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Hyperbolic Functional Differential Systems
with Unbounded Delay

S. Koziel

Abstract. The phase space for quasilinear systems with unbounded delay is con-
structed. Carathéodory solutions to initial and mixed problems are investigated.
Theorems on the local existence and continuous dependence upon initial or initial
boundary functions are given. The fixed-point method and integral inequalities are
used.
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1. Introduction

For any metric spaces U and V' we denote by C(U, V') the class of all continuous
functions from U to V. We use vectorial inequalities with the understanding
that the same inequalities hold between their corresponding components. Let
us denote by My, the set of all k£ x n matrices with real elements. For z € R",
p € R¥,Y € My, where

T = (xh cee 7$n)7 b= (pl; e 7Pk), Y = [yij}izl,...,k,j:l,‘..,m

we define the norms

]l = ; jwil,  llpl = max {lpil}, VIl = max{; lyig| 1 <@ <k}
We will denote by L([0, c|, R+), ¢ > 0, Ry = [0,4+00), the class of all functions
7 :[0,a] — R,, which are integrable on [0,c|. Let B = (—00,0] x [—r, ] where
r=(ry,...,r) € R, Ry =[0,+00). For a function z : (—o0,a] x R — R¥,
a > 0, and for a point (¢, z) € (—o0,a] x R" we define a function z( . : B — RF
as follows: 2 4)(s,y) = 2(t + s, +y), (s,y) € B. Suppose that the functions

w = (wla cee 7¢k)’ ¢Z = (¢207¢;)’
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%’.0 : [0,(1,] - Ra ¢; = (%’.17 s 7wzn) : [O,G] X Rn - Rn

are given. The requirements on 1, 1 < ¢ < k, are that ¢, o(t) < ¢ for t € [0, a].
For (t,z) € R™™ we write v;(t,z) = (Yi0(t), Vi(t,x)), 1 <i < k.

The phase space X for equations with unbounded delay is a linear space
with the norm || - || x consisting of functions mapping the set B into R*. Write
2 =[0,a] x R" x X and suppose that the functions

P Q— kam p= [pij]izl, k,j=1,...,n

ey [ARRE]

f:Q— RF, =01 fe)

and
¢ (—00,0] ><R"—>Rk, 0= (1,5 0k)

are given. We consider the quasilinear functional differential system

8tzi<t7 :U) + ZPij(@% Zwl(t,x)>aszl<t7x) = fl(t7 Z, Zwi(t,x))7 1 S Z S ka (1)
j=1

with the initial condition
2(t,x) = p(t,x) for (t,z)€ (—o0,0] x R". (2)

Note that zy,z) is the restriction of z to the set (—oo,1;0(t)] x [¥i(t,x) —
r,Yi(t, x) 4+ r|, and this restriction is shifted to the set B.

We consider weak solutions of problem (1), (2). A function z : (—oo,¢| X
R" — R* 0 < ¢ < a, is a solution to the above problem if
(i) Zpytz) € X for (t,z) € [0, x R", 1 <i <k,
(ii) the derivatives 0,z and 0,z = (0, 2, . . . , Or, Z) exist almost everywhere on
[0,c] x R",
(iii) Zz satisfies (1) almost everywhere on [0, ] x R™ and condition (2) holds.

Recently, numerous papers were published concerning functional differential
equations or systems. The following questions were considered: functional dif-
ferential inequalities, uniqueness and continuous dependence for initial or mixed
problems, difference functional inequalities, numerical approximations of clas-
sical solutions, existence of classical or generalized solutions to initial or mixed
problems. In these considerations, initial or initial boundary functions are de-
fined on bounded domains. Monograph [6] contains an exposition of recent
developments of hyperbolic functional differential equations and systems.

Paper [7] initiated the investigations of partial differential equations with
unbounded delay. Sufficient conditions for the existence and uniqueness of
Carathéodory solutions of initial problems for quasilinear equations were proved.
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Functional differential equations in a Banach space were considered. The sys-
tem of axioms for the phase space is formulated in a form of inequalities for
norms in the space C'((—oo, ] x R",Y) and their suitable subspaces, where Y’
is a Banach space. Methods used in [7] are extended in [3] to initial boundary
value problems. Systems of axioms in [7] and [3] are different because domains
of solutions for initial problems and mixed problems are different.

The aim of the paper is to propose a new system of axioms for phase spaces.
It is important in our considerations that assumptions on phase spaces are
generated by differential functional systems and they are the same for initial
problems and for mixed problems.

The paper is organized as follows. In Section 2 we formulate a system
of axioms and some properties of phase spaces. We give examples of spaces
satisfying the main assumption. A theorem on the existence and continuous
dependence upon initial data is presented in Section 3. The last part of the
paper deals with initial boundary value problems. A result on the existence of
Carathéodory solutions is proved. Note that results of the paper are new also
in the case when the domain B is a bounded set, see Remark 1, 4 and 5.

In the paper, we use general ideas concerning axiomatic approach to equa-
tions with unbounded delay, which were introduced for ordinary differential
equations in [5], [8]. We apply a method of bicharacteristics. It was introduced
and widely studied in non-functional setting in [1], [2].

2. Definitions and fundamental axioms

Assume that ¢ > 0, w : (=00, ] x [=r,7] — R¥ and t € (—o0,c]. We define
a function wyy : B — R* by wy(s,y) = w(t + s,y), (s,y) € B. For each
t € (=00, c] the function wy is the restriction of w to the set (—oo,t] x [—r,7],
and this restriction is shifted to the set B. If w : (—oo,c] x [-r,r] — R, ¢ > 0,
and w|j,qx[-rr is continuous, then we write

[wllio.n = max|lw(s, y)l| = (s,9) € [0,¢] x [=r, 7]},

where ¢ € [0, ¢].

Assumption H[X]. Suppose that (X, || - ||x) is a Banach space and

1) there is a constant x € R, independent of w such that for each function
w € X we have

lw(0, )| < xllwllx, =€ [=r7r], (3)

2) if w: (—o0,c] x [-r,7] = R*, ¢ >0, is a function such that w € X and
W|[o,¢)x[~ry) 18 continuous, then wgy € X for t € [0, c] and
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(i) the function ¢t — wy, is continuous on [0, ¢],
(ii) there are K, Ky € Ry independent of w such that

|wellx < Kl|wlljog + Kollwellx, t€(0,c. (4)

Now we give examples of phase spaces.

Example 2.1. Let X be the class of all functions w : B — RF which are
uniformly continuous and bounded on B. For w € X we put

lw]lx = sup{[lw(s, y) : (s,y) € B}. (5)

Then, Assumption H[X] is satisfied with all the constants equal to 1.

Example 2.2. Let X be the class of all functions w : B — R* such that
w € C(B, R*) and there exists the limit lim; . . w(t,z) = wy(x) uniformly
with respect to € [—r,r]. The norm in the space X is defined by (5). Then,
Assumption H[X] is satisfied with all the constants equal to 1.

