, σ) sin xr dr dσ

=

∞∫
0

p(s, τ − σ) cos xs ds ·
∞∫

0

p(r, σ) cos xr dr

+

∞∫
0

p(s, τ − σ) sin xs ds ·
∞∫

0

p(r, σ) sin xr dr .

it follows

(FcI[p](·, τ))(x) =
1

2

τ∫
0

[U(x, σ)U(x, τ − σ) + V (x, σ)V (x, τ − σ)]dσ

=
1

2
[U(x, ·) ∗ U(x, ·) + V (x, ·) ∗ V (x, ·)]

(13)

with the Fourier cosine and Fourier sine transforms of p

U(x, τ) = (Fcp(·, τ))(x) ≡
∞∫

0

p(t, τ) cos xt dt ,

V (x, τ) = (Fsp(·, τ))(x) ≡
∞∫

0

p(t, τ) sin xt dt .

Applying to (13) the Laplace transform with respect to τ , we again arrive at
the relation (10) for LFcI[p] with P = LU = LFcp and Q = LV = LFsp now.

Utilizing relation (10), we reduce eqs. (1) - (3) to boundary value problems
for the complex Fourier transform F (z, q) of p with respect to t which is a
holomorphic function of z in the upper half-plane (cf. [8, 9]). Now, in addition,
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F depends on the parameter q of the Laplace transform which varies in some
right half-plane, and we have to choose the solution of the boundary value
problem which represents a Laplace transform of a locally summable and at
most exponentially growing function of τ .

We remark that by means of relation (13) eqs. (1) - (3) can be reduced
to fixed point equations of convolution type for the function U where V is the
conjugate function (Hilbert transform) of U with respect to x. In the case of a
finite interval (0, T ) for τ , the iteration method of weighted norms [3] in Hölder
spaces on the real axis can be applied to this fixed point equation. But it is
more convenient to use this iteration method in the original equations (1) - (3)
as we did it in the first part of this paper [11]. Conversely, in solving for instance
the equation

U(x, τ) +
1

2
[U ∗ U + V ∗ V ](x, τ) = H(x, τ)

for x ∈ R+ and τ ∈ (0, T ), we can reduce it to eq. (1) by applying the Fourier
cosine transform with respect to x.

3. Solution of equation (1)

For convenience we put h = g
2

and write eq. (1) in the form

p(t, τ) + I[p](t, τ) =
1

2
g(t, τ) , 0 < t, τ < ∞ . (14)

Applying to (14) the Laplace transform with respect to τ and the Fourier cosine
transform with respect to t, in view of relation (10) we obtain the equation

P 2(x, q) + Q2(x, q) + 2P (x, q) = G(x, q) , −∞ < x < ∞, Re q > q0

with some q0 ∈ R and G(x, q) = (FcLq)(x, g) or

P̂ (x, q)2 + Q̂(x, q)2 = Ĝ(x, q) , −∞ < x < ∞, Re q > q0 (15)

where P̂ = 1 + P , Q̂ = Q and Ĝ = 1 + G.

Dealing with q as a real parameter, we solve eq. (15) by the method used
in [8, 9]. We assume that Ĝ(x, q) > 0 for x ∈ R, q > q0 and introduce the
complex Fourier transform

F̂ (z, q) = 1 +

∞∫
0

W (t, q)eitzdt, z = x + iy (16)

where W = Lp. Looking for a solution p of eq. (1) satisfying the relation
F̂ (z, q) → 1 as Re q → ∞, Im z ≥ 0, we choose the solution of eq. (15) for
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which the function F̂ (z, q) has no zeros on Im z ≥ 0 , q > q0. This gives the
formal solution

P (x, q) = −1 + Ĝ(x, q)
1
2 cos K(x, q) , Re q > q0 (17)

where

K(x, q) =
x

π

∞∫
0

ln Ĝ(x, q)

ξ2 − x2
dξ , Re q > q0 (18)

with the principal value of logarithm, and we again have extended q to complex
values.

It remains to state a group of sufficient conditions under which the function
P = FcLp defined by (11) yields an actual solution p to eq. (1). Let us first
assume that g fulfils the following conditions:

(i) g(t, ·) ∈ L(R+) for a.e. t > 0

(ii) g(·, τ) ∈ L(R+) ∩ L2(R+) for τ ≥ 0

where

(iii)
∞∫
0

|g(t, τ)|dt ≤ C0 uniformly for τ ≥ 0

with a positive constant C0 and

(iv)
∞∫
0

|g(t, τ)|2dt ≤ C(τ) , C ∈ L(R+),

i.e. g ∈ L2(R+ × R+).

