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Abstract. The regularity of weak solutions of quasi-linear elliptic boundary trans-
mission problems of p-structure on polyhedral domains €2 is considered. (2 is divided
into polyhedral subdomains £2; and it is assumed that the growth properties of the
differential operator vary from subdomain to subdomain. We prove higher regularity
of weak solutions up to the transmission surfaces, provided that the differential oper-
ators are distributed quasi-monotonely with respect to the subdomains €2;. The proof
relies on a difference quotient technique which is based on the ideas of C. Ebmeyer
and J. Frehse.
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1. Introduction

This paper is concerned with the study of the global regularity of weak so-
lutions of boundary transmission problems for nonlinear elliptic systems with
p-structure, 1 < p < oo. The systems are defined in polygonal or polyhedral
domains 2 = UM, Q; C R?, d > 2, and have the following form for v : Q — R™,
U; = U

Q;°

div, (DaWi(Vu))+ fi=0 in Q;, 1 <i< M,
u; —u; =0 on 09; N0y,
D sWi(Vu,)iti; + DaW;(Vu;)i; =0 on 09; N 08,
u=g¢g on[p,
D W;(Vu;)ii; =h on Iy.
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The functions W; : R™*¢ — R can be interpreted as energy densities and satisfy
growth conditions which will be specified in Section 3. D W;(A) denotes the
gradient of W;(A4) for A € R™*4. 1t is admitted that the energy densities
W; have different growth properties on each subdomain. We assume mixed
boundary conditions on 02 which are given by the equations (4)—(5). Equations
(2)—(3) describe the transmission or interface conditions which connect u|§21 and
u‘Qj on the interface 0Q; N0Q;. In particular, the differential equations (1) can
be
div (u(z) [VulfP 2 Vu) + f =0,

where p, p: 0 — R are piecewise constant with respect to the partition of 2.

The main result, Theorem 4.1, states the following: If the energy densities
W; are distributed quasi-monotonely (see Section 4.1), then the weak solution
u‘Ql is in W%_e’”(Qi) for a suitable r; € [p;,2] if p; € (1,2], and u‘Ql is in

L.
W te TP (€©;) if p; > 2. This result generalizes known results for linear and
quasi-linear elliptic transmission problems.

In the case of linear elliptic systems on polyhedral domains as well as for
linear elliptic transmission problems it is well known that the behavior of weak
solutions in the neighborhood of corners, edges or cross points can be completely
described by an asymptotic expansion. Linear elliptic systems on a single do-
main are treated in [3, 12, 15, 16, 19, 22|, whereas transmission problems are
investigated in [24, 25, 26]. The singular exponents in the asymptotic expansions
characterize the regularity of weak solutions and depend on the structure of the
differential operators, the geometry and the type of the boundary conditions.
In the papers [2, 14, 20, 26, 28], the authors derive estimates for the singular
exponents of solutions of Poisson’s equation and for the equations of linear,
isotropic elasticity with constant or piecewise constant coefficients. It turned
out that a quasi-monotone distribution of these coefficients in combination with
some constraints on the geometry of () leads to piecewise H 3 —regularity of weak
solutions. On the other hand there are various examples which show that the
regularity can get very low (i.e. H'™ ¢ > 0 small) if these conditions are
violated, see e.g. [13].

Let us note that our main result, Theorem 4.1, can be applied to trans-
mission problems for Poisson’s equation and also to coupled linear, isotropic
elasticity and is in accordance with the results cited above. Moreover, our re-
sults cover more general linear elliptic transmission problems such as coupled
anisotropic heat equations or composites of different anisotropic linear elastic
materials and provide new estimates for the singular exponents.

There are only few results concerning the regularity of weak solutions of
quasi-linear elliptic transmission problems: In [18], the author describes the
regularity of weak solutions of a scalar quasi-linear elliptic transmission problem
with two subdomains. Here, it is assumed that the interface is smooth and does
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not intersect with the exterior boundary 0€2. Due to the smoothness of the
interface, the author derives a higher regularity result compared to our main
theorem. In [10], a transmission problem on a polyhedral domain which is
divided into two polyhedral subdomains with a plane interface is investigated.
It is essential for the proof that the energy densities W;, 2 = 1, 2, behave “nearly
quadratic”, i. e. the energy densities satisfy certain growth properties with
p1 = po = 2. It shall be emphasized that in our main theorem there is no
restriction on the number of subdomains which come together at a crossing
point, and we deal also with the case when the growth properties of the energy
densities W; vary from subdomain to subdomain.

Our main result is proved with the help of a difference quotient technique.
This technique is widely used in order to derive interior regularity results, see
for example [4, 21, 23, 29, 32], and was improved by C.Ebmeyer and J.Frehse in
order to obtain global regularity results on polyhedral domains, [6, 8, 9]. In the
proof of the main theorem, test functions of the form & (z) = ©?(x)(u(x + he;) —
u(z)), 1 <1 < d, are inserted into the weak formulation. Here, u denotes a weak
solution, ¢ is a cut-off function, h > 0 and {ey,...,eq} is a basis of R¢. The
difficulty is that the differences are taken across the transmission boundaries
and due to the different growth properties of the differential operators on the
subdomains, the functions & are not admissible test functions in general. From
the assumption that the energy densities W; are distributed quasi-monotonely
one can deduce the existence of a basis {e1,...,eq} such that the functions
&,1 <1 < d, are admissible test functions. This is the key for the proof of our
main theorem.

The quasi-monotonicity condition, which will be introduced in this pa-
per, is a considerable modification and generalization of the original definition
by M. Dryja, M. V. Sarkis and O. B. Widlund. In [5] they defined quasi-
monotonicity for the distribution of the parameters in Poisson’s equation with
piecewise constant coefficients. In the present paper, we change the point of
view and define quasi-monotonicity for the distribution of the energy densities
W; which correspond to the transmission problem. The relation between the
definition in [5] and our definition is discussed in Chapter 4.

The paper is organized as follows: In Section 2, the domains and function
spaces are defined following the approach in [18]. The weak formulation of the
transmission problem and existence results are presented briefly in Section 3.
Here, the main theorem of monotone operators plays a crucial role. In Section
4, the quasi-monotonicity is introduced and illustrated by various examples for
two and three dimensional domains. The main theorem is stated and proved
in Section 4 using the difference-quotient technique. The paper closes with an
appendix, where some essential inequalities are given, which follow from the
growth properties and convexity of the energy densities W;.
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2. Domains and function spaces

Throughout the whole article it is assumed that Q C R%, d > 2, is a bounded
polygonal or polyhedral domain with Lipschitz-boundary. It is further assumed
that there exists a finite number of pairwise disjoint polyhedral domains €2; C €2,
1 < i < M, with Lipschitz-boundaries such that

M
=1

On each of these subdomains a differential operator will be given and the growth
properties of these operators may vary from subdomain to subdomain. There-
fore, the following function spaces are introduced, which take into account the
splitting of Q (analogously to [18]):

For 1 <1< M let pi € (1700)7 ﬁ: (plv"'apM)7 Pmin = min{pi, 1< <
M}. Then

7(Q) == {u € LPn(Q)) : u

o € I%(2%)}

L ew (@)},

WhP(Q) - {u € Whemin(Q) : ul

Q

where u‘ q. 1s the restriction of u to the subdomain €2;. These spaces are endowed
with the following norms:

M
lull sy = |
=1

M
lullwin = D ||u
=1

Note that we do not distinguish in the notation between scalar and vector valued
functions or spaces. The next lemma states some essential properties of these
spaces.

@il Lri ()

Q;

Whei(g;)

Lemma 2.1. [18] Let p; € (1,00) for 1 <i < M. Then:
1. LP(Q) is a reflevive Banach space and the dual space is given by

—

(LP(Q))’ = LY(Q), where §= (q1,-..,qu) and ¢ = pl, i.e. i + i =1.
2. WHP(Q) is a reflexive Banach space.
3. C=(Q) is dense in LP(QY) and also in WHP(Q).

Since W#(Q) is contained in W1Pmin(()), the trace operator

WP(Q) = W' rmm P (90) : u — ul
o
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is well defined, linear and continuous [12]. Analogously to [18], the space of
traces of functions from W1P(Q2) is defined as

W P(00) = {u|,,: ueW(Q)},

where 222 .= (1 — o5 +-y 1= >=). The trace theorem [12] also shows that the
latter space is a subspace of

{u e L' (09) : u|(8§2r169¢

L€ W T 00000},

For the descriptiog)f mixed boundary value problems, the following spaces are
useful: Let 02 =I'p UT'y, where I'p and I'y are open and disjoint. Then

VA(Q) = {u €W (Q): ul, = }

—

WD) = {u Cue W’%l’ﬁ(asz)}

e
WD) = {u
= {u|FN D u € W%’ﬁ(aﬁ) and u|FD = 0}.

Finally, there is an equivalent characterization of the space W17((Q).