Example 2.3. Let v : (—00,0] — (0,00) be a continuous function. Assume
also that v is nonincreasing on (—o0,0]. Let X be the space of all continuous
functions w : B — R* such that

t
lim lw 2)l =0, x€l[-nrr7]
t——co (1)
e Jutt. )]
w(t,x
||w||X:sup{ ‘ (¢, )EB}.
(v(t)
Then, Assumption H[X] is satisfied with K = ﬁ, Ky=1, x =~(0).

Example 2.4. Let p > 1 be fixed. Denote by Y the class of all w : B — R*
such that

(i) w is continuous on {0} x [—r,7] and
0
/ |w(T, x)||PdT < 400 for x € [—r 1],

(ii) for each t € (—o0, 0] the function w(t,) : [-r,r] — R* is continuous.
We define the norm in the space Y by

[wlly = max {{lw(t,z)| : (¢,2) € {0} x [=r,7]}

+sup { (/_(; (T, :E)deT); Lz e 7’]} .

Write X = Y, where Y is the closure of Y with the above given norm. Then,
1
Assumption H[X] is satisfied with K =1, Kg=1+c¢?, x = 1.
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Example 2.5. Denote by Y the set of all functions w : B — R¥ which are
bounded and which satisfy the following properties:

(i) w is continuous on {0} x [—r,r] and

I(z) = sup { /_n |w(r,2)|ldr : n € N} < foo

(nt1)

where z € [—r,r] and N is the set of natural numbers
(ii) for each t € (—oo, 0] the function w(t,-) : [—r,r] — R* is continuous.

The norm in the space Y is defined by
|wlly = max{|w(t,z)| : (t,z) € {0} x [—r,r]} +sup{l(z) : z € [-r,r|}.

Write X =Y, where Y is the closure of Y with the above given norm. Then,
Assumption H[X] is satisfied with K =1+ ¢, Ky =2, x = 1.

If z: (—oo,c] x R* — RF ¢ > 0, is a function such that 2|jo,qxrr 18
continuous and (¢,z) € [0, c] x R", then we put

12ll0.a) = max {{[|2(s,9)] : (s,9) € [0,4] x [z =7,z +7]}.

Suppose additionally that the function z|j g~ satisfies a Lipschitz condition
with respect to x. Then we write

Lipleljosrey =sup { I ZE0 I ) oy € 0t x vy £ 7).

Lemma 2.1. Suppose that Assumption H[X] is satisfied and z : (—oo, ¢]x R" —
RF.0<c<a. If 200) € X for x € R" and z|pqxrn is continuous, then
20 € X for (t,x) € (0,c] x R" and

[zt llx < Kll2llp0) + Koll20.0) [ x- (6)

If we assume additionally that the function z|j qxrr Satisfies the Lipschitz con-
dition with respect to x, then

[2¢t2) — 2@t lx < K Lip[z]|jom |2 — Z|| + Koll200) — 200 lx,  (7)
where (t,x),(t,z) € [0,¢] x R™.

Proof. Inequality (6) is a consequence of (4) for w : (—oo,c| x [-r,r] — RF
given by w(s,y) = z(s,z + y) with fixed x € R".
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We prove (7). Suppose that (
(—00,c] x R* — R* is defined by 2
Then Zy,) = 24,z and

(t,z) € [0,c] x R™ and the function 2 :
=z

t,x),
(s,y) = z(s,y+x—x), (s,y) € (—o0, ] x R™.

||Z(t,:v) - Z(t,;?:)HX ||(Z - 5)(t,z)HX

IN

KHZ — 2||[O,t;x] + KO“(Z - 2)(071‘)”){

IN

K Lip[z]|o,srm |z — Z[| + Koll20,2) — 20,0 x
which proves (7). |

Our basic assumption on initial functions is the following.

Assumption H|p]. Suppose that ¢ : (—00,0] X R* — R* ¢, € X for
x € R™, and there are by, b; € R, such that

Il llx <bo, 002 — posllx < billz — 2,

where z,Z € R". Let us denote by I[X] the class of all initial functions ¢ :
(—00,0] x R* — R* satisfying Assumption H[gp]. Let be ¢ € I[X] and let
0<c<a,d=(dy,d1) € R%, X € L([0,¢], Ry). Let us denote by C,, [d, A] the
class of all functions z : (—oo, ] x R* — R such that

(i) z(t,z) = ¢(t,x) for (t,z) € (—o0,0] x R™,

(ii) the estimates

+d1”x_f‘|7

Izt 2) | < do,  [|2(t, 2) = 2(2, 2)|| < ’/t A(r)dr

hold on [0, ¢| x R".

We will prove that under suitable assumptions on f and v and for suffi-
ciently small ¢, 0 < ¢ < a, there exists a solution Z to problem (1), (2) such
that z € C,.[d, \].

3. Existence of solutions to initial problems
Let us denote by A the set of all functions « : [0,a] x Ry — R, such that

a(-,t) € L(]0,a], Ry) for t € Ry and the function a(t,-) : Ry — R, is continu-
ous and nondecreasing, and a(t,0) = 0 for almost all ¢ € [0, a]. Write

Xpl ={we X :|lwlx <pj, pe R

We will need the following assumptions.
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Assumption H|p|. Suppose that

1) the function p(-,y,w) : [0,a] — My, is measurable for every (y,w) €
R™ x X and there is a function o € A such that

lp(t, 2, w)l| < alt, 1)
for (z,w) € R" x X[pu] almost everywhere on [0, al
2) there is a function v € A such that
lp(t, 2, w) = p(t, 7, W)[| <~ wlllz — 2| + [lw — @] x]
for (z,w), (Z,w) € R™ x X[u] and for almost ¢ € [0, al,.

Assumption H[¢]. Suppose that for each i, 1 < i < k, the functions v, :
[0,a] — R and ¢} = (¥i1,...,%in) : [0,a] x R* — R™ are continuous and

1) io(t) <t fort € (0,a]

2) there is sy € R, such that

[i(t, ) — i(E, )| < sollz — 2]
on [0,a] x R™.
Suppose that Assumptions H[X], H|p|, H[¢] are satisfied and ¢ € I[X],
z € Cyc[d, N]. Consider the Cauchy problem
77,(7'> = pi(Ta 77(7-)7 Zwi(ﬂn(T)))a n(t) =z, (8)

where (t,z) € [0,c] x R and 1 < i < k is fixed, while p; = (pi1, ..., pin)-
Let us denote by g¢;[2](-,t,z) the solution to (8). The function g;[z] is the i-th
bicharacteristic of system (1) corresponding to z. For functions ¢ € I[X] and
z € Cy,.ld, N], we write

lellx.rm = sup{lle@allx : 2 € R"}
and
12lle = sup{llz(s, y)[| : (s,9) € [0,] x R"},
where t € [0, ¢].
We first prove a lemma on the existence and regularity of bi-characteristics.
Lemma 3.1. Suppose that Assumptions H[X], Hl[p], H[¢] are satisfied and
0,0 € I[X], z € Cueld, N, Z € Cp.ld,N], where 0 < ¢ < a. Then, for each

1 < i <k, the solutions g;[z](-,t,z) and g;[Z](-,t,x) exist on [0,c]. They are
unique, and we have the estimates

o)) — 9Bl 20 < 260 | [ at@e| + 1o —a1] @
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for (t,x),(t,z) € [0,c] x R", 7 € [0, ], where

L = A ' d 0
(1) exp[ /0 V(& to) 5]7 7 € [0, (]
A =1 —+ 80<Kd1 + Kobl)
po = Kdo+ Kobg
and
lgi[2](7.t, 2) — gilZ] (7, ¢, )|

< L(c) /tT’Y(faMo)[KHZ—ZHg—i—KOHSO—@”X,Rn]df' (10)

where (1,t,x) € [0,¢] x [0, c] x R™.