By (i), the Laplace transform G0(t, q) = (Lg(t, ·))(q) of g(t, ·) exists in
Re q ≥ 0 for a.e. t > 0. In view of (iii) and (iv) we further have

∞∫
0

|G0(t, q)|dt ≤
∞∫

0

∞∫
0

|g(t, τ)|e−Re q·τdτ dt ≤ C0

Re q
(19)

for Re q > 0, and

∞∫
0

|G0(t, q)|2dt ≤
∞∫

0

 ∞∫
0

|g(t, τ)|e−Re q·τdτ

2

dt

≤ 1

2 Re q

∞∫
0

∞∫
0

|g(t, τ)|2dτ dt

≤ C1

Re q
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for Re q > 0 with the positive constant C1 = 1
2

∞∫
0

C(τ)dτ so that

G0(·, q) ∈ L(R+) ∩ L2(R+) for Re q > 0. From (19) and

|G(x, q)| = |(FcG0)(x, q)| ≤
∞∫

0

|G0(t, q)|dt

it follows that G(x, q) → 0 as Re q → ∞ uniformly in x ∈ R. Hence, there
holds

Ĝ(x, q) ≥ 1− ε > 0 for x ∈ R , q > q1(ε)

and any ε ∈ (0, 1).

Further, in accordance with (19) we assume that the representation

G(x, q) =
c0(x)

q
+

c1(x, q)

q1+δ1
, δ1 > 0 (20)

for x ∈ R, Re q > q2 holds where c0 and c1 are bounded and with respect
to x ∈ R Hölder continuous functions satisfying c0, c1 = O(x−γ), γ > 1, as
x → ∞ uniformly with respect to q in Re q > q2 in case of c1. Assuming that
g(t, 0) = lim

τ→+0
g(t, τ) ∈ L(R+) ∩ L2(R+) exists, we have c0 = Fcg(·, 0).

From (20) the analogous representations

Ĝ(x, q)
1
2 = 1 +

1

2

c0(x)

q
+ O(q−(1+δ2)),

ln Ĝ(x, q) =
c0(x)

q
+ O(q−(1+δ2)),

K(x, q) =
γ(x)

q
+ O(q−(1+δ2))

cos K(x, q) = 1 + O(q−2)

follow where δ2 = min(δ1, 1) > 0 and

γ(x) =
x

π

∞∫
0

c0(ξ)

ξ2 − x2
dξ . (21)

This implies the representation

P (x, q) =
1

2

c0(x)

q
+

c2(x, q)

q1+δ2
, δ2 > 0 (22)
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for x ∈ R , Req > q0 where c2 behaves like c1, and we put q0 = max(0, q1(ε), q2)
for some ε ∈ (0, 1).

In view of G0(·, q) ∈ L(R+)∩L2(R+) and assumption (20) by Theorem 3.1 of
[9] we obtain the existence of a solution W (·, q) = 2

π
FcP (·, q) ∈ L(R+)∩L2(R+)

for any real q > q0 to the intermediate equation

W (t, q) +

∞∫
0

W (s, q)W (s + t, q)ds =
1

2
G0(t, q), t > 0 . (23)

On account of (22) the function W has the form

W (t, q) =
1

2

d0(t)

q
+ d1(t, q) , d1(t, q) =

d2(t, q)

q1+δ2
(24)

where d0 = g(·, 0) and d2 = 2
π
Fcc2 is a bounded function in t ≥ 0, Req ≥ q0+ε0

for any ε0 > 0 lying in L(R+)∩L2(R+) with respect to t, for any q in Req > q0.
A known theorem of Laplace transform theory [1, Th. 21.3] then yields the
solution p = L−1W (t, ·) to eq. (1) in the form

p(t, τ) =
1

2
d0(t) +

1

2πi

q̂+i∞∫
q̂−i∞

eτqd1(t, q)dq (q̂ > q0) (25)

where p(t, 0) = 1
2

d0(t) = 1
2

g(t, 0) in accordance with eq. (14) for τ = 0. The
solution p satisfies the conditions

p(·, τ) ∈ L(R+) ∩ L2(R+) (26)

for τ ≥ 0 and

p(t, ·) ∈ C(R+) , p(t, ·) = O(eq̂τ ), q̂ ∈ R+ as τ →∞ (27)

for a.e. t > 0.