Lemma 2.2. Let p; € (1,00) for 1 <i < M. Then
W) = fue 7@ : ul, e W @), (ulg) |, = (ulg,) lr,}- ©
€ Wl’Pi(Qi)}.

Moreover, W¥P(2) is a closed subspace of {u € LP(Q) : u

Q

Q

In other words, the space W#(Q) consists of all functions which are piecewise
in Whri(€);) and which do not jump at the interfaces I';;.

Proof. Let u € WH(Q) be a scalar-valued function and ¢ € C°(, R?) = {v :
Q=R vel®(Q),suppv C Q}. Since u € WhPnin(Q), there holds

0 = (Vu,gp)—/Vuwpdx
Q

=—/udivg0dx—/Vu-g0dx
Q Q

M
= —Z/ div (u;p) dz
i=1 7
M
Gauss —
= - u(p-n;) ds
X fy e

M -1

=33 (@

i=1 j=1

Fi,-) (¢ - 1i;) ds

QZ) r; (“|QJ)
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for the distributional derivative of u. Since ¢ € C{°(2, R?) is arbitrary, it follows
that (u Qz) ry T (u|9]) ry = 0 on I';;, and ”"C ” is proved in (6). In order to
prove the inverse relation one has to show that functions from the space on
the right hand side in (6) are elements of W!'Pmin(Q). To prove this, one has
to calculate the distributional derivative of these functions. With the help of
Gauss’ Theorem the assertion follows. |

The Sobolev embedding theorems can be carried over directly to the W1?(Q)
spaces, see [18], and consequently there is also an inequality of Poincaré-Fried-
richs’ type.

Lemma 2.3. Let Q C R? be a bounded polyhedral domain with Lipschitz bound-
ary which is decomposed into M pairunse disjoint polyhedral subdomains with
Lipschitz boundaries; 1 < p; < oo for 1 <i < M. If V .C WYP(Q) is a closed
subspace with the property

u€eV, Vu=0mQ = u=01in,

then there exists a constant ¢ > 0 such that for every u € V: |ul5q) <
c[[Vull s g)-

Proof. This lemma can be proved (as in the case M = 1,p = 2, [35]) b
contradiction using that the embedding W1#(Q) — LP(Q) is compact. |

Difference quotients of weak solutions will be estimated in the proof of
the regularity results. Therefore we introduce the Nikolskii space, which takes
difference quotients into account explicitly.

Definition 2.1 (Nikolskii space). [1, 27] Let Q C R? be an open domain,
s =m+ o, where m > 0 is an integer and 0 < o < 1. For 1 < p < o0

N(Q) = {u € I(Q) : [[ullyane) < 0} (7)

is a Nikolskii space, where

Du(z + h) — Du(xz)[?
[y = Nl + S sup [ | ) 2Dl g, )
n>0 Q ‘|
al=m pega "
0<|h|<n

and Q, = {z € Q: dist(z,0Q) > n}.

The relation between Nikolskii spaces and Sobolev-Slobodeckij spaces is
described in the next lemma.
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Lemma 2.4. [1, 27, 33, 34] Let s,p be as in Definition 2.1. If Q = R¢ or
if @ C RY is a bounded domain with Lipschitz boundary, then the following
embeddings are continuous for every e > 0 :

NEHER(Q) € WHP(Q) © N5 (Q).

Proof. If O c R? is a bounded domain with Lipschitz boundary, then there
exist linear and continuous extension operators E; : W*P(Q) — W*P(R%) and
Ey : N*P(Q2) — N*P(R?) for s > 0 and 1 < p < oo (see [12, Theorem 1.4.1.3]
for W*P and [27, p. 381] for N'*P). Furthermore, the restriction operators from
R? to 2 are continuous as well. Therefore it suffices to prove Lemma 2.4 for the
case ) = R?.

For s,p as in Definition 2.1 and 1 < r < oo we denote by Bj (R?)
the Besov spaces on R?. For the definition see, e.g., [31, 33]. There "holds
B (RY) = W*?(R?) and B, (R*) = N*P(R?), see [33, Sections 1.3 and 2.2.9].
The following embeddings are continuous for € > 0, [34, Section 2.3.2, Propo-
sion 2] and [33, Section 2.1.1]:

N (RY) = BIES(RY) C B, (RY) = WOP(RY) C By, (RY) = N#(RY),

This completes the proof. Note that in Lemma 2.4 the assumptions on €2 can
be weakened: Lemma 2.4 is valid for domains for which continuous extension
operators F; and FE, exist. |

For inner products and norms of matrices A, B € R™*¢, m > 1,d > 2, the
following abbreviations are used:

m d
A:B=t(B"A) = te(AB") =Y Y AyBj;,

=1 j=1

|A] = (ZiA) .

=1

=

For R > 0 and x € R?, By(z) denotes the open ball with center x and radius
R: Br(z)={yeR?¢: |x—y| < R} and 0Bg(z) = {y € R¢ : |z — y| = R}.

3. Weak formulation of the transmission problem
and existence of solutions

In this section we describe the assumptions on the structure of the boundary
transmission problem (1)—(5) and give some short comments on the existence
of weak solutions.
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Let Q C R? be a polygonal or polyhedral domain with Lipschitz boundary
which is decomposed into M pairwise disjoint Lipschitz-polyhedra €2; (compare
Section 2). 9Q = I'p Uy, I'p and I'y open and disjoint; by 7i;; we denote
the exterior normal vector of 2; with respect to I';;, ©;; = —7i;; and 7; is the
exterior normal vector of €2; with respect to 0€2; N 0€2. Let m > 1 and assume
that there are given M functions W; : R™*? — R. The boundary transmission
problem reads as follows:

( Find u:Q — R™, u‘Q = u; such that:

divy, (DaW;(Vu)))+ fi=0 inQ;, 1<i<M (9
u;—u; =0 only 10

DsWi(Vu;);; + DaW,;(Vu;)iij; =0 on Ty
u=g¢g onlp

D W;(Vu;)fi; = h on y.

1
12
13

—

A~~~ N /N

)
)
)
)
)

\

Here and in the sequel the following notations are used. Let A, B,C € R™*¢,
then

oW, (A
(DAWi(A))k,l = aA(kl )
DAW;(A ZZ 5 Am Bk,
k=1 I=1
m d
DaWi(4)[B,C] = Z 2. aAksaAﬂB’“er
J=1s,t=

<<>>

(div ;z (DAW;(Vu(z)

)= o (DaWi(Vu(e), )

=1

with DoW;(A) € R™¢ and div, (DAW;(Vu(z)) € R™. In this paper, it is
assumed that the functions W; are of p—structure which means that the functions

W; and their derivatives satisfy the following growth properties (compare also
[7, 8]). Let p; € (1,00):

(HO): W; € ' (Rm*d) 1 C2(R™<4\ {0}).
(H1): There exist ¢} € R, ¢, b > 0 such that for every A € R™*¢:

o+ AP <Wi(A) <o (1+147).
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(H2): There exists ¢! > 0 such that for every A € R™*4:
IDAW;(A)] <& (1+[AP).

(H3): There exists ¢! > 0 such that for every A € R™*4\{0}:
|DAW;(A)| < ¢ (1+ |AP?).

(H4): (Ellipticity condition, convexity of W;.) There exist ¢; > 0 and k; €
{0,1} such that for every A, B € R™*? A #0:

DAWi(A)[B, B] > ¢; (k; + |Al)" " |B]”.

We are now able to describe in which sense equations (9)—(13) shall be solved.

Definition 3.1. Let O C R¢ d > 2, with Q = Uglﬁ, be a polygonal or
polyhedral domain as introduced above, m € N. Assume that the functions
W; : R™4 — R satisfy (HO)-(H4) with p; € (1,00). Let p = (p1,--.,pum),
7= (q1,---,qum) with ¢; = p}, = Pg and f € LI(Q,R™), g € WED/P(p, R™)

and h € (W(ﬁ_l)/ﬁ(FN,Rm)) : A functlon u:Q— R ue WH(Q), is a weak
solution of the boundary transmission problem (9)—(13) if u‘rD = g and if for

every v € VP(Q, R™)
M M
3 / DAWi(Vus(e)) : Vou(a) dz = 3 / fi@)oi(@)dz + (hyo).  (14)
i=1 7 i=1 7
.. Tl = !
Thereby, (-, -) denotes the dual pairing between elements of (W(p V/7(r N)) and

W(ﬁ—l)/ﬁ(pN) )

If a weak solution u and the right hand sides f, g, h in equation (14) are
smooth enough, then u satisfies equations (9)—(13).

Remark. The functions W; can be interpreted as energy density functions.
Furthermore, equation (14) is the weak Euler-Lagrange equation which is asso-
ciated with the following minimizing problem:

Find u € W'?(Q) with u‘PD = g such that for every
v € WHP(Q) with ’U|FD =g:

J(u) < J(v),

where J(v) =)0 lfQ (Vo) dz — [, fvdz — (h,v).
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Remark. Note that the coupling of linear homogeneously elliptic systems of
second order with constant coefficients, where in addition the principal parts of
the differential operators coincide with the differential operators themselves and
which are Euler-Lagrange equations for minimizing problems, is also included
here as a special case.