Proof. We begin by proving that problem (8) has exactly one solution. Tt
follows from the Assumptions H [ X, H[)], H[p] and Lemma 2.1 that ||z(s )| x <
o for (s,y) € 0,c] x R™ and that the following Lipschitz condition is satisfied:

HPi(T, Y, ZW(‘B?J)) - pi(T’ Y, zi/li(ﬂ??))” < 7(7—7 ,UO)AHZ/ - g”a

where 7 € [0, ¢], y,y € R". It follows that there exists exactly one Carathéodory
solution to problem (8), and the solution is defined on the interval [0, c].

Now we prove estimate (9). The function g;[z](-, ¢, x) satisfies the integral
equation

gilzl(r,t,2) = x +/ pi(&, 9il2] (&, 1, ), 2y, (e, qil=) e b)) ) AE .-
t

Write
Pz[z] (Sa t, l') = (fa 9i [Z] (57 l ZL‘), sz’(f,gi[z}(f,t,m)))‘
It follows from the Assumptions H[¢], H[p] and Lemma 2.1 that

lgil=](m 8, 2) — gil 2] (7, 2, Z) |

< Jlo—all+ /tt_Oé(f,Mo)df’
#| [ IR ) - Pl Tl
< ol +| [ ateplae
+A| [ (€ mllad)e t.a)  alBl(E F ) e,




Hyperbolic Functional Differential Systems 385
where (t,z), (t,z) € [0,c] x R", 7 € [0,¢]. Now we obtain (9) from the Gronwall

inequality.
Our next aim is to prove (10). For z € C,.[d, \] and z € Cj .[d, ] we have

lgil2)(7, ¢, ) (7., )]

(11)
/||pz [2)(6.4,2)) — pu(PAEI(E £, )| dé|

It follows from Assumption H[X] and Lemma 2.1 that

zvieqitale b)) — Zvieailaetanllx
< lzeealeleta) = ZuealEeta llx
Hlzwealaere) = ZueaEEnnllx (12)
< so(Kdy+ Kobi)l|gil21(€, @) — gil2](&, 1, 2|
+Kl[z = Z[le + Kol — @l x,rn
where (£,t,z) € [0,¢] x [0,¢] x R". The above estimate and (11) imply the
integral inequality
lg:[2](7. ¢, 2) — gil 2] (7, ¢, 2)|

<

(60 [ K = 3l + Kall = el ] g

t

+A

| e mllalle ) - g e a-c>||d5\ ,

t
where (£,t,x) € [0,c] x [0,¢] x R". Now we obtain (10) from the Gronwall
inequality. [

Suppose that ¢ € I[X], c € (0,al, z € Cy[d, \] and
gl b @) = (9=t @), - gal2 (5 8 )
are bicharacteristics of system (8). Write
F @ gl2(T, 8, 2), 2y e g rt.)))
= (At a2t 2), 20, (gl raa)s - - Fu(ts gul2)(T3 8, 2), 2gy(rgil)rt))))
and

90*(Tvg[z](7—7t= ZE)) = (‘:Ol(Tv gl[z](Tvtv x)>7 R gpk(Tv gk[ZKT?tv x))) :
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Let us define operator F' as

Flz](t, x) =:¢f(0,glﬂ(0,t,x))-+'/£ FH (1, gl=1(m 8, ), 2y gl (rta) AT
on [0,c] x R", and let
Flz|(t,x) = ¢"(t,x) on (—o0,0)x R".

Assumption H[f]|. Suppose that

1) the function f(-,y,w) : [0,a] — R* is measurable for (y, w) € R" x X and
there is 4 € A such that

1f (2, w)|| < A(E 1)

for (z,w) € R™ x X[pu] and for almost all ¢ € [0, a],
2) there exists a function 5 € A such that the Lipschitz condition

1f(t, 2, w) = f(t, 2, w)]| < Bt )z — 2] + lw — @] x]
is satisfied for (z,w), (z,w) € R™ x X[u] and for almost all ¢ € [0, al.

Theorem 3.1. Suppose that ¢ € I[X]| and Assumptions H|p], H[f], H[¥] are
satisfied. Then there are (dy,di) = d € R%, c € (0,a] and X € L([0,c], R}) such
that there exists exactly one solution u € C,.[d, A] to problem (1), (2).

If o € I[X] and u € Cgz.ld, N is a solution to system (1) with the ini-
tial condition z(t,x) = @(t,x) on (—oo,0] x R™, then there is a function A €
C((0,¢], Ry) such that

[ = alle < A@) |l = @llx.pn, ¢ € (0, (13)

Proof. We have divided the proof into three steps.

Step I. We first show that there are (dy,d;) = d € R%, ¢ € (0,a] and
A € L([0,¢], Ry) such that

F:Cu.ld, N — Cy,.ld, \.

Suppose that the constants (do,di) = d € R%, ¢ € (0,a] and the function
A € L(]0, ¢], Ry) satisfy the conditions

doy > Xbo+/ A(T, po)dT
0

dy > (Xbl +A/Ocﬁ(7, [LQ)dT) L(c)
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and
A@Zamm»Q@+Allmwwm)u@+wam>ontemd

Suppose that z € C,[d, A]. Then we have

M&WwWéx%+AHvMth% (14)

It follows from Assumption H|[f] and Lemma 2.1 that for
IF[=](E x) = F2 (@ 2)
< [l¢"(0, [=](0, £, 2)) — ¢*(0, g[2](0, 2, 7))
¢
+ /0 1£7(7, gl2](7, 1, 2), 2p(rglai )

— (7, 9[2](7, 1, Z), 2y g2 (r220)) | AT

t
/ :)/(7-7 MO)dT‘
t

b mase [9i(2)0.t.2) — g [£)(0. 2.2

+

IN

A [ B s o)) = 2 .3) o

t
/ ;5/(7-7 MO)dT‘
t

(xb1 + A/OCﬁ(T, uo)dT>L(C)[

+

t
/ afT, ,uo)dT’ + ||z — f||]
t

IN

_|_

t
/ :Y<7_7 MO)dT‘7
t

that is

/t M)

on [0,¢] x R™. It follows from (14) and (15) that F[z] € Cy.[d, A].