Theorem 1. Let the assumptions (i) - (iv) with g(t, 0) = lim
τ→+0

g(t, τ) for g be

fulfilled and let the representation (20) for G = FcLg hold.

Then equation (1) with h = g
2

has the solution p = L−1FcP where P is
defined by (17). The solution p possesses the properties (26) and (27). It can
be represented in the form (25) where d0 = g(·, 0), and the function d1 is given
by d1 = 2

π
q−(1+δ2)Fcc2 with the coefficient c2 in the representation (22) for P .

Corollaries.

1. If the condition G(x, q) ≥ 0 for x ∈ R and sufficiently large real q
holds, the assumptions on the Hölder continuity of the functions c0, c1 in the



Equations with Correlation-Convolution Integral 321

representation (20)for G can be left out using [8, Theorem 1] instead of [9,
Theorem 3.1] for the existence of the solution W to eq. (23). Only the function
γ in (21) is assumed as bounded now.

2. Assumption (20) corresponds to the asymptotic relation

G0(t, q) =
g(t, 0)

q
+ O(q−(1+δ1)) , δ1 > 0

as Re q →∞.

3. Instead of [1, Theorem 21.3] other theorems on the inversion of the
Laplace transform can be used. For example, using the theorem by Titchmarsh
[6, Chapter 11.7], we obtain a solution p to eq. (1) satisfying p(t, ·) ∈ L2(R+)
for t > 0 if the function G(x, q) for x ∈ R is a holomorphic function of q in
| arg q| < π/2 with Ĝ(x, q) > 0 for real q > 0 and

G(x, q) = O(q−α) , α >
1

2

as Re q →∞ uniformly in x ∈ R.

4. Theorem 1 holds true for eq. (1) in the strip S0 = (0, T0)× (0,∞) where
the correlation-convolution operator is given by (cf. [10])

I0[p](t, τ) =

T0−t∫
0

p(s, ·) ∗ p(s + t, ·)ds , 0 < t < T0 . (28)

4. Solution of equation (2)

Applying the Laplace transform with respect to τ , eq. (2) with h = g/2 and
the initial condition (5) is reduced to the intermediate equation

W1(t, q) +

∞∫
0

W1(s, q)W1(s + t, q)ds =
1

2
Ĝ1(t, q) , t > 0 (29)

for Re(q + µ) > q0 where

Ĝ1(t, q) = G1(t, q) · (q + µ)−2

G1(t, q) = G0(t, q) + 2f(t),

W1(t, q) = W (t, q) · (q + µ)−1

with G0(t, q) = (Lg(t, ·))(q) , W (t, q) = (Lp(t, ·))(q) and some q0 ≥ 0 as above.
Applying further the Fourier cosine transform with respect to t to eq. (29) leads
to the equation

P 2
1 (x, q) + Q2

1(x, q) + 2P1(x, q) = H1(x, q) , −∞ < x < ∞ (30)
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for Re(q + µ) > q0 where

P1(x, q) = (FcW1(·, q))(x) = P (x, q) · (q + µ)−1

Q1(x, q) = (FsW1(·, q))(x) = Q(x, q) · (q + µ)−1 (31)

with P = (FcL)p , Q = (FsL)p and

H1(x, q) = (FcĜ1(·, q))(x) = H(x, q) · (q + µ)−2 (32)

with H = FcG0 + 2F , F = Fcf .

Assuming that Ĥ1(x, q) = 1 + H1(x, q) > 0 for x ∈ R, q + µ > q0 as above,
we obtain the formal solution

P1(x, q) = −1 + Ĥ1(x, q)
1
2 cos K̂(x, q) (33)

or

P (x, q) = −(q + µ) +
√

(q + µ)2 + H(x, q) cos K̂(x, q) (34)

where

K̂(x, q) =
x

π

∞∫
0

ln[1 + H(ξ, q) · (q + µ)−2]

ξ2 − x2
dξ .

This holds in Re(q + µ) > q0 with the principal values of logarithm and square
root.