It shall be emphasized that different exponents p; for the functions W;
on each subdomain 2; are possible. The following existence result is a direct
consequence of the theorem on monotone operators, see e.g. [36].

Theorem 3.1 (Existence). Let Q C R? be a polyhedral domain with Lipschitz
boundary 0 = T'p UT N and assume that it is decomposed into M polyhedral
subdomains €; as introduced in section 2. For 1 < i < M let p; € (1,00) and
assume that W; : R™*4 — R satisfies (H0)—(H4). Furthermore, let f € L1(Q),
where ¢; = pl, g € WE V() and h € (WED/H(Ty)). For Tp = 0 the
following solvability condition shall be satisfied for every constant function v:

/ fvdz + (h,v) = 0. (15)

Then there ezists a weak solution v € WP(Q) of problem (14) with u|FD =g
IfT'p =0, then u is unique, else u is unique up to constants.

Proof. The theorem can be proved with the main theorem of monotone op-
erators, see for example [36]. Hypotheses (H0)-(H4), inequality (49) in the
Appendix and Poincaré-Friedrichs’ inequality guarantee that the nonlinear op-
erator, which is related to the weak formulation, satisfies the assumptions of the
main theorem of monotone operators. In particular, the operator W1?(Q) —
(WP Q) s uw— N, Jo, DaWi(Vui(z)) : V(+)dz is continuous and mono-
tone on W#(2) and coercive on V?(Q) if I'p # 0. N

Remark (Physically nonlinear elasticity). Let m = d € {2, 3} and assume
that DoW;(B) is symmetric if B € R¥? is symmetric. It is reasonable to
consider the following equation instead of equation (14):

Z/Q D sW;(e(ui(x))) : e(vi(z)) de = Z/Qf,(ac)v,(x) dz + (h,v), (16)

where £(u) = 3 (Vu + VuT) is the linearized strain tensor corresponding to the
displacement field u. For this equation, the statements of Theorem 3.1 hold
without any changes when I'p # ). In the case of I'p = ), one has to require
that the solvability condition (15) is satisfied for every v € kere, which is the
set, of rigid body motions.
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4. Regularity results for polyhedral domains

In this section, the main result on regularity of weak solutions of transmission
problems on polyhedral domains is formulated. The main result in Theorem 4.1
states: If the energy densities W; satisfy a quasi-monotonicity condition, then
u; € W2—eri(€);) for a suitable r; € [p;, 2] for p; € (1,2] and u|Q € W1+1%_6’p(QZ~)
if p; > 2. As a special case, the theorem includes the earlier derived results for
Poisson’s equation and Lamé’s equation with piecewise constant coefficients, see
[14]. The quasi-monotone distribution of the energy densities W; is the essential
assumption for our main theorem. The definition will be given in Section 4.1
and is inspired by the definition of M. Dryja, M. V. Sarkis and O. B. Widlund
in [5] for the distribution of the coefficients in Poisson’s equation with piecewise
constant coefficients. Let us remark that our definition of quasi-monotonicity
is a generalization of the definition in [5] and can be applied to a large class of
linear and nonlinear boundary transmission problems.

The proof of the main result uses a difference quotient technique for poly-
hedra, which was developed by C. Ebmeyer and J. Frehse in [7, 9], where they
investigated the global regularity of weak solutions of nonlinear elliptic systems
of p—structure on polyhedral domains.

Throughout the whole section various examples illustrate the condition of
quasi-monotonicity. Furthermore, the obtained regularity results will be com-
pared with known results for linear elliptic transmission problems.

4.1. Quasi-monotone distribution of energy densities. In the proof of
the main theorem, Q = |JY, Q; will be divided into a finite number of model
domains, where it is assumed that each of these model domains coincides with
the intersection of a ball with a collection of N suitable polyhedral cones (N
depends on the model domain). This motivates the next definition.

Definition 4.1 (Polyhedral cone). A set K C R¢, is a polyhedral cone with
tip in S € R? if
1. there exists C C 0B;(0), C open and not empty such that

- S
= R? : z
K {me \:E—S\EC}

2. there is a finite number of hyperplanes F;, 1 < i < n such that

%:050%.

=1

Note that K is open and S ¢ K.
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Definition 4.2 (Quasi-monotonicity with respect to interior cross
points). Let K1,..., Ky C R? be pairwise disjoint polyhedral cones with tip
in 0 such that R = UY,K;. For s € N we consider N functions W; : R® —
RU {+oc}, 1 < i < N. The functions W; are distributed quasi-monotonely
with respect to the cones IC; if there exist numbers k1,--- ,ky € R and a basis
{e1,...eq} C R? with |¢;| = 1 such that for every h > 0, 1 < [ < d and
1 <4,7 < N there holds the implication

(Ki+he)NK;j #0 = W;(A) +k; > W;(A) +k; forevery Ac R°. (17)
Here, IC; + he; = {xERd. ac:y—i-hel,yelCi}.

In the two dimensional case, this definition can be reformulated in a more
illustrative way. Let d = 2 and assume that the polygonal cones K; in Defini-
tion 4.2 are given as follows: There are angles &g < &) < ... < &y = Py + 271
such that K; = {z € R®: 0 <r, &;_; < p < ®;}. Here, polar coordinates are
used.

Lemma 4.1. Let d = 2. The functions W; : R® — R are distributed quasi-
monotonely with respect to the cones K; if and only if the following two condi-
tions are satisfied:

1. There exist numbers k; € R and indices imin, imaz € {1,..., N} such that
for every A € R® (the indices are numbered modulo N ):

mmaz (A) + kimaz 2 Zmaz+1 (A) + klmaz‘i'l Z cec
2 Zmln 1(14) Zmzn Z Wzmln (A) + kimin
Wimin (A) + kimin S Zmzn'f']-(14) + kzmzn"‘l S ot
S Zma,z (A) Zmaa: S Wimaz (A) + kimaz'
2. There exists a vector t € R?, |f] =1, such that t € K;,,,, and —t € K; ...

The second condition in the previous lemma states that IC; . and IC;

Zl'l"ll]'l
lying opposite, see also Figure 1, where 4, = 1.

Tmax

Proof. If K; and W, satisfy conditions 7. and 2. in lemma 4.1, then it is easy to
see that the functions W; are distributed quasi-monotonely with respect to the
cones K; in the sense of definition 4.2: Choose e; = . From 2. in Lemma 4.1
and from the assumption that the cones KC; are open, it follows that there exists
a vector t, # t with ¢, € Ki,... and —t, € K;._... Choose ey = t.. With this
choice, relation (17) is satisfied.

It remains to prove that conditions 1. and 2. of Lemma 4.1 can be deduced
from Definition 4.2. Assume that e; = (§) and that the cones K;, 1 < i < N,

are numbered counterclockwise in such a way that the intersection of K; with
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Sk

Figure 1: Example for the geometric condition at an interior cross point S

the upper half plane is not empty and that e; € ;. It follows from (17) that
there holds

K:i+€1ﬂK:j?é@ — jgzand WJ(A)-ijZW,(A)‘Fk‘z VAERS

for every X; which has a nonempty intersection with the the upper half plane.
On the other hand, there holds

K:i—}‘@lﬂ,(:j?é@ — jzzand WJ(A)—{—ICJEWZ(A)—{—]C,L VAGRS

for every K; which has a nonempty intersection with the lower half plane. It
follows that there exist n € {1,..., N} and 7 € {n,n + 1} such that for every
AeR

Wi(A) + by > WaA) + ks > ... > Wi(A) + o (18)
Wi(A) + ki < Wi (A) + ki < ... < Wy(A) +kn (19)

holds. In order to find %y, tmax and t_: several cases have to be distinguished.

Case 1. n=nand e; € Ky, i.e. the positive x;-axis is contained in ; and
the negative ri-axis is contained in C,,. Then iy, =N, tmax = 1 and {=e;.

Case 2. n=n+1 and e; € Ky, i.e. the negative z-axis is the interface
between K, and K, 1. It follows from the assumptions (see Definition 4.2) that
Wn(A)+ky < Wi(A)+k; and therefore iy, = 1. To find 4y, assume without
loss of generality that ey - (¢) > 0. Then it follows that K1 + e2 NI, # 0
and therefore, by the assumptions of Definition 4.2, 7,,;, = n + 1. Furthermore
there exists € (0,1) such that  := fe; + (1 — 6)e, satisfies condition 2. of
Lemma 4.1.

The remaining two cases, where either only the positive x;-axis or the whole
x1-axis is part of the boundaries of K or K,,, can be treated similarly. |

The following corollary is essential in the proof of the regularity results.
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Corollary. Let Ki,...,Ky C R? be polyhedral cones as in definition 4.2. As-
sume that the functions W; : R™*4 — R are distributed quasi-monotonely with
respect to the cones KC; and that they satisfy (H0)-(H1) for some p; € (1,00).
Let {ei1,...,eq} C RY be the basis in Definition 4.2. Then there holds for every
h>0,1<1<d,1<1,5 <N the implication

(Ki+he)NK; #0 = p; > pi -
Furthermore, if u € WYP(R?) and has compact support, then also u(- + he;) €
WHP(R?).