IF[](E 2) = FE](E 2)]] < + [z — ] (15)

Step II. We shall prove that F is a contraction on C,.[d, \]. For 2,z €
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Cy.c[d, A] we have
| F[2](t, x) — F[2](t, )|
< [l¢™(0,g[2](0,t,2)) — (0, g[Z](0, ¢, 2))|]
+ /0 £ (7, g2 (7, t, @), 24 (r g L2l (rt,0))

=1 (7 9271, %), 2y gl ran) AT -
It follows from (12) and Lemma 3.1 that

| F[2](t,x) — F[2](t, )|
< xb Imax 19:[21(0, , ) — g:[2](0, ¢, )|

600 [A s el ) = el )]+ K = 21

< WKL) / (€, )|z — 2lede

0

K T —Z T AL ’ = Z|[ed€|dT
n /05( ”LLO)[HZ z||, + (c)/T V(& o)llz — |l 5]
/0 I — 2lew(e)d

3
W) = KL [xbi+ A [ 35, po)ds] (6. o) + K56 o)

For functions z, zZ € C, .[d, A\] we write

=20 = sup {1~ zheesp [ -2 [ wi@)te] v e 0.}

IN

where

We have
|F[2](¢, z) — F[2](¢, 2)]

< [le=leew
< fo=al) e[z [ wis
sl =2l (e [2 [ werie] 1)
Jlle—zllew [2 [ wierd

-2 05111 exp /\IJ(s)ds]\I/(f)dﬁ
"y )ds| w(€)dg

L—

IN
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for t € [0, ¢]. From the above inequality we get

IFEI2) — FEIG )l < 5l — e [2 [ wierde]

for t € [0,¢], and consequently [|F[z] — F[z]|] < 3[|z — z|]. By the Banach
fixed point theorem there exists a unique solution u € C, .[d, A] of the equation
z = F[z]. Now we prove that u is a solution of equation (1). We have proved
that

t
ui(t’ ZL‘) = Qpi(0> gi [u] (Oa t, $)) + / fi(sa Gi [u] (S’ t {E), ulﬁi(s,gi[u}(s,t,x)))ds (16)
0

on [0,¢] x R" for 1 < i < k. For given x € R", 1 < i < k, let us put
1 = g;[u)(0,t,x). Tt follows that g;[u(7,t,x) = gi[u](r,0,7) for T € [0,¢]
and z = g;[u](t,0,7"). The relations

7D = gi[u](0,t,z) and z = g;[u](t,0,7?)

are equivalent for x, 7Y € R™. Tt follows from (16) that for 1 <i < k

w(t, gilul(t,0,79))

= soz-(O,n())Jr/ o5, gi[ul (5, 0,0, 0y (0 g1l (s.0m0))) S -
0

By differentiating (17) with respect to ¢ and by using the transformations -
7% = g;[u](0,t,x) which preserve the sets of measure zero, we obtain that u
satisfies (1) for almost all (¢,z) € [0,¢] x R™.

Step III. Now we prove relation (13). Let F' be an operator defined as F'
but with function @ instead of ¢. If u = F[u] and @ = Flu], u = (uy, ..., u),
= (Uy,...,u), then it holds for each i € {1,...,k}

|ui(t, 2) — wi(t, )|
< ’(pi(()?gi[u](oat?x)) - @i(ougi[ﬂ](ovtv SC))|

t
+ /0 | fi (s, gilul (s, t, ), Uy (s, u ) (s,12))))

— fi(s, gilul (s, t, @), Uy, s ga(s,t.0))) ) | ds

IN

I = @llx,mn + xbr max ||g:[u] (0,7, ) — g:[u] (0, 7, 2)|

+ [ 80 | s Lol t.0) = if s )

108X {10y, (5.3 {u) (st.0)) — T (53 (st) Hx] ds.
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It follows from Lemma 3.1 that
lgi[u](7,t,2) — gila)(7, t, )]
< 109 [ 2o (Kl =l + Kl = Pl ds
for 0 <7 <t, and
[t 5,94l (s.8.0)) — Upis.gatal(s,t.) | x

< so(Kdi + Kobi)lgiu](s, 1, %) — gilul (s, 2, )
+KJu — al|s + Kol — @lx.rn

t
< so(Kdy + Koby)L(c) / (& o) [K||u — alle + Kol — || x,rr] d€
0
+K|[u —alls + Kol — @l x,rn-
Then we have

||U(t,$) - ﬁ'(tax)“
t
< o=@l + xbiL(0) / (s, p10) (Kl — lls + Kol — @llx.nn] ds
0

+/0 ﬁ(S,Mo)[AL(C)/O V(& po) [KJu — alle + Kol — @llx,rn] d€

+KJu = alls + Kollp — ¢l x.pn | ds

¢
< Dl el + [ ()~ al.ds
0
with .
D.=1+ Ko/ Uy(s)ds, T'(s)= K¥y(s),
0
where

() = L) b+ A [ BLE o] s, o) + B )

Using the Gronwall inequality we obtain ||u —al|; < A(t)||¢ — @l x.rn, t € [0, ],
with .
A(t) = D, exp [/ F(s)ds} .
0

Then we have shown the estimate (13) with the above given A. This proves the
theorem. |
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Remark 1. Suppose that B = [—r¢, 0] x [—r,r| where ry € R, and
p:0,a] X R* X R* = Myn, p= [l -

-----

fil0,a) x R*x R = R*, f=(fi,.... fx)
are given functions. Write
D;[t, x]
= {(s,9) € R™™ : io(t) =10 < 5 < io(t), ¥i(t,x) —r <y < it @) + 1}
for 1 <i <k, and

p(t, z, w)

ﬁ(t,x,[gw(s,y)dsdy)
flt,x,w) = f(t,x,/jgw(s,y)dsdy)

where [, w(s,y)dsdy = (fB wi(s,y)dsdy, ..., [ wi(s, y)dsdy). Then the Cauchy
problem (1), (2) is equivalent to the system of differential integral equations

Gtzi(t, .17) + Z ﬁij (t, x, /
=1 p

(s, y)dsdy ) D, z(t, @)

= ﬁ(t,x,/Di[t,x]z(s,y)dsdy)

for 1 <i < k, with the initial condition

z(t,x) = p(t, x) (19)

for (t,x) € [—rp,0] x [—r,7]. It is easy to formulate existence result for prob-
lem (18), (19) which is based on Theorem 3.1. Note that the results presented
in [6, Chapter 4] concern the case when the sets D;[t, x] do not depend on (¢, x)
and ¢, and therefore they are not applicable to (18), (19).

i [t,ﬂ?]

(18)

Remark 2. For the above given ¢ and f we put

o(t,z,w) = o(t,z,w(0,0)), f(t,z,w)= f(t,z,w(0,0))).