We again assume that the function g satisfies the conditions (i) - (iv) above
so that G0(t, q) exists in Re q ≥ 0 for a.e. t > 0 and G0(·, q) ∈ L(R+)∩L2(R+)
for Re q > 0. Further, we assume that condition

(v) f ∈ L(R+) ∩ L2(R+)

holds. Hence Ĝ1(·, q) ∈ L(R+) ∩ L2(R+) for Re q > max(0,−µ). Moreover,

|H(x, q)| ≤ |(FcG0)(x, q)|+ 2|F (x)|

≤
∞∫

0

|G0(t, q)|dt + 2

∞∫
0

|f(t)|dt ≤ C2 < ∞

for Re q > 0 and H1(x, q) = (q + µ)−2H(x, q) → 0 as Re q → ∞ uniformly in
x ∈ R. Hence

Ĥ1(x, q) ≥ 1− ε > 0 for x ∈ R , q + µ > q1(ε)

and for any ε ∈ (0, 1).
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Finally, we assume the representation

H(x, q) = c0(x) +
c1(x, q + µ)

(q + µ)δ1
, δ1 > 0 (35)

for x ∈ R, Re(q + µ) > q2 with functions c0 = 2F and c1 which are bounded,
Hölder continuous with respect to x ∈ R and O(x−γ), γ > 1 as x → ∞,
uniformly with respect to q in Re(q + µ) > q2 in case of c1. This implies the
representation for P1 defined by (33):

P1(x, q) =
F (x)

(q + µ)2
+

c2(x, q + µ)

(q + µ)2+δ2
, δ2 = min(2, δ1) > 0 (36)

for x ∈ R , Re(q + µ) > q0 where we put q0 = max(0, µ, q1(ε), q2) for some
ε ∈ (0, 1).

Again by Theorem 3.1 of [9] we obtain the existence of a solution W1(·, q) =
2
π
FcP1(·, q) ∈ L(R+) ∩ L2(R+) for any real q + µ > q0 to the intermediate

equation (29). In view of (36) the function W1 has the form

W1(t, q) =
f(t)

(q + µ)2
+

d1(t, q + µ)

(q + µ)
, d1(t, q) =

d2(t, q)

q1+δ2
(37)

where again d2 = 2
π
Fcc2 is a bounded function in t ≥ 0, Re q ≥ q0 + ε0 for any

ε0 > 0 which is in L(R+)∩L2(R+) with respect to t for any q in Req > q0. By [1,
Theorem 21.3] again we have the solution p = L−1W , W (t, q) = (q+µ)·W1(t, q)
to eq. (2) of the form

p(t, τ) = e−µτ

[
f(t) +

1

2πi

q̂+i∞∫
q̂−i∞

eτqd1(t, q)dq

]
(q̂ > q0) (38)

satisfying (26) and (27) with q̂ replaced by q̂ − µ.

Theorem 2. Let the assumptions (i) - (v) be fulfilled and let the representation
(35) for H = FcLg + 2Fcf hold.

Then equation (2) with initial condition (5) has the mild solution p = L−1Fc

where P is defined by (34). The solution p possesses the properties (26) and
(27). It can be represented in the form (38) where the function d1 is given
by d1 = 2

π
q−(1+δ2)Fcc2 with the coefficient c2 in the representation (36) for the

function P1 defined by (33).

Corollaries.

1. Assumption (35) corresponds to the asymptotic relation

G0(t, q) = Lg(t, ·)(q) = O(q−δ1), δ1 > 0
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as Re q →∞. Let now stronger the representation

G0(t, q) =
g(t, 0)

q
+

d0(t, q)

q1+ε0
, ε0 > 0 (39)

hold where g(t, 0) = lim
τ→+0

g(t, τ) ∈ L(R+)∩L2(R+) and d0 is a bounded function

possessing a sufficiently smooth Fourier cosine transform with respect to t as
above. Then we have in (35)

c1(x, q)

qδ1
=

h0(x)

q
+

h(x, q)

q1+ε1
, ε1 > 0

and in (36)

c2(x, q)

q2+δ2
=

h0(x)

2q3
+

h1(x, q)

q3+ε2
, ε2 > 0

with h0 = Fcg(·, 0) and corresponding functions h and h1. This leads to the
representation of the solution p

p(t, τ) = e−µτ

f(t) +
1

2
g(t, 0)τ +

1

2πi

q̂+i∞∫
q̂−i∞

eτqk1(t, q)dq

 (40)

where k1(t, q) = q−(2+ε2)k2(t, q) with a bounded function k2. From (40) it follows
that p is a strong solution of eq. (2) for which the derivative ∂p/∂τ exists and
satisfies (26) and (27) with lim

τ→+0
∂p/∂τ = 1

2
g(t, 0)−µf(t) which is in accordance

with eq. (2) for τ = 0.