Proof. From K; + he, N K; # 0 it follows that W;(A) + k; > W;(A) + k; for
every A € R™*4 and therefore, by (H1) it holds

G+ AP +k; >+ AP +k VAeR™

This is only possible if p; > p;.

We prove the second assertion: Let u € WP(R?) with compact support.
Then, by the definition of the space WP(R?) we have u € W1Pmin(R?) and
ul . € WHi(K;). Obviously, u(- + he;) € WhPmin(R?) for A > 0. It remains
to show that u(- + hel)|ici € WhHPi(K;). Note that u(z + hel)‘ici = u(y) Kither
with y = = + he;. Furthermore, KC; + he; = Ujvzl K + he; N IC;. Assume that
K; + he; N K; # (0. By the definition of W#(R¢), there holds u|lci+helﬂICj €
Whei (K; + he, N K;) and, due to the first assertion of Corollary 4.1, p; > p;.
Since u has compact support, Holder’s inequality yields u‘ Kithenk: € Whpi (KC;+

i J

he;NK;) for every j with K;+he;NK; # 0. Since u € W!Pmin(R%), the assertion
follows by arguments which are similar to those in the proof of Lemma 2.2. 1

The next examples describe some possible choices for the functions W; and
cones /C; for d = 2, 3.

Example 4.1. For &) < &; < ... < dy =P+ 2rlet K;={z € R?: 0 <
r, ®;_1 < ¢ < ®;}. Consider the functions W; : RZ - R: A — & |A|2 with
;i > 0. The functions W; are distributed quasi-monotonely with respect to the
cones K; if there exists imin € {2,..., N} such that

M1 2 o 2 e 2 iy < M1 S S Uy S (20)

and —K; NK
chosen as 0.

imia 7 0, see Figure 1. The constants k; in Definition 4.2 can be
The transmission problem, which corresponds to the functions W;, is Pois-
son’s equation with piecewise constant coefficients u; on KC;. Historically, quasi-
monotonicity was first defined by Dryja, Sarkis and Widlund in [5] for the dis-
tribution of these coefficients. In contrast to our definition they did not require
the geometric assumption —X; N K; . # (), which is hidden in Definition 4.2.

%min
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Example 4.2. Let K; C R?, 1 < i < N be as in Example 4.1 and assume
that the functions W; : R™*? — R satisfy (H0) and (H1) for some p; € (1,0)
with p; # p; for i # j and p; = max{p;, 1 < i < N}. The functions W, are
distributed quasi-monotonely with respect to the cones K; if and only if there
exists imin € {2,..., N} such that —K; N K, # 0 and

P1>DP2 > o 2 Pigin—1 2 Pingin < Piggin+1 < -+ < PN < P1.

Example 4.3. Let K; C R?, 1 < i < N be as in Example 4.1 and consider
the functions W; : REd — R, W;(A) = 3(N\i + ) [tr A]* + ;| AP ? where
wi > 0,0 +p; > 0and AP = A — %(trA)I. The functions W; describe
the elastic energy density for homogeneous, isotropic, linear elastic materials
with Lamé constants \;, u; if A is replaced by e(u). If there exists an index

imin € {2,..., N} such that

P2 fg 2 2 i, S P 1 S0 SUN S i,
At pr 2 2 At M, < S AN Ty S A+

and —KC; N ;. # 0, then the functions W; are distributed quasi-monotonely.
This generalizes the definition of quasi-monotonicity for the coefficients of the
Lamé equation in [14, Definition 5.1].

Example 4.4. Let ; C R?, 1 < ¢ < N be as in Example 4.1. Consider the
functions W; : R® — R with W;(A) = C;A- A, where C; € R**® is symmetric
and positive definite. Let A; be the smallest and A; the largest eigenvalue of C;.
If there exists imin € {2, ..., N} such that

AM >N >N 2>2A3 2> N2> -2 N 01> A
A

Tmin
and —/C; N KC;,,, # 0, then the functions W; are distributed quasi-monotonely.
Condition (21) can be weakened if more details are known on the eigenvectors
of the matrices C;. Note that Example 4.3 is a special case of this example.

If s = 2, then the corresponding boundary transmission problem reads as
follows for u: Q C R2 - R div (C;Vu) + f = 0 in ; together with boundary
and transmission conditions. These equations describe transmission problems
for anisotropic Laplace operators.

Example 4.5. Consider a cube which is decomposed into two subdomains as
in Figure 2 (left). Any two functions W; : R® — R which satisfy either a) or b)
here below are quasi-monotonely distributed:

a) Elkl,k'QERl VAeR: Wl(A)+k12W2(A)+k2

b) Jk,kh e R VAeR : Wi(A)+ ki < Wo(A) + ks
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Figure 2: Examples for interior cross points

In the filled Fichera-corner, see Figure 2 (right), the quasi-monotonicity
condition is satisfied, if e.g. W1(A) + k1 < Wh(A) + ko < W3(A) + k3 for every
A € R®. For this case, a possible choice of the vectors e; is indicated in Figure 2.

The next definition describes quasi-monotonicity for the case, when the
cones K; do not fill R? completely. The definition depends on the kind of
the prescribed boundary conditions. For this, let K; C R¢, 1 < i < N, be
pairwise disjoint polyhedral cones with tip in 0, C; = K; N 0B;1(0). We set

C := int (Uf;l C_Z> and assume that Cy := 0B;(0)\C is not the empty set.
Furthermore K := {z € R? : o €Cland Ko :={z € R?: £ € Cy}.

El
Definition 4.3 (Quasi-monotonicity for cross points on the boundary).
It is supposed that K has a Lipschitz boundary and that N functions W; : R® —
R for 1 <7 < N and a fixed s > 2 are given.

(1) Dirichlet conditions on 9K: Choose Wy(A) := oo for A € R®. The
functions W; : R®* - R, 1 <17 < N, are distributed quasi-monotonely with
respect to the cones IC;, 1 < i < N, if the functions Wy, W1, ..., Wy are
distributed quasi-monotonely with respect to the cones Ky, ..., Ky in the
sense of Definition 4.2.

(2) Neumann conditions on 0K: Choose Wjy(A) := —oo for A € R®. The
functions W; : R* - R, 1 <1 < N, are distributed quasi-monotonely with
respect to the cones IC;;, 1 < i < N, if the functions Wy, W7, ..., Wy are
distributed quasi-monotonely with respect to the cones Ky, ...,y in the
sense of Definition 4.2.

(3) Mixed conditions on 0K: Assume that C = 7p U 7y, where vyp and

vy are nonempty, open and disjoint sets; I'p = {x € R? : “;—| € vp},

I'y ={z € R : ﬁ € vn}. The functions Wi,..., Wy : R® — R are
distributed quasi-monotonely with respect to the cones IC; and the splitting
of the boundary into I'p, and I'y if there exist two disjoint polyhedral
cones K_oo, Koo With g = K_o UK and I'p C 0K, 'y C 0K_o

such that the functions W_.o, Weo, Wi, ..., Wy with W_,(A) = —o0,
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I'p
IC_OO €9 }COO

Figure 3: Two dimensional domain with mixed boundary conditions

W (A) = oo, are distributed quasi-monotonely with respect to the cones
Kooy Koo, K1, ..., Ky in the sense of Definition 4.2.

Remark. It follows from Definition 4.3 that

x+ he ¢ K for every x € T'p,
r+ he € LUK, forevery z € T'y.

for every h > 0,1 <1< d.

The next lemma reformulates Definition 4.3 for the two dimensional case.
Assume that K C R? is given in the following way (polar coordinates): There
exist angles ®g < ®; < ... < ®y < Py + 27 such that K; = {z € R? : r >
0,0, 1 <p<®}, K={zeR:7r>00 <¢p<Py}and Ky ={z € R?:
r>0,0y << P+ 27}

Lemma 4.2. Consider N functions W; :R®* - R, 1 <7< N.

Dirichlet conditions on 0K: Let OK C I'p. The functions W; are dis-
tributed quasi-monotonely with respect to the cones K; if and only if

1. there exist constants ki,...,ky € R and imin € {1,..., N} such that for
every A € R?

Wi(A)+ k> ... > Wi (A)+ ki, <...<Wy(A)+ky

man tmin —

2. there exists t € R? such that t € K and —t € Ko.

Neumann conditions on 0K: Let 0K C I'y. The functions W; are
distributed quasi-monotonely with respect to the cones IC; if and only if

1. there ezist constants ky,...,kxn € R and iy € {1,..., N} such that for
every A € R®:

tmin

WiA) +k <...<W;, (A)+k; >

>...>Wn(A) + kn

2. there exists t € R? such thatt € K and —t € Ko.