Then, the Cauchy problem (1), (2) is equivalent to the system of differential
equations with deviated variables

Opzi(t,x) + Z 0i(t, 2, 2(Vi(t, x))) 0, 2:(t, ) = ﬁ-(t, x, z(Y;(t, x))) (20)

Jj=1

for 1 < ¢ < k, with the initial condition (19). It is easy to formulate the
existence result for (20), (19) which is based on Theorem 3.1.
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4. Mixed problems

In this part of the paper we shall consider initial boundary value problems for
quasilinear partial functional differential systems with unbounded delay. Let
use the symbols B and X to denote the spaces defined in Section 1. Let a > 0
and b= (by,...,b,) with b; > 0 for 1 < i <n be fixed. We define the sets

E = [0,a] x (—=b,b)
Ey = (—00,0] x [=b—7rb+7]
WE = ([0,a] x [-b—r,b+7]))\E

E* = EgUEUOE

and
Elc] = EN([0,] x R")
E[c] = 0EN([0,¢] x R")
Dlc] = FElcJ]UdyE|c]

where 0 < ¢ < a. Write Q = E x X where E is the closure of E, and suppose
that the functions

..........

Q=R f=(fi,.... fr)
@:E0U80E—>Rk,<p:(gpl,...,gok)

and

¢ = Ewla s 11@), wl = (w10>w;>7 i.0 - [070/] — R
%U; B — [_bv b]a IM = (,lvbi.l) cee 71/)7,’.&)

are given. The requirements on ;o are such that v, o(t) < ¢ for ¢ € [0,a] and
1 <i < k. We consider the quasilinear functional differential system

atzi<t7 $) + Z pij(ta T, Zwi(t,x)>aa:jzi(t7 .’ﬂ) = fz(ta x, Zdn(t,:p))? (21)

Jj=1

for 1 <i < k, with the initial boundary condition

ot 7) = p(t,2) (22)
for (t,z) € Ey U 0pE. We consider weak solutions of problem (21), (22). A
function z = (z1,...,2,) : E*N((—=00,c] x R") — R, 0 < ¢ < a, is a solution

to the above problem if the following conditions are satisfied:
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(i) Zyyta) € X for (t,x) € Elc], 1 <i <k
(i) the derivatives 0,z; and 0,z; = (Op, Zi, - - -, On, Zi), 1 < i < k, exist almost
everywhere on Flc],
(iii) Zz satisfies system (21) almost everywhere on E[c|, and z(¢, x) = (¢, x) on
(Eo UOyE) N ((—o0,c] x R™).

Remark 3. Note that existence results presented in [6], [4], [12] are not appli-
cable to (21), (22) also in the case when B is a bounded set.

Let A be the class of all functions v € C (R, R.) which are non-decreasing
on Ry, and v(0) = 0. If z : EyU D[c] — R*, 0 < ¢ < a, is a function such that
2| pjq is continuous and (¢, ) € [0, ] x [—b,b], the we put

12 [l10,60) = max{|z(s, )| : (s,9) € [0, 8] X [ — 7, + 7]}

Suppose additionally that the function z|py) satisfies the Lipschitz condition
with respect to x. Then we write

Lip[z]|pyy = sup { HZ(S?E@ — ;ﬁs’y)” :(s,9), (s,9) € D[t]}

for t € [0, cl.

Lemma 4.1. Suppose that Assumption H[X] is satisfied and z : EgUD|c] — RE,
0<c<a. Ifz0. € X forze [—b,b] and z|pyq is continuous, then 2. € X
for (t,x) € [0,¢] x [=b,b] and

126 [x < Kll2ll0.62) + Koll 20, [ x- (23)

If we assume additionally that the function z|pjq satisfies the Lipschitz condition
with respect to x, then

2(t2) — 2o Ix < K Lip[2]|pyglle — Z|| + Koll2(0.0) — 200)llx,  (24)
where (t,), (t,z) € [0,c] x [~b,b].

The proof of the above lemma is similar to the proof of Lemma 2.1. We
omit the details.

Our basic assumption on initial boundary functions is the following.

Assumption H[y]. Suppose that for ¢ : EgUdyE — R* it holds:
1) @) € X for z € [—b,b], and there are constants by, b; € R, such that

leoallx < bo,  |le0e) — Poallx < billz — Z

where z, 7 € [—b, b).
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2) ||lp(t,z)]] < qo on OpF, and there are constants ¢, g2 € Ry such that

lo(t,2) = o, D)l < @uft = 1] + @2llz = zl| on HE

Let us denote by I[X] the class of all initial boundary functions ¢ : Ey U
dE — R* satisfying Assumption H[p]. Let ¢ € I[X] and let 0 < ¢ < a,
d = (do,d1,d2) € R, d; > ¢q; for : = 0,1,2. We will denote by C,,.[d] the class
of all functions z : Ey U D[c] — R* such that

z(t,x) = p(t, x) for (t,z) € Eg U dyE|c| and the estimates

12t 2) | < do,  [|2(t2) = 2(2,2)|| < du[t —t] + dof|lz — 2|

hold on D[c]. We will prove that under suitable assumptions on f, p and v and
for sufficiently small ¢, 0 < ¢ < a, there exists a solution Z to problem (21), (22)
such that z € C,[d]. We will need the following assumptions on p and .

Assumption Hylp|. Suppose that

1) the function p(-, z,w) : [0,a] — My, is measurable for every (x,w) €
[—b,b] x X and p(t,-) : [~ B b] x X — My, is continuous for almost all
t€10,a

2) there exist o,y € A such that ||p(t, z, w)| < a(u) and

lp(t, 2, w) = pt, Z, w)|| < y(p)lllz — 2| + [Jw — wl|x]
for (z,w), (Z,w) € [~b,b] x X[u] and for almost all t € [0, a].

Assumption H[i)]. Suppose that the functions ¢; = (g, 7)), 1 < i < k,
satisfy the conditions:

1) Yio € C([07a]7R+)7 QM € C(E7 [_E’BD and ¢i.0(t) < tfort € (0,&],
1 <1<k,

2) there is sy € R, such that

it ) — i(t,2)|| < sollx —z]] on E for 1<i<k.

Suppose that Assumptions H[X], Ho[p], H[¢] are satisfied and ¢ € I[X], z €
C,.[d]. Consider the Cauchy problem

77/(7_) = pi<7_v 77(7_>’ Zwi(T,n(T)))v 77(75) =T (25)

where (t,z) € [0,¢] x [=b,b] and 1 < i < k is fixed, while p; = (i1, - - ., pin). Let
us denote by ¢;[2](-,t,z) = (ga[z](-,t,2), ..., gin[2](-,t,2)) the solution to (25).
The function g;[z](+, ¢, ) is the i-th bicharacteristic of system (21) corresponding
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to z. Let 6;[2](t, z) be the left end of the maximal interval on which the solution
gi[2](+, t, x) is defined. Write

;. = {(t,x)e E:z;=0b;}
Fj__ = {(t,ZE) S E Iy = —b]}
Iy = {O} X [_67 5]

I = Toul (T uT;o).