2. Theorem 2 holds true for eq. (2) in the strip S0 = (0, T0)× (0,∞) with
the integral I0 defined by (28).

5. Solution of equation (3) with λ = 0

Next we deal with eq. (3) for λ = 0

∂p

∂t
+ µ p(t, τ) + I[p](t, τ) =

1

2
g(t, τ) , 0 < t, τ < ∞ (41)

together with the initial condition (6). Applying again the Laplace transform
with respect to τ , we obtain the intermediate equation

∂W

∂t
+ µ W (t, q) +

∞∫
0

W (s, q)W (s + t, q)ds =
1

2
G0(t, q), t > 0 (42)
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for Re q > q0 , q0 ∈ R+ and the initial condition

W (0, q) = α(q) , Re q > q0 (43)

for W (t, q) = Lp(t, ·)(q) where G0(t, q) = Lg(t, ·)(q) and α = Lϕ.

We make the assumptions (i) - (iv) for g and assumption

(vi) ϕ ∈ C(R+) with ϕ = O(eq̃τ ), q̃ ∈ R as τ →∞ .

for ϕ. Further, we look for a solution p with p(·, τ) ∈ L(R+) ∩ L2(R+) for
τ ≥ 0 , hence W (·, q) ∈ L(R+) ∩ L2(R+) for Re q > q0.

The solution of eq. (42) with (43) depends on the zeros of the holomorphic
function of z (cf. [8, 9])

F̃ (z, q) = µ + iz +

∞∫
0

W (t, q)eitzdt , Im z > 0 (44)

which satisfies the asymptotic relation

F̃ (z, q) ∼ µ + iz as Re q →∞ .

Therefore, for sufficiently large Req we have that F̃ (z, q) has no zero in Imz ≥ 0
for µ < 0, and F̃ (z, q) has a simple zero z0(q) ∼ iµ in Im z ≥ 0 for µ > 0. In
the case µ = 0 both possibilities can occur with z0(q) → 0 as Re q → ∞. In
the following we suppose µ 6= 0 and discuss the case µ = 0 only sketchily as a
limiting case of µ > 0 and µ < 0, respectively.

We assume that the function G0(·, q) ∈ L(R+) ∩ L2(R+) has a Hölder-
continuous Fourier cosine transform G(·, q) ∈ L2(R+) satisfying G(x, q) =
O(x−γ), γ > 1 as x → ∞, uniformly for Re q > q1 with some q1 ∈ R+.
Further, it holds the inequality

µ2 + x2 + G(x, q) + 2α(q) > 0 (45)

for real q > q2(≥ q̃) , x ∈ R.

Then, in case µ < 0 by [8, Theorem 2] or [9, Theorem 7.1] eqs. (42) and
(43) have the solution W (·, q) = 2

π
FcP (·, q) , Re q > q0 where q0 = max(q1, q2)

and, choosing the parameter b = −µ > 0 in [8, 9],

P (x, q) = −µ + A0(x, q)
1
2 [µ cos K0(x, q) + x sin K0(x, q)] (46)

with

A0(x, q) = 1 +
G(x, q) + 2α(q)

µ2 + x2
(47)

K0(x, q) =
x

π

∞∫
0

ln A0(ξ, q)

ξ2 − x2
dξ . (48)
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Moreover, the relation

M0(q) ≡
1

π

∞∫
0

ln A0(x, q)dx = 0 , Req > q0 (49)

must hold. We remark, that from (49) it follows that for g(t, τ) ≡ 0 we also
must have ϕ(τ) ≡ 0 for an integrable solution p of eq. (41) with (6) in case
µ < 0.

In case µ > 0 the function F̃ (z, q) has the simple zero z0(q) = i y0(q) where
y0(q) is real and positive for sufficiently large real q. It satisfies the equation

µ− y +

∞∫
0

W (t, q)e−tydt = 0 , y = y0(q) (50)

and hence the relation y ∼ µ for real q → ∞. Again by [8, Theorem 2] or [9,
Theorem 7.1] eqs. (42) and (43) have the solution W (·, q) = 2

π
FcP (·, q), Req >

q0 where, choosing b = µ > 0 in [8, 9],

P (x, q) = −µ + A0(x, q)
1
2

[
Re((ix− µ)B0(x, q)) cos K0(x, q)

+Im((ix− µ)B0(x, q)) sin K0(x, q)
]

.
(51)

A0 and K0 are defined by (47) and (48), respectively, and

B0(x, q) =
x− i y0(q)

x + i y0(q)
. (52)

The analogous relation to (49)

M0(q) = 2[y0(q)− µ]

where M0(q) is again defined by (49) now yields the formula

y0(q) = µ +
1

2
M0(q) (53)

for y0(q) which is real and positive for real q > q3. Then the solution W (·, q)
exists for Re q > q0 where q0 = max(q1, q2, q3).