Tmaz
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Mixed conditions on 0K: Assume that OKNOK, C I'p and OKNyNOK C
I'n. The functions W; are distributed quasi-monotonely with respect to the cones
K; if and only if

1. there exist constants k; € R such that for every A € R?

Wi(A) + ky > Wa(A) + ko > ... > Wi(A) + ky

2. L(T'p,Ty) =Px — ®y < w, £ denotes the interior opening angle.

Proof. The assertions for the case of pure Dirichlet or Neumann conditions on
0K follow directly from Definition 4.3 in combination with Lemma 4.1.

In the case of mixed boundary conditions we assume that 1. and 2. in
Lemma 4.2 hold. Then a possible choice for e, es and K, £_ is given by
er=(5280),e0 = (g?ﬁ((gzi;r))) and K_oo ={2:7>0,Py <p < Py+7},Koo =
{z:7>0,0y+7 < p <Py + 27} (see also Figure 3).

On the other hand, if the functions W; satisfy Definition 4.3, part 3., for
some cones Ko, K o and a basis €1, €9, then int Cou UK_oo = {z: 7> 0,Py <
© < ® + 21}, and Lemma 4.1 states that there exists ¥ € R? with ¢ € K4
and —f € K_o. This shows that ®y + 27 — &5 > 7. The remaining part of
Lemma 4.2 again follows by Lemma 4.1 with ;= K, £; . = K_. |

Tmax ?min

Example 4.6. Assume that K, K; C R?, 1 <4 < N, are given as in Lemma 4.2
and that the numbering is counterclockwise. Consider the functions W;(A) =
& |A|2, w; > 0, A € R2. These functions are distributed quasi-monotonely if
there exists 79 € {1,..., N} such that

7
7

12> i < .. < pun in the Dirichlet case

1< o< Wiy 2> ... > N in the Neumann case

and —/C;; N Ko # 0. In the case of mixed boundary conditions with I'p C 9K
and 'y C 0Ky the parameters p; are distributed quasi-monotonely if

M1 2 fo 2 ... 2 N
and £(I'p,T'x) < 7w, where £ denotes the interior opening angle.

In the same way, Examples 4.2 - 4.4 can be carried over to the case of a
cross point on the boundary.

Example 4.7. (Mixed boundary conditions on one subdomain, d = 3.) Con-
sider the pyramid X, given by A, B,C,D,S, in Figure 4 with AB | CD,
BC || AD and let N =1 (only one subdomain). Assume that the faces ABS
and BCS are parts of the Dirichlet boundary and C DS and DAS are parts
of the Neumann boundary. Let W : R™*3 — R satisfy (H1). Then one can



Quasi-Linear Transmission Problems 527

S E
es

Figure 4: Example for mixed boundary conditions

find a basis eq,...,e3 and cones K_,, K such that the assumptions in Def-
inition 4.3, part 3. are satisfied with N = 1. A possible choice is plotted in
Figure 4, where e; || BC, e3 || AB and ey || SB. K_ can be chosen as the
complementary of K in the rear half space with respect to the plane E. Fur-
thermore Ko, = R®\K UK_,. This example shows that for N = 1 and mixed
boundary conditions the assumptions in Definition 4.3 for this case are slightly
weaker than the assumptions in [7, 8]. There, for d = 3 at most three faces may
intersect at points S with changing boundary conditions.

4.2. Regularity of weak solutions of the transmission problem. We
consider the transmission problem (14). The assumptions for the main theorem
are as follows:

(A1) Q C RY d > 2, is a polygonal or polyhedral domain with Lipschitz
boundary, 02 = Tp UTy, I'p and T'y open and disjoint. Furthermore,
Q = UM, Q;, where €; is a polyhedral domain with Lipschitz boundary,
QNQ; =0ifi # 5.

(A2) For1l <i< M, W;: R™¢ — R satisfies (HO) — (H4) for some p; € (1,00)
and «; € {0,1}.

(A3) There exists a finite number of balls B;(z;) with center z; € Q such that
Q c U, Bi(x) and QN By(x;) coincides with an appropriate polyhedral
cone K; with tip in 2y, i.e. QN By(z;) = K;N By(x;). Let Oy, ..., Qunay be
those subdomains of Q with z; € 3, 1 < j < N(I), and W, 1,..., Wy n(
the corresponding energy densities. We assume that there exist N (1)
pairwise disjoint polyhedral cones K;; with tip in ; such that

N(1)
Ki=|J K and Kij N By(a) = Qu; N By(x)  for 1< j < N(I).
7j=1
On each of the composed cones K;, the corresponding energy densities
Wi, 1 < j < N(l), are distributed quasi-monotonely.
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(A4) f e Li(Q) where ¢; = p, = B

pi—1°
(A5) Dirichlet-datum: u‘FD = g‘FD where g is an element of W2 (PPmax (Q)

with Vg € L®() for some domain Q 5> Q. The space W2@Pmex) () is
defined as follows for pp.x = max;{p;}:

WQ;(ﬁ;pmax) (Q) — {g € W?,Pmin(ﬂ) . g‘Q € W?,pi (QZ)’

Ilopa € W2T=(\Q) }.

(A6) Neumann-datum: H € Wh4(Q, R™*4)NL>®(Q, R™*4) and D ,W;(Vu)ii =
Hri on FN.

The assumption that the Dirichlet-datum g is defined on a larger region Q D>
is for technical reasons. Note that for the Neumann-datum no extension to 2
is needed.

Theorem 4.1 (Main Theorem). Assume that assumptions (Al) - (A6) are
satisfied and that u € WYP(Q) is a weak solution of problem (14). Then for
every €,0 >0 and 1 < i < M, there holds

ul, € NTTRPH(Q) C W Q) if i€ [2,00) (22)

uly € NBTE(Q) N W2 07 (Q) if p;ie (1,2 (23)

with r; = ded;ipi. Note that p; < r; < 2 for p; € (1,2]. Furthermore, if
p; € [2,00) and k; =1 in (H4), then

ul,, € N32(Q) NN (). (24)

If p; € (1,2] for everyi € {1,..., M}, then

w € N5mmin=¢(Q) (25)

2dp man

holds globally, where 1, = 2d—2+pmin

Before we prove the main theorem in Section 5, we first give some corollaries
and remarks and compare the results in Theorem 4.1 with known results for
linear elliptic boundary-transmission problems.

Remark. Theorem 4.1 has local character that means: If there is a subset
Q C €, for which the assumptions of Theorem 4.1 are satisfied, then u| g has
the regularity which is given in Theorem 4.1.
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Corollary. Let the assumptions be the same as in Theorem 4.1 with p; € (1,2]
for every i € {1,..., M} and assume that d = 2. Then by Lemma 2.4 and the
standard embedding theorems for Sobolev-Slobodeckij spaces it holds

AP 1hin —
= W%_f’m(Q) C C(QY) Ve > 0 (small).

Remark. In the case M = 1, i.e. the problem reduces to a boundary value
problem on a single domain, the result of Theorem 4.1 is well known for p; €
(1,2] (if g = 0 and k = 0 in (H4)) and is derived by C. Ebmeyer and J. Frehse in
[9, 8]. For p > 2, Theorem 4.1 sharpens the results in [8]. In the proof, Ebmeyer
and Frehse developed and applied a difference quotient technique, which will
be adapted for the proof of theorem 4.1. In the case of two coupled non-
linear elliptic systems with a plane interface, p; = p, = 2 and pure Dirichlet
conditions, Theorem 4.1 is a special case of the results in [10]. There, the
authors require a geometric condition, but they do not need a quasi-monotone
distribution of the energy densities W;.

Remark. Assume that m = d and that D W;(B) is symmetric for symmetric
B € R¥4, Then Theorem 4.1 also holds if in equation (14) Vu is replaced by
£(u). The necessary changes in the proof will be indicated. Therefore, trans-
mission problems for linear and special classes of physically nonlinear elastic
materials are covered as well by Theorem 4.1.

Remark. There exist higher local regularity results and results for smooth

interfaces, see for example [29, 21], where for the case x; = 0 in assumption (H4)
dp; ~ ~

and 1 < p; < 2 the regularity u‘ﬁ e Wrast (€;) is derived for Q; CC Q.

The same result is obtained at plane parts of the boundary of §2;, if assumption

(H3) is replaced by (see [30])

(H3)’ : [DAW;(A)| < & AP VA € R™4\ [0} .

4.3. Comparison to results for linear elliptic boundary-transmission
problems. For simplicity we assume that d = 2 and m € {1,2}. Let Q C
R?, Q = UM, Q;, be a polygonal domain and choose B; € Lin(R™*2 R™*?)
symmetric and positive definite. For u; : 2; — R™ set

Fi(Du;) B;Vu; ifm=1
) i\Ui) =

Due to the assumptions on B;, the operator div F;(Du;) is linear and ellip-
tic. With f, g, h as in Theorem 4.1 (p; = 2) consider the following boundary
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transmission problem:

div F;(Du;) + f =0 in Q;,
u; —u; =0 on 'y,
F;(Du;)fi;; + Fj(Duj)ii;; =0 on [y,
u; =g¢ on0;NCp,
Fi(Du;)it; = h on 02; NT'y.