For functions ¢ € I[X] and z € O, [d], we write

lellxs = sup{llom llx : = € [=b, 8]},

and
2]l = sup{||z(s, )|l : (s,y) € D[t]}, 0<t<c

Lemma 4.2. Suppose that Assumptions H[X|, H|p], H[) are satisfied and
o, 0 € I[X], z € Cu.ld], Z € Cp[d], where 0 < ¢ < a. Then, for each 1 < i <
k, the solutions g;[z](-,t,x) and g;[Z](-,t,x) exist on the intervals I((EL) and f((f?x)
such that for ¢ = 0;[z](t,x) and ¢ = 6;[C](t,x) we have ((, g:[z](¢,t,z)) € T and
(¢, 4il2](C,t,x)) € I'. Solutions of (25) are unique, and the following estimates
hold:

lgil=](m, 2, 2) — gil2)(7,, 2) || < O(r, max{t, t}) ([t —t] + [ — ] (26)

for T € I((Z?m) N I((%), (t,z),(t,z) € FElc], where

O(7, 1) = max{1, a(po) } exp [Ay(po) [T — 1]

27
Mo :Kd0+K0b0, A= 1+S()(Kd1—|-K0b1) ( )

and

lgil2)(r. 8, 2) = gilz] (7., 2) || < O(7,1)

[ [KHZ—ZHg—i-KoHQO—ngX’,—)]dg‘ (28)

for T € 79 ﬂl_(i)

(t,z) (t,x)’ (t,x) € Elc], where

O(r. 1) = (o) exp [ A (o)t — 7. (29)
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Proof. It follows that 2. ||x < po for (¢,z) € Elc] and

i (7,9, Zi/’i(ﬂ?/)) - pi(7, 9, %(nﬂ))” < (o) Ally — ¥l

where (7,y), (7,y) € E|c|. It follows from classical theorems that there exists
exactly one Carathéodory solution to problem (25) and the solution is defined on
some interval [ ((Z)x) satisfying the condition of the lemma. An easy computation
shows that the integral inequalities

lgil=](7 2, 2) — gil 2] (7, 2, Z) |
<l =2l + alpo)lt — |

+Awm>lﬁ%mma@—%mmaww4

() (4)
for 7 € I(m) N I(ﬂf),

lg:=](7 8, 2) = gil 2] (7, 2, 2) |

and

< (o)

[ [0 = 2+ Falle = el
t

T A (o) l”u%vxaax»—mkﬂaaxﬂuq

for 1 € ]((Z)x) ﬂf((ti)x) are satisfied. Now we obtain (26) and (28) from the Gronwall

inequality. |

Assumption H[p]. Suppose that Assumption Hy[p] is satisfied, and there is a
function 8 : Ry — (0,400) such that

t,x,w) < —p(p) for (t,x) ey, we X[y
t,x,w) > [B(p) for (t,z)el;_, we Xy

Pz'(
pi(
fori=1,... k.

Now we prove a lemma on the regularity of the function §;[z], 1 <i < k.

Lemma 4.3. Suppose that Assumptions H[X], H|p], H[) are satisfied and
0,0 € I[X], 2 € Cpeld], z € Cpld], where 0 < ¢ < a. Then, for each
1 < i < k, the functions ;2] and 6;[Z] are continuous on Elc|. Moreover, it
holds the estimates

_ 20(0,¢)
|0:[2](t, ) — 4il2] (¢, 7)| <

B(po)

2600.0) [ i I
ﬁW@(A[K” I+ Kolle — @llxs) dr (31)

on Elc], where © and © are given by (27) and (29), respectively.

(BRI (30)

|0:[2] (¢, ) — Gil 2] (2, )| <
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Proof. Let us fix i, 1 < i < k. The continuity of &;[z] and §;[z] on E]c]
follows from classical theorems on continuous dependence on inital conditions
for Carathéodory solutions of differential systems.

Now we prove (30). This estimate is obvious in the case §;[z](t,z) =
i [ |(t,7) = 0 (i.e. in the case when solutions of problem (25) are defined
n [0,¢] and [O t], respectively). Suppose now that 0 < §;[z](¢,x) < 0;[z](¢, T).
Then for ¢ = 6;[2](t, %) we have

ol Ea) e (T uTo).
j=1
Consider the case when ((, gi[2](¢,%,%)) € T4 for some j, 1 < j < n. Then
gl][ ](Cataw) - b ' Let
I ={(t,z) € E:x; € [b; — e, b))}

It follows from assumption H|[p] that there is € > 0 such that

1
piy(t, @, w) < =5 B(no) for  (t,) € '), we Xu).

Since the functions &;[z] and g;[2] are continuous with respect to all variables,
there exists 0 > 0 such that the following implication remains true:

(r,gil2)(r,t,2)) € TV
=t +|z—z) < = for (32)
T € [&i2](t, ), 6:[2](E, 7).

For (t,z), (t,%) satisfying (32) we obtain

——5(Mo)[ ilz] (¢, ) — 0i[2](¢, )]
8:[21(,7)
ii (75 Gil2|(T, 8, @), 2, (r.ga 2] (rt.2)) ) AT
> Amw>p<g[Kt )s Bt altri))
= g;12](0:[2](t, T), t, ) — gi;[2](0:[2] (¢, @), t, x)
Gij [Z]<5z[z] (t_v j)? t I) — Gij [Z]((sz [Z] (t_v j:)v t_v j;)
> =0(0,c)[[t =t + [lz — 7]

IV

which is our claim. In the same way we prove (30) in the case when (C, g;[2](C,
t,z)) € I'; _ for some j, 1 < j < n, and a condition analogous to (32) is satisfied.
If (t,x), (t,Z) do not satisfy (32), then we consider intermediate points

(t07 :C(O))? (th x(l))7 T (tpa x(p))

with tg = t, 20 = 2, t, = ¢, 2P) = 7, satisfying the following conditions:
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(i) we have
|t—£| - ’t()—t1|+|t1 —t2‘+...+’tp,1—tp‘
le =2 = [l =] +[o® =) ...+ [|o — 2]

(ii) condition of the form (32) holds for each pair (t;,2), (t;41,20+Y), j =
0,1,....p—1
(iii) the bicharacteristics g;[2](-, t;, 29)) and g;[2]( -, tj51, v9+Y) reach the same
set, either I';  or I'; _, 0 < 57 <p—1.
Now, an application of the previous reasoning to each pair of the above form
concludes the proof of estimate (30).

Now we consider estimate (31). The inequality is obvious if 6;[z](t,z) =
0;[Z)(t,z) = 0. Suppose now that 0 < 6;[z](t,z) < &;[z](¢t,x). Then, for ¢ =
9;[Z](t, x) we have

(¢, gil2](C, t, ) 60( ﬁurj,,).