Another possibility in case µ > 0 is to choose b = y0(q) obtaining the
function P (x, q) in the form (see [8])

P (x, q) = −µ + Â0(x, q)
1
2 [y0(q) cos K̂0(x, q) + x sin K̂0(x, q)] (54)
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where

Â0(x, q) = +
µ2 − y2

0(q) + G(x, q) + 2α(q)

x2 + y2
0(q)

(55)

K̂0(x, q) =
x

π

∞∫
0

ln Â0(ξ, q)

ξ2 − x2
dξ . (56)

The analogous relation to (49) now writes as

M̂0(q) ≡
1

π

∞∫
0

ln Â0(x, q)dx = y0(q)− µ (57)

which constitutes an equation for y0(q). Of course, this equation must have the
solution (53) again.

We remark that by [8, Theorem 2] or [9, Theorem 7.1] for the solution W
of eq. (42) with initial condition (43) the function W (·, q) is continuous and
possesses a continuous derivative ∂W/∂t(·, q) ∈ L2(R+) for Re q > q0 where
W (t, q) and ∂W/∂t(t, q) tend to zero as t →∞.

To perform the inverse Laplace transform of the function W (·, q) we again
assume that the function G has the representation (20) for Re q > q0 (with an
enlarged q0, eventually), and correspondingly the function α has the represen-
tation

α(q) =
α0

q
+

α1(q)

q1+δ1
, δ1 > 0 for Re q > q0 (58)

with α0 = ϕ(0) ∈ R and a bounded function α1. Hence, the function A0 has
the analogous representation

A0(x, q) = 1 +
a0(x) + a1(x, q)/qδ1

(µ2 + x2)q
for Re q > q0 (59)

where a0(x) = c0(x) + 2α0 = Fcg(·, 0) + 2ϕ(0) and a1(x, q) = c1(x, q) + 2α1(q).
Related representations hold for the functions M0 and B0. Further, from (59)
we have

M0(q) ∼
1

π

∞∫
0

a0(x)

µ2 + x2
dx · 1

q
as Re q →∞ . (60)

Hence, in case µ < 0 relation (49) implies the equality

1

π

∞∫
0

a0(x)

µ2 + x2
dx ≡ 1

π

∞∫
0

c0(x)

µ2 + x2
dx− α0

µ
= 0 (61)
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as a necessary condition for the existence of a solution.

Observing condition (61) in case µ < 0 and for P (x, q) the expressions (46)
in case µ < 0 and (51) - (53) in case µ > 0, respectively, from (59) again a
representation for P (x, q) of the form (22) follows:

P (x, q) =
c̃0(x)

q
+

c2(x, q)

q1 + δ2

, δ2 > 0 (62)

where

c̃0(x) =
µ a0(x)

2(µ2 + x2)
+

x2

x2 + µ2

1

π

∞∫
0

c0(ξ)dξ

ξ2 − x2
. (63)

Then the function W (t, q) has the representation (24) where d0(t) = 2p(t, 0)
with

p(t, 0) = e−µt[ϕ(0) +
1

2

t∫
0

eµsg(s, 0)ds], t ≥ 0 , (64)

and there exists the solution p of eqs. (41) and (6) of the form (25) which obeys
the relations (26) and (27).

Theorem 3. Let the assumptions (i) - (iv) with g(t, 0) = lim
τ→+0

g(t, τ) for g and

the assumption (vi) for ϕ be fulfilled, and let the function G = FcLg have a
Hölder continuous function G(·, q) with G(x, q) = O(x−γ), γ > 1 for x → ∞,
uniformly for Req > q0 , q0 ∈ R+. Further, let the inequality (45) for real q > q0

be fulfilled and let G have the representation (20) and α = Lϕ the representation
(58).

Moreover, in case µ < 0 the relation (49) is assumed, and in case µ > 0 the
function y0(q) defined by (53) is real and positive for real q > q0.

Then equation (41) for µ 6= 0 with initial condition (6) has a generalized
solution p with the properties (26) and (27). The solution p is defined by its
Fourier-Laplace transform P = FcLp given by the formula (46) in case µ <
0 and by the formulas (51) with (52), (53) or (54) with (53) in case µ > 0,
respectively.

Corollaries.