For m = 2 these equations can be interpreted as the field equations of coupled
linear elastic bodies with elasticity matrices B;. The regularity theory for linear
elliptic boundary transmission problems states that every weak solution u €
Wh2(Q) with u; = u o, has an asymptotic expansion of the following form in
the neighborhood of interior cross points S or cross points on the boundary
(polar coordinates r, ¢ with respect to S are used) [12, 15, 16, 19, 22]:

775U = nsureg + 775 Z r® U(i (ln T, (p)a (26)
Re a€(0,1)

where n° is a cut-off function, nsureg| q, € W22(€;) and « is an eigenvalue of
a corresponding eigenvalue problem, for details see e.g. [3, 24, 25, 26]. The
functions v3 (In 7, ) contain in general powers of Inr and generalized eigenfunc-
tions. It holds that r® v£|m € WitRea=e2(Q)) for arbitrary € > 0, see [12,
Theorem 1.4.5.3].

Assume now that the matrices B; are distributed quasi-monotonely with
respect to the cross point S. A sufficient condition for this is described in
Example 4.4. Then by Theorem 4.1: 775U|Qi € W2=<2(Q;) and nSu € W2—%2(Q)
for every € > 0. It follows that Re & > # in the asymptotic expansion (26).
In an earlier work [14], estimates for the eigenvalues were derived for Poisson’s
and Lamé’s equations with piecewise constant coefficients. There, the same
assumptions as in Theorem 4.1 were used and by a homotopy argument it was
proved that Re o > % This indicates that the results in Theorem 4.1 are nearly
optimal (up to €).

The following linear example shows that if the assumptions of Theorem 4.1
are violated, then one cannot expect the regularity n°u; € W%’CQ(Qi).

Example 4.8. Consider a domain Q = Q;UQ, C R?, where Q; and €, coincide
in the neighborhood of S = (0,0) with the cones in polar coordinates (see
Figure 5)

Ki={zeR: |x|>0,0<<p<g},

Ko={zeR: |x|>0,z<g0<g

5 + o}, &>0.
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K1 ‘
K 2 al.s ] : T~

Figure 5: Domain and singular exponents for Example 4.8

Dirichlet-conditions are prescribed on 02N 0K, Neumann-conditions on 92N
OK,. The problem under consideration is to find a solution of the following
linear boundary transmission problem for the Poisson equation with piecewise
constant coefficients p1, s > 0:

,LLZAUZ-Ffz:O in Qi; i=1,2,

u=g¢g onlp,

ou
% =h on FN,
uy —us =0 on 0 N Oy,
ouy Ous
= + po=—=— =0 on 0 NOS),.
0112 Ofig1

Let the data f;, g, h satisfy the assumptions of Theorem 4.1 with p; = py = 2.
Weak solutions of this boundary transmission problem admit an asymptotic
expansion of the following type near the cross point S, [26]:

n® (2)u(2) = treg(@) +1°(2) D calz]” vale),

O<a<l1

where 7° is a cut-off function with respect to S, ureg|9i € W22(Q), cq are
constants which are determined by the data f;, g, h; « is the singular exponent
and v, the corresponding eigenfunction. Note that the singular exponents are
real numbers in our special case and that there are no logarithmic terms in the
singular expansion. The singular exponents « solve the following equation, [26]:

— 1o sin(a®) sin(ag) + p1 cos(a®) cos(ag) = 0.

Choose 1y = 1, g = % For ® < 7, the quasi-monotonicity condition in The-

orem 4.1 is satisfied and therefore the smallest positive singular exponent umin

is larger than or equal to % For & > 7, the quasi-monotonicity condition is
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violated and if ® is large enough, one obtains o, < % In this case, one can
guarantee u| q, € Witamin=62(),) only. The behavior of the singular exponents
is illustrated in Figure 5, where the exponents « are plotted versus the opening
angle ® of subdomain €2,.

5. Proof of Theorem 4.1

In the proof of the main theorem, a difference quotient technique is used. This
technique is frequently applied to derive interior regularity results, [23, 32, 4,
29, 21|, and is modified by C. Ebmeyer and J. Frehse, [9, 7], in order to prove
global regularity results on polygonal or polyhedral domains.

The main idea is to insert test functions of the form &;(z) = ¢?(u(z +
hej) — u(z)) into the weak formulation and to apply the convexity inequality
(49) from the Appendix. This leads to estimates in Nikolskii-spaces and by the
embedding-lemma 2.4 to regularity results in Sobolev-Slobodeckij spaces.

The main problem is that the differences u(z + he;) —u(x) are taken across
the interfaces and one has to check whether §; is an admissible test function in
V7(£2). Due to the quasi-monotonicity condition, there exists a basis {e;, 1 <
[ < d} C R% such that the functions &; are indeed admissible test functions.
Furthermore, in the proof occur differences of the form W;(Vu(z))—W,;(Vu(z)),
which have to be estimated in an appropriate way. Here, the quasi-monotonicity
condition is also very useful.

The proof is organized as follows: The case of pure Dirichlet-conditions
will be proved in detail. For the remaining cases (Neumann, mixed and pure
interface problems) the necessary changes in the proof will be indicated.

Cross point on the boundary of () with pure Dirichlet conditions.
Let S C 9Q and assume that there exists R > 0 such that Bg(S) c Q and
QN Bg(S) = KN Bg(S), where K is an appropriate polyhedral cone with tip
in S and 0K N Bg(S) C T'p. Assume further that for every j € {1,..., M}
with Q; N Bg(S) # 0 there exists a polyhedral cone K; with tip in S such
that Q; N Bg(S) = K; N Br(S). Note that K = [, K; after a suitable
renumbering, see also Figure 6. Due to the assumptions in Theorem 4.1, the
cones IC; and functions W;, 1 <7 < N, satisfy the quasi-monotonicity conditions
in Definition 4.3, part 1. with K := R?\K.

Let u € W'P(Q) be a weak solution of problem (14) with right hand sides

g, f,h as in Theorem 4.1; R" = %,ho = R"' = %,R' = %. Choose ¢ €

Cs°(RY,R) with supp ¢ C Bre(S), ¢, ) = Land 0 < ¢ < 1. Let further
RI

be e; one of the basis vectors given by Definition 4.3. For the definition of an
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Figure 6: Example for the notation with Dirichlet conditions

appropriate test function, an extension of u across the Dirichlet boundary is

needed:
oy Ju(z) ifreq,
ife) = {g(m) if z € O\Q. (27)

For the extended function % it holds
¢’ € WhEPm=)(By(S)) = {v € WhPmin(Br(S)) :

. € W'P(Q4 1 Br(S)), 0] pais) € W™ (Ko N BR(S))}.

Q;NBgr(S)

This follows since p*a| € Wi (K;) for 1 < i < N, *af, € Whrme(I)
and since, by the definition of i, ¢?% does not jump across interfaces:

2~ A 2~
(gp U ’Q') Lij ((p u‘,cj)
for 0 <4,5, < N.

The regularity results (23) and (22) will be derived in two steps. In a first
step we prove inequality (28) here after. This is the essential inequality from
which we deduce in a second step estimates for Nikolskii-norms of @ and u.

First step. We prove the following inequality: There is a constant ¢ > 0
such that for 1 <[ < dand 0 < h < hg

Z/ﬂ ©*(z) (ki + |Vi(z + hey)|

+ (Vi) )" |a(e + hey) — a(x)[* dz < ch

(28)
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holds with x; from (H4).
To proof the inequality (28) we define on 2

£(x)

¢*(z) (@(z + he) — g(z + hey) — (i(z) — g(2)))
" (z) An(i(z) — 9(2))

Il

as test function for 0 < h < hg. From the quasi-monotonicity assumptions
and by Corollary 4.1 it follows that & € W'#(Q). Furthermore, & |FD =0

and therefore £ € VP(Q)) is an admissible test function. Inserting ¢ into the
variational formulation (14) and rearranging the terms yields

N
;/ﬂ ©*DaW;(Vu)) : V(Api) dx
N
= /fodx + Z:ZI/Ql QOQDAW,'(VU) : ApVgdx (29)
N
- Z/ DaAW;i(Vu) : (Ap(i — g) ® V¢?) da.
i=1 7

For a € R",b € R, a ® b = (asbj)ij € R™? denotes the tensor product.
Inequality (49) with A = Va(z + he;), B = Vi(z) = Vu(z) for x € Q, applied
to the left hand side of equation (29) results in (¢ > 0 is independent of h)

N
ey / (ki + V(e + her)| + |Via(@) )2 | ApVii(z)? da
i=1 /%

(49

N N
g) Z/ O AW;(Vi) dx—Z/ ©*DWi(Vu) : ApVi da
i=1 7/ i=1 7
N
DS [ enawiva) do- [ feds
i=1 7 Q
N
—Z/ ©?D Wi (Vu) : ApVgdz
i=1 7

+Z1/Ql DaW;(Vu) : (Ap(t— g) ® V¢©) da

= Il+12+13+l4.