Jj=1

Consider that case when ((, ¢;[Z](¢,t,x)) € I'j 4+ for some j, 1 < j < n. Then
9i;12)(¢,t,z) = b;. Again, consider the set Fge}r It follows that there exists a
6 > 0 such that the following implication holds:

lz—z2ll.<d = (r,q(r,t,2)) € T, (33)

where 7 € (0;[2](t, x), 0;[Z](t, z)). For z, z satisfying (33) we obtain

SB[t 7) — i[5, )

6:[2](t,x)
> /6[ o) pi; (T, gi[z](T’t’x)7Ziﬂi(ﬂgi[z](nt@)))dT
ilz|(t,x

> gij[ZK(Si[g] (tv x>7t7 x) - gij[z](éi[z] (t, l’),t, l’)
> =60,0) [ [Kl =2l + Kallg = Gl

which proves (31). In a similar way we prove (31) in the case when ((, g;[Z](C,
t,x)) € I'; _ for some j, 1 < j <n, and condition analogous to (33) is satisfied.
If z, Z do not satisfy (33), then we consider intermediate functions zo, z1, . . ., 2,
with 20 = 2, 2, = 2, 2; € C, [d], where ¢; € I[X] for j = 0,1,...,p, and
Yo = @, Yp = P, satistying

i) a condition of the form (33) holds for each pair z;, 2,41, and

Iz = 2lle = 120 = z1lle + 1z = 2alle + - 4 l2p1 = 2]l
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(ii) the bicharacteristics g;[z](-,t, ) and g;[Z(-, , z) reach the same set, either
Ijporl;,0<7<p—1.

Now, the application of the previous reasoning to each pair of the above form
gives the estimate (31). This completes the proof of the Lemma. [

Suppose that ¢ € I[X], ¢ € (0,d], z € C,[d] and g[2](-, ¢, ) = (q1[2] (-, ¢, 2),

-y gklZ](+, t, z)) is the family of bicharacteristics for system (21) corresponding

to z. Let I((t]f?z), be the domain of the function g;[z](-,¢,z), 1 < i < k. Let us
define operator F' = (F1,. .., Fy) as follows:

Eil2](t,2) = ¢i(dilz](t, ©), g2 (0] (2, ), £, )

t
+/6[]( )fi(Tagi[Z](T7tvx)?Z%(Tvgz’[z](ﬂt@)))dT
i1z (t,x

for (t,x) € E[c], and
Eil2](t,2) = @it x) on Dld,

where 0;[z](t, z) is the left end of the interval I ((Z)x)

Assumption H[f]. Suppose that
1) the function f(-,x,w) : [0,a] — R* is measurable for (z,w) € [~b,b] x X
and f(t,-) : [=b,b] x X — RF is continuous for almost all ¢ € [0, a],
2) there exist &,5 € A such that || f(t, z,w)|| < @(u) and

1t 2, w) = f(t, 2, @) < y(wlllz — 2] + lw — @] x]

for (z,w), (Z,w) € [~b,b] x X[u] and for almost all t € [0, a].

We are able now to state the main result on the existence of solutions of mixed
problem (21), (22).

Theorem 4.1. Suppose that ¢ € I[X] and Assumptions H(p)|, Hlp], H[f],
H[V] are satisfied. Then there are (dy,dy,dy) = d € R and ¢ € (0,a) such that
there exists exactly one solution u € C, [d] to problem (21), (22). If € I[X]
and u € Cy.[d] is a solution to system (21) with the initial boundary condition
z(t,x) = ¢(t,x) on Ey U OE, then there is a function A € C([0,c|, Ry) such
that

Hu_aHt SA(t) HSO_@H*t"i‘ H@_@HX,I_) ) le [07 C], (34)
where
| — @ll«c = max{||(¢ — @) (s,y)| : (5,9) € DE[t]}
holds.
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Proof. We have divided the proof into three steps.

Step I. We first show that there are d € R and ¢ € (0,a] such that
F:C,.d] — Cy,.[d]. Suppose that the constants d € R} and ¢ € (0, a] satisfy
the conditions:

do > max{qo, xbo} + ca(po)
di > O(c)
dy > O(c)+ aluo)
where
O(t) = ©O(0,t)(A+ B)
T 2a; max 2a(po)
4= 0+ b} {1+ ﬁ(#o)}
5 _ e 2a( o)
B = Achlm) + 0.y

Suppose that z € C,,.[d]. Then ||F[z](t,z)| < dy for (t,z) € [0,¢c] x [=b, b]. Our
next goal is to evaluate the number ||F[z](t,z) — R[z](¢,Z)]|| for (¢,x),(t,%) €
[0, c] x [~b,b]. Suppose that 1 < i < k is fixed, and that &;[2](f,Z) < §[z](¢, z).
It follows from Assumption H[f] and Lemma 4.2 and 4.3 that

|Fil2](t, x) — F[2](t, @)
S }QDZ((S,[Z] <t7 ZL‘), gl[z](51[2]<t7 I)v t? I))

—pi(di[2] (L, 7), gil2] (6] (7, 7), 1, 7)) |

t
+ / fz‘(ﬂ gi [Z] (Tv L, :L‘), Z%(T»gi[z](‘ﬁt@)))
6;[2](t,x)
_fi (7—’ Gi [Z] (7—7 Ev j)? Ry (7,93 [Z](vaf))) ’dT
(o) [t =71 + &)t 2) — 61[2] 7.7)]

0(0,c)A

IN

[

t—+ Jlz — 2]

+6(0,¢)3(o) Ac| |t 7| + |l= — ]

20(0, ¢)
B1o)

+a(po) ([t — 1+

(t=11-+ o al)|.
The result is
EZ](t,2) = RI)(E @) < 00,)(A+ B) ||t~ 11 +||lo — 2] +alt -1, (35)
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In a similar way we prove (35) in the case 0;[z](¢, %) > d;[z](¢, ). This gives
[F[z](¢, x) = Flz](t, 2)|| < dift =] + dslx — 2 (36)

on [0, c] x [=b,b], and consequently F[z] € C, [d].

Step II. We shall prove that F' is a contraction on C, [d]. For z,z €
Cy.[d] we have

|Fil2](t, z) — Fi[Z](t, )]
< |§0i(5i[2](tv:E)?g[z](éi[z](t>$)’ta$))
—i(0:[2](t, ), g[2](6:[2], ¢, 2)))|
+/5i[z}(t,:p) fi(Tv gi[z](T’t>$)’Zwi(ﬂ',gi[z](ﬂtm)))
_fi(T> gi[ZKT’tvx) 2y (92 (1 t,2) ) dr

+a(po)[0il2](t, x) — &i[2](L, 2)]

] / Iz — e

K (o) [1+Acé<o,c>} / Iz — Zlleds

< K©O(0,¢) {

where we assumed, without loss of generality, that §;[z](¢,z) < d;[2](¢,z). We
thus get

IF[=(t x) = FIE]E )] < é/o Iz — Zlledg,  (t,z) € [0,¢] x [-b,0],  (37)

where

¢ = K6(0,¢) [z + 2“(“0)} + KA(10) [1 + AcB(0,0)].
B(ko)
For functions z, z € C, .[d], we write

[|z — Z|] = max{||z — Z||; exp[—2C1] : t € [0, ¢]}.