1. From G(x, q) = O(x−γ), γ > 1 we have G(·, q) ∈ L(R+) and therefore
G0(·, q) = Lg(·, q) is supposed as a continuous function on R+. Theorem 3
holds for γ > 1

2
, too, where G0(·, q) (as g(·, τ)) is not necessarily a continuous



Equations with Correlation-Convolution Integral 329

function on R+. In this case, also the functions W (·, q) and ∂W/∂t(·, q) need
not be continuous.

2. Condition (61) in case µ < 0 is equivalent to the relation

ϕ(0) +
1

2

∞∫
0

eµsg(s, 0)ds = 0 . (65)

Further, from (64) it follows that lim
t→+0

p(t, 0) = ϕ(0) = lim
τ→+0

p(0, τ). Condition

(65) is a necessary condition for the integrability of the function p(·, 0) on R+ for
a solution p of eq. (41) with initial condition (6) which satisfies this compatibility
condition at (0, 0). Moreover, formula (64) implies the stronger condition

ϕ(0) +
1

2

t∫
0

eµsg(s, 0)ds = o(eµt) as t →∞

as necessary for an integrable solution on R+ in case µ < 0.

3. In case µ = 0, analogously to the case µ < 0 we can choose the parameter
b = 1 in [8, 9] and get a corresponding solution p without zeros of F̃ (z, q) if the
relation (49) is fulfilled. It has the form p = 2

π
L−1FcP where

P (x, q) = Ã0(x, q)
1
2 [x sin K̃0(x, q)− cos K̃0(x, q)], Re q > q0 (66)

where

Ã0(x, q) =
x2 + G(x, q) + 2α(q)

x2 + 1

K̃0(x, q) =
x

π

∞∫
0

ln Ã0(ξ, q)

ξ2 − x2
dξ .

Analogously to the case µ > 0, choosing the parameter b = y0(q), a solution p
with zero z0(q) = i y0(q) of F̃ (z, q) of the form (54) with (55), (56) for µ = 0
exists if Â0(x, q) > 0 for real q > q0 with M̂0(q) → 0 for real q →∞ and eq. (57)
with µ = 0 has a positive solution y0(q) for real q > q0. The function y0(q) can
be obtained in explicit form by taking the corresponding formula to (53) for
P (x, q) with b = 1 again. Under stronger assumptions of the form

G(x, q) ∼ c0(x)

q
+

c1(x)

q2
, α(q) ∼ α0

q
+

α1

q2
as Re q →∞

a study of the solution formula (54) for µ = 0 is possible. We omit the details.
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6. Solution of equation (3) with λ 6= 0

Finally, we treat eq. (3) with λ 6= 0, i.e. the equation

∂p

∂t
+ λ

∂p

∂τ
+ µ p(t, τ) + I[p](t, τ) =

1

2
g(t, τ) , 0 < t, τ < ∞ (67)

together with the initial conditions (5) and (6). Applying again the Laplace
transform with respect to τ , we get the intermediate equation for W (t, q) =
Lp(t, ·)(q)

∂W

∂t
+ (λq + µ)W +

∞∫
0

W (s, q)W (s + t, q)ds =
1

2
Gλ(t, q), t ≥ 0 (68)

for Req > q0 , q0 ∈ R+ and the initial condition (43) where Gλ(t, q) = G0(t, q)+
2λf(t) with G0(t, q) = Lg(t, ·)(q). We assume that g fulfils conditions (i) - (iv),
f condition (v), and ϕ condition (vi). In addition, f should be continuous and
should have a summable derivative.

Eq. (68) has the same form as eq. (42) with µ replaced by µλ(q) = µ + λq
and G0 replaced by Gλ. We assume that the functions G = FcG0, α = Lϕ and
F = Fcf are bounded where G(·, q) and F are Hölder-continuous functions of
x ∈ R with G(x, q), F (x) = O(x−γ), γ > 1

2
as x →∞, uniformly for Re q > q1

with some q1 ∈ R+. Further, now the inequality

µ2
λ(q) + x2 + G(x, q) + 2α(q) + 2λ F (x) > 0 (69)

for real q > q2, x ∈ R with some q2 ∈ R holds, and we have µλ(q) < 0 for real
q > q̃0 if λ < 0 and µλ(q) > 0 for real q > q̃0 if λ > 0 with some q̃0 ∈ R.