In the next steps, the integrals Iy,...,I; will be estimated. By Holder’s in-
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equality one gets

N
L] < D oSl ey 1080 (@ = 9l ooy -

i=1

Put Q; = {z eR*: © =y+he,0 < h < hy,y € Q} D Due to
the quasi-monotonicity and the special choice of the extension of u to 4, it is
(@—g) ‘ & € W'Pi(€);). This follows by arguments which are similar to those in

the proof of Lemma 2.2. By [11, Lemma 7.23] one obtains

AT = gl Loi 0,y < NARE = 9) o @umsupp ) < PV (@ = 9)l| o0, 05upp ) »
where the constant ¢ depends on the vector e; but is independent of h. Therefore
N
B < ch Yy 10 f Il IV @ = )l oo @insupp ) (31)
i=1

The same considerations can be made for I3 and I, using assumption (H2) which
yields D4W;(Vu) € L%(Q;). One finally gets

N
|I3] < Chz ||€0DAW/i(V“)||L%(Qi) HDZQHLm

— (€% Nsupp ) (32)
N

[a] < by NleDaWi(Vu) | gany 1V(@ = )l s 6m0mpp ) (33)
i=1

Again, c is a constant which is independent of h. It remains to estimate I.
Here, it is essential that the functions W; are distributed quasi-monotonely.
Let ki,...,ky be the numbers from Definition 4.3. (Do not confuse k; from
Definition 4.3 with «; from (H4).) It is

N
i=1 Y

By An(fg)(z) = (Anf)(z)g(x)+ f(z+he)) Apg(x) (product rule for differences)
it follows

I, = Zl/mAh (@*(Wi(Va) + ki) dz

_Z /Q,(AWZ)(WZ'(VW” + hey)) + ki) dz

= I + ILis.
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By assumption (H1) and the fact that ¢ € C°(R?), it holds

12| < Chz V(- + her)|[ s o, + i 1))

=1
<chZ IVl g, + ki ll). (34)

with a constant ¢ which is independent of hA. In the next estimates, it is used
the notation Qy = Iy N Br(S). It holds

N
Q; Nsupp e N (U Q; + hel> = Q;Nsuppey (35)
=0
N
(94 + he;) Nsupp o N U Q_J> = Q; + he; Nsupp . (36)
=0

Note that for 1 <7 < N, 0 < h < hy. It follows that

N

]11 = Z/ﬂ e, SDQ (Wz(Vﬂ)) + k'z) d.’l? - / Q02 (Wz(Va)) + kz) d.’l?

i
N

= > /Q e, V) £ k) da

i=

—/ - & (Wi(Vii)) + ki) dz

@ / (V@) + k) dz
= 1 .7 0 Q—|—h,elﬂQ

i
37
[ ) k) 6 0
QN +hey

N

_ Z/Q+h G W(VE) + ) da

=1

_/m+h G (Wi(ViD)) + ki) da

+Z/ Wi(Vi) + ki — W; (V@) — k;) da
i,j=1, Q—|—helﬂQ

J#1
= L+ Lo
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Since the functions W; are distributed quasi-monotonely it follows that 2; N
Qo+ he; =0 for h >0 and 1 <4 < N, compare Definition 4.3. It remains

I _Z/

Q; —|—helﬂﬂo

Wi(Vii) + k;) da 272/ Wi(Vg) + k;)dz
Q-I—helﬂﬂo

and hence

(15) X
Ii;; < CZ |2 + he; N Qo Nsupp | < ch.

=1

taking into account the definition of & and (H1) and (A5). Again due to the
quasi-monotonicity of the functions W; it holds: If Q; + he, N 2; # (0 then
W;(A) + k; > Wi(A) + k; for every A € R™?. Therefore I;;5 < 0. Collecting
these estimates finally yields Iy < ch, where ¢ > 0 is a constant which is
independent of h. This finishes the proof of inequality (28).

Second step. In this step, we derive estimates for the Nikolskii-norms of
u on the basis of inequality (28).

Since the addends on the left hand side of inequality (28) are nonnegative,
it holds

/ 0% (ki + |Vi(z + hey)| + [Via(z) )% | AnVi(z)|* dz < ch.  (38)
Q;

for 1 <4 < N. Applying inequality (50) with o; = & to each subdomain
separately yields

P 2
/ @ ‘Ah(/ﬂ + |Vig|)2| dz <ch
Q;
for 1 <i < N. Since ¢[, o =1 it follows for
Q;, :={z € Br(S)NQ; : dist(z,d(Br (S) N %)) > n}

sup / ht
n>0 Q'

0<h<n o

that )
(ki + |Vu) 7| dz <c

and therefore N )
(I‘iz‘ + |VUZ|)_2L S NE’Q(QZ' N BRI(S))

Assume first that p; € (1,2]. The remaining part of the proof for this case
follows exactly the considerations in [8] and is given here for completeness.
Lemma 2.4 and the embedding theorems for Sobolev Slobodeckij spaces state
that

(ki + [Vuil) # € Wa=2(2) € Li% () (39)
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for every ¢ and € = €(d) > 0, where Q) = Q; N Bg/(S). Thus, Vu; € Lg_f%_g(Q;).

By standard embedding theorems, the space W'?i(2) is continuously embed-
dp;

ded in La-1¢(Qf). This together with the previous estimate for Vu,; shows that

dp;
u; € Wl’d%fe(Q;) for every € > 0. Choose o; = r; — ¢ for arbitrary 6 > 0,
where 7, = Zdi‘é”im as in Theorem 4.1. For 1 < p; < 2itis 1l < g; < jf"l
and therefore u; € WLoi(Qf). Thus for 0 < h < n < hy, 1 <1 < d and

My, = {z € Q) : Vi(x+he;) = Vi(z) = 0} it holds (apply Hélder’s inequality)

/ |h™2 A, Vul% da
Qan

gi(p;—2)

= / |h_%AhVUi|m’ (ki + | Vui(x)| + |[Vui(z + hey)|) ™ 2
Q; \My,
x (i + |Vus(@)| + [Vug(z + hey)| ) 2P da
1 2 %
< (/ ‘h—iAhVu‘ (ki + |Vui(z + he))| + [Vu(z)])Pi dac)
QL

2—0;

a;(2—p;) 2
X (/ (ki + |Vui(z)| + [Vu;(z + hey)|) 27 dx) :
Q

’
2,7

By inequality (38) the first factor is bounded independently of A and 7. Further-
more, 1 < %}’;’) < % and thus the second term is bounded independently of
h and n as well. It follows

0;
dz <c,

>0,
0<h<n

sup / ‘h’%AhVui
QI
n

and relation (23) of Theorem 4.1 is proved for p; € (1,2]. For the proof of
the global result (25) note that for arbitrary A, B € R™*4 : (|A| + |B|)Pi72 >
(1+|A]+|B))Pi=% > (1+|A|+|B|)P=in~2 and proceed as subsequent to equation
(28) with €; replaced by supp ¢ N €.

We assume now that p; > 2. The following two inequalities can be deduced
from (38):

/ & | AWVi(z)[P dz < ch (40)
Q,

?

/ O | ANV(z))? de < ch  if k= 1. (41)
Qv

1

This yields the assertions (22) and (24) and completes the proof of the Dirichlet
case.
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Cross point on the boundary of () with pure Neumann conditions.
Note first that it follows

<Hﬁa“>=/ (HTU)ﬁds=/HT:vudx+/(divH)vdx Yo € VA(Q).
Q o) Q

by the special structure of the Neumann data in (A6). Therefore, the weak
formulation (14) is equivalent to: For every v € V?(12) it holds

M
Z/ D sW;(Vu;) : Vu; do
i=1 Y

(42)

M M
= Z/ (fi+diVHi)Uidx+Z/ HT : Vu; dz.
i=1 7Y i=1 Y

Let S C 99 and assume that there exists R > 0 such that Bp(S) C  and
QN Bg(S) = KN Bg(S), where K is an appropriate polyhedral cone with tip
in S and 0K N Bg(S) C I'y. Assume further that for every j € {1,..., M}
with ©Q; N Bg(S) # 0 there exists a polyhedral cone K; with tip in S such that
Q,; N Br(S) = K;N Bg(S). Note that K = |J', K;. Due to the assumptions in
Theorem 4.1, the cones K; and functions W;, 1 <1 < N, satisfy the conditions
in Definition 4.3, part 2.; Ko = RI\K.