We conclude from (37) that

|z — z|] exp[2C1],

h)l»—l

|Fl)(t2) — FIE (L )| < Oz — 2] / exp[20€]de

and consequently

[z = 2].
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By the Banach fixed point theorem there exists a unique solution u € C,, .[d]
satisfying equation z = F[z].

Now we prove that u is the Carathéodory solution of equation (21). For
each i, 1 < i < k, we write ;(¢,z) and g;(-,t,x) = (¢;1(-,t,2), ..., gin(,t,2))
instead of ¢;[u](t, x) and g;[u](+,¢,z). For each i, 1 <i < k put

EY = {(t,x) € E[d : 6i(t,x) = 0}
and

E-(j) = {(t,ZL’) S E[C] : gij(&-(t,x),t,x) = Ej or gij<5i(ta'r)7t"r) = _l_)j}

7

for 5 = 1,...,n. At first we prove that u satisfies (21) almost everywhere on
Efo), 1 < i < k. Fora fixed t, (t,z) € EZ-(O), we put 7; = ¢;(0,¢,z). Let
I ((Z)x) be the domain of the bicharacteristic g;(-, ¢, z). It follows that g;(7,t,x) =
gi(7,0,m;) for t € I((ti,);r) and x = g;(¢,0,m;). The relations n; = ¢;(0,¢,z) and
x = g;(t,0,m;), where (t,x) € EZ-(O), n; € (—b,b), are equivalent. Then, the
relations

wi(t,z) = Fu(t,z), (t,2) € B,

and

! 3 (38)
= 901’(07771‘) +/ fi<7-v gi(T’07ni)7uiﬁi(T,gi(ﬂO»m)))dT7 YIRS (_b7 b)
0

are equivalent. By differentiating (38) with respect to t we get

- d
Owu(t, gi(t,0,m:)) + Z 0, u(t, gi(t, 0, 771))%9@']'@, 0, 7:)

j=1
= f’L (ta 9i (ta 07 771)7 U@bi(t,gi(t,O,m)))

for almost all t € I ((é)m)' Making use of the transformation = = g;(¢,0,n;) and

(25) we get (21) almost everywhere on EZ»(O). Now we prove that u satisfies
system (21) on Ei(l) U...U EZ-(”). It is enough to show this on any set of the form
EZ-(jl)ﬂEi(jQ)ﬂ...ﬂEi(jr), where 1 <r <nandj €{l,...,n},{=1,...,r. Let
(t,x) € EZ-UI) N Ei(jQ) N...N Ei(jT), and

= Mity-sMin) = (9:1(8(t, ), t,2), ..., gin(0:(t, ), t, x)). (39)
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Note that g;,(5;(t,z),t,z) = b, or g (8:(t,x),t,x) = —b, if ¢ = j, for some
l€{1,...,r}. Consider the family of bicharacteristics g;(-, A;,n;) with

/\i € (O,C), Ti.q € (_Bqagq)7 q ¢ {jla s 7jr}-

The relations (39) and = = g;(¢, \;,n;) are equivalent. Then, the relations
w(t,z) = El(t,z), (t,z)e EnE™n. . nEY,

and

(ta )‘ia 771))7 (40)

bqa Bq)a q ¢ {j17 s 7jr}> are equiva—

where \; € (0,¢), = € [((i)i,m)’ and 7,, € (—b
lent. It follows from (40) that

t
ui(ta gi(ta i 771)) = 901'()‘1’7 77%’) + / fi(Ta gi(ﬂ A ni)’ ulﬁi(T,gi(T,)\mm)))dT‘ (41)
Ad

By differentiating (41) with respect to ¢ we get

- d
Dpult, gi(t, N, i) + Y Djult, gilt, N, 7]1))%92‘]‘ (€, iy mi)

j=1
= fi(t7 gi(ta Ais 77i>a u¢i(t79k(t7>\ivni))>

for almost all t € I ((;)Z - Making use of the transformation x = g;(t, A\;,7;) and

(25) we get (21) almost everywhere on E,L»(jl) N Ei(”) Nn...N Ei(j’“). Since
E.=E”UEMU.. .uB"

for any 7,1 <7 < k holds, it follows that u is the Carathéodory solution of (21),
(22) on (EO U aoE) N ((—OO, C] X Rn>

Step III. Now we prove relation (34). Let F be operator defined as F'
but with function ¢ instead of ¢. Since u = F[u] and & = Fl[u], where u =
(ug,...,ug), = (ay,...,u), it follows that

jui(t, ) — ui(t, )]
< lei0i[u](t, 2), gi[u] (6:[u] (L, x), £, )
—pi(0i[u](t, ), gilul (%i[a](t, x), 1, )]

t
+ /6 filT, gilu] (7, t, 2), Wy (g, 1) (7. .2))))

ilu](t,z)

— i, gilU)(7, , ), Uy, (r gla) (r,t,2)) ) | AT

+a(po) | 8i[ul(t, @) - 62 (t,)
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for (t,z) € [ | holds, where we have assumed without loss of generality that
i [a](t,x) < 6;[u)(t,x). It follows from Assumption H[f] and Lemma 4.1, 4.2
and 4.3 that

lu(t, ) — u;(t, )|
< max{|[¢ — Pllxz | — Put}
+3600,0) [ [l = all. + Kallp — xs] dr
+[60.08+ 3] [ [Kllu =l + Kollo ~ plxsJar

for 1 <i <k, (t,z) € F[c] holds. Then we have the integral inequality
5 _ t
Ju =l < o = el + dlle = Dllxs + K [B) + ()] [ 1u— s
0

for t € [0, ¢], where d = 1 + CKO(@(C) + (o)) Using the Gronwall inequality
we obtain (34) for

A(t) = dexp | K(O(c) + (o)t

This proves the theorem. [

Remark 4. Existence results for quasilinear functional differential equations
with initial boundary conditions are presented in [6], Chapter 5, see also [4]
where classical solutions are considered. It is easy to see that Theorem 5.35
from [6] can be extended to quasilinear functional differential systems. The
following condition is important in these considerations. Write

signp;(t, x,w) = (signpa (t, z,w), ..., signp;,(t,x,w)), 1<i<k. (42)

It is assumed in [6] (see also [4]) that the function (42) is constant. Note that
we have omitted this assumption in Theorem 4.1.

Remark 5. Suppose that B = [—rg, 0] x [—r,7]. Consider differential integral
system (18) with the initial boundary condition

2(t,x) = p(t,x) for (t,x) € EyUOyE. (43)

It is easy to formulate existence result for problem (18), (43) which is based
on Theorem 4.1. Note that the results presented in [4], [6], [9]-[12] concern the
case when the sets D;[t, 2] do not depend on (¢, z) and 7, and therefore they are
not applicable to (18), (43).
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