Hence, in case λ < 0 we obtain the analogue expression to (46) for P (x, q) =
FcW (·, q)(x):

P (x, q) = −µλ(q) + A1(x, q)
1
2 [µλ(q) cos K1(x, q) + x sin K1(x, q)] (70)

with

A1(x, q) = 1 +
G(x, q) + 2α(q) + 2λ F (x)

µ2
λ(q) + x2

, (71)

K1(x, q) =
x

π

∞∫
0

ln A1(x, q)

ξ2 − x2
dξ (72)

for Re q > q0 , q0 = max(q̃0, q1, q2). The solution W (·, q) = 2
π
FcP (·, q) of (68)

with (43) exists if the condition

M1(q) ≡
1

π

∞∫
0

ln A1(x, q)dx = 0 , Re q > q0 (73)
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holds. We remark that we now have the asymptotic relation A1(x, q) = 1 +
O(1/q2) as Re q →∞ and we need the representations (20) and (58) for G and
α, respectively, only for the higher terms in the asymptotics for P .

In case λ > 0, analogously to (53) we define

y1(q) = µλ(q) +
1

2
M1(q) (74)

which is real and positive for real q > q3 with some q3 ∈ R, and we get the
analogous expression to (51) for P (x, q):

P (x, q) = −µλ(q) + A1(x, q)
1
2

[
Re((ix− µλ(q))B1(x, q)) cos K1(x, q)

+Im((ix− µλ(q))B1(x, q)) sin K1(x, q)
] (75)

where A1 and K1 are defined by (71) and (72), respectively, and B1(x, q) =
[x− iy1(q)]/[x+ iy1(q)]. The solution W (·, q) of (68) with (43) exists for Req >
q0 where q0 = max(q̃0, q1, q2, q3). Also we can take for P (x, q) the analogous
expression to (54) with (55) and (56).

From the expressions for P (x, q) the asymptotic relations

P (x, q) ∼ λ F (x)q̂

q̂2 + x2
, q̂ = µλ(q) = λq + µ , x ∈ R

as Re q →∞ and hence

W (t, q) ∼ λ

q̂
f(t) ∼ f(t)

q
, t > 0

as Re q →∞ with remainders of order O(q−(1+δ)), δ > 0, follow.

Therefore, eqs. (67) and (5), (6) have a solution p which satisfies the rela-
tions (26) and (27).

Theorem 4. Let the assumptions (i) - (iv) with g(t, 0) = lim
τ→+0

g(t, τ) for g and

the assumptions (v) for f and (vi) for ϕ be fulfilled where, in addition, f has
a summable derivative. Further, let the functions G = FcLg , α = Lϕ and
F = Fcf be bounded and G(·, q) and F are Hölder continuous functions with
G(x, q), F (x) = O(x−γ), γ > 1

2
as x → ∞ uniformly for Re q > q0 , q0 ∈ R+.

For real q > q0 also the inequalities (69) and relation sign(λq + µ) = signλ
should be satisfied.

Moreover, in case λ < 0 the relation (73) is assumed to be fulfilled, and in
case λ > 0 the function y1(q) defined by (74) is real and positive for real q > q0.

Then equation (67) for λ 6= 0 with initial conditions (5) and (6) has a
generalized solution p with the properties (26) and (27). The solution p is defined
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by its Fourier-Laplace transform P = FcLp given by the formula (70) in case
λ < 0 and by (75) with (74) in case λ > 0.

Corollaries.

1. If G(x, q), F (x) = O(x−γ), γ > 1 in view of [8, Theorem 2] or [9,
Theorem 7.1], the functions W (·, q) and ∂W/∂t(·, q) are continuous functions
from L2(R+) for Re q > q0 tending to zero as t →∞.

2. If the functions G and α have the representations (20) and (58), then
the function P has the asymptotic expansion

P (x, q) ∼ λ F (x)q̂

q̂2 + x2
+

λ a0(x)

2[q̂2 + x2]
+

2λ

π

x2

x2 + q̂2

∞∫
0

F (ξ)

ξ2 − x2
dξ

as Re q → ∞ where again q̂ = λq + µ , a0(x) = Fcg(·, 0) + 2ϕ(0), and in case
λ < 0 condition (73) has to be observed. Hence, in case λ > 0 it holds

W (t, q) ∼ λ e−q̂t

ϕ(0)

q̂
+

t∫
0

f(s)eq̂sds

 ∼ f(t)

q

for t > 0 and also for t = 0 if we assume the compatibility condition ϕ(0) = f(0).
The function g(·, 0) in a0(x) leads to higher order terms. Analogous statements
hold in case λ < 0.

3. The existence condition (73) in case λ < 0 can be looked on as an
equation for the function ϕ = p(0, ·) if p denotes the solution of eq. (67) with
initial condition (5) only (cf. [11]).
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