Let u € WHP(Q) be a weak solution of problem (14), R” = £ hy = R" =
E R = % and choose ¢ € C°(R*,R) with supp ¢ C Bg~(S), @‘BR,(S) =1 and
0 < ¢ < 1. Let further be e; one of the basis vectors given by Definition 4.3.
For 0 < h < hg the function

¢(x) = ¢*(2)(u(z + her) — u(z)) = ¢*(2) Apu(z), z€Q

is an admissible test function in V?(€2). This is due to the quasi-monotonicity
condition, compare also Corollary 4.1 and Remark 4.1. Note that no extension
of u across the Neumann boundary is needed. The next goal is to prove that
inequality (28) also holds in the case of pure Neumann conditions (with u instead
of 7). Inserting £ into equation (42) and rearranging the terms yields

N
Z/ ©*DAW;(Vu) : ApVu da
=1 Y

N N
:;Ai(erdivH)gder;/mHT:vgdx (43)

N
— Z/ DaW;i(Vu) : (Apu ® V?) da.
i=1 /%
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Applying inequality (49) (see Appendix) to (43) results in

N
CZ/ (ki + |Vu(z + he))| + |[Vu(z)|)Pi 2 | Ay Vul dz
i=1 Y

N N

§ : / O N, Wi(Vu) dx—§ j / ©*DAW;(Vu) : ApVu da
i=1 Y i=1 Y

E / O AN W;i(Vu) dz — E / (f+divH){dx

i=1 7/ i=1 7/

N N
- E / H" : V¢ do + E / DsW;i(Vu) : (Apu® V?) dz
i=1 Y i=1 Y

== Il+12+13+l4.

The constant ¢ is independent of hA. The integrals I, and I, can be estimated
as in the case of pure Dirichlet conditions, compare (31) - (33), and one gets
|Io| 4+ |14] < ch for some ¢ > 0 which is independent of h. Let k1,...kx be the
numbers from Definition 4.3. Then by the product rule for differences we get

I = Z / An (PWi(Va) + k) da — / () (Wi(Va) ( + her) + ki) dz

Q;

which is I1 = I1; 4+ 1. As in (34) it follows that |I15| < ch. Furthermore, with
Qo = Ko N Bg(S), I; can be transformed analogously to (37), that is

N
o=y / O (Wi(Va) + k) da
Q;+he;NQo

=1

- 2(Wi(Vu) + k;) d

/“’ (Wil(Ve) k) (45)
+ Z/ Wi(Vu) + ki — (W;(Vu) + k;)) dz.

i,j= 1 Z—I—helﬂﬂ

J#1

Due to the quasi-monotonicity condition, it is W;(Vu) +k; — (W;(Vu) +k;) <0
if ; + he; N Q; Nsupp ¢ # 0 and in addition €2; + he; N Qy = (. Therefore it
remains
N
I, < —Z/ ©*(Wi(Vu) + k;) dzx
iNQo+he;

i=1
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and hence
my X

W= [ RV k) do (46)
- Q;NQo+he;

Now we consider the estimation of I3. By the product rule for differences we
get

+ Z/ (A )HY (2 + hey) : Vu(z + hey) do

N
+ Z/ 2N HT : Vu(z + he)) dz — Z/ H” . (Au® V?) dz
i Q; . .

= I3y + I3o + I33 + I34.

By the usual arguments, compare (31)-(33), it follows |I32| + |I33] + |[34] < ch,
where ¢ is independent of h. Analogously to the considerations in (37), keeping
in mind that Q; + he; N Qy Nsupp ¢ = O, one obtains

N
Iy = — Z (/ ©*HT . Vudzr — / ©’HT - Vudx)
i—1 Q;+he;NQo Q;NQo+he;

1=
N

— Z (/ OHT - Vudac—/ vl : Ll Vuda:)
ij=1 Qi—|—helﬂﬂ Qiﬂﬂj—khel
1#]
N
=> / ©*H" : Vudz —0
i=1 Q;NQo+he;

since Q; + he; N Qg = 0, see also Definition 4.3 and Remark 4.1. By Hoélder’s
and Young’s inequality and since H € L™ () it follows

N
I3 <> 67 i
i1 L% (Q;nQo+hey)

N
SCZ(@_‘“/ o |HT|" da:—l—éfi/ ©? |[VulP dx)
i=1 Q;NQo+he; Q;NQo+he;

“49) N e o= .
< EhZ(Si_ql + Zcéfl/ ©* |VulF' da. (47)
i=1 i=1

Q;NQo+he;

2 2
puH" ©ri |Vul

LPi(Q;NQo+he;)
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for arbitrary d; > 0 (¢, ¢ independent of h). For 1 < i < N choose §; = ( >_'

o
where ¢} is the constant from assumption (H1). Then with (46) and (47) w
get

N

N
Iy + |I3] §éhZ(5ﬁ”+Z/ﬂ - ©* (o |VulP' — ¢ |[Vul"' — k; — cf) dz
; Nlo+he;

i=1

N N
<Eh Y 6> (ki +|ch]) 194 N Qo + heyl

i=1 i=1
3
<c'h,

where ¢* is independent of h. Collecting the estimates, one obtains for (44)
N
Z/ 0 (ki + |Vu(z + hey)| + |Vu(z) )P 2 |ARVul? dz < ch.
— Q;

The remaining part of the proof is completely analogous to the considerations
in the second step for the Dirichlet problem.

Cross point on the boundary with mixed boundary conditions. Let
S € 0f) be a cross point with mixed boundary conditions in its neighborhood
and ey, ..., e4 be a basis as in Definition 4.3, part 3. Assume that ¢ € C5°(R?)
is a suitable cut-off function. For the choice of the test function £ one has to
distinguish two cases, see also Remark 4.1. If suppy N (I'p + he;) C Q for
0 < h < hg, then choose £ as in the case of pure Neumann boundary conditions.
Else choose £ as in the case of pure Dirichlet conditions. Proceeding analogously
to these two cases yields the assertion.

Interior cross point. Here we choose &(x) = ¢?(x)(u(z + he;) — u(z)) as test
function, where ¢ is a suitable cut-off function with supp ¢ C €2, and proceed
analogous to the case of pure Neumann conditions. This completes the proof
of Theorem 4.1. |

Remark. If in the weak formulation (14) Vu is replaced by e(u) = 5(Vu +
Vul), then the proof of the regularity result for equation (16) is completely
analogous to the one of equation (14), one has to replace Vu by (u), only, and
(28) changes to the following inequality:

) /Q 8 (ks + (@@ + he)| + [e(@@)) )" | Bne (@)~ do < ch.

dp; _ . . .
This leads to e(u;) € LT ‘(). By Korn’s inequality, the estimates can be
carried over to Vu and considerations analogous to those in the second step of
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the proof for the Dirichlet problem can be carried out in the case p; € (1,2].
In the case p; > 2, the argumentation is similar to (40) — (41) and again the
estimates can be carried over to Vu by Korn’s inequality.

A. Some essential inequalities
Lemma A.l.
1. For A,B € R°, |B| > |A| and t € [0, ] it holds, [32, Formula (2.20)]:
4|B+t(A—-B)| > A+ |B]. (48)
2. Assume that W : R™¢ — R, d > 2, satisfies (HO) and (H4) for some
p € (1,00) and k € {0,1}. Then there exists ¢ > 0 such that
W(A)—=W(B) > DaW(B) : (A=B)+c(k+ |B|+ [A])’?|A - B|* (49)
for every A, B € R™*4,
3. Let k € {0,1}, a > 0. There exists a constant ¢ > 0 such that
(k4 |2)* = (5 + ) < e (s + |2] +[y)* " o =yl (50)
for every x,y € R®.

Remark. For the case 1 < p < 2 and W(A) = |A|’ inequality (49) is proved in
[17, Lemma 4.2].

Proof. Inequality (48). For 0 < ¢t < ; and A,B € R° with |B| > |A] it
holds

3 1 1 1 1
B+1(A—B)| > |(1—0)[B| —t|A]| > |T|B| 7 |4l > 5 [B| > 7 |Bl+7|A].

Inequality (49). Fort € [0,1] set f(t) = W (B +t(A— B)). Assume first
that B +t(A — B) # 0 for every t € [0,1]. In this case,

W(A) — W(B)
(H4)
> D,W(B): (A - B) (51)

+c/1(1 — 1) (k+|B+t(A - B)|)’* dt|A - BJ?

If 1 <p<2, then
W(A4) - W(B)

1<p<2

> D W(B):(4- B)—i—c/l(l —t) (k+t|A|+ (1 —1t)|B|)"*dt|A - B

> DsW(B):(A=B)+c(k+|B|+|A])" *|A-B|.
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In the case p > 2, it follows

W(A) - W(B)

1

> D,W(B): (A - B) +c/4(1 —t)(k+|B+t(A— B)|)’ *dt|A— BJ?

(48)

1
48 i
> DW(B):(A-B)+ 4p—02/ (1= 1) dt (5 + | B| + |A)" 2 |A - B
0
from (51) by inequality (48) for |B| > |A|. On the other hand, if |A| > |B|, then
a change of variables, ¢ = 1 — s, and reasoning similarly to the case |B| > |A|
yields the assertion.

If there exists ty € (0, 1] with B+1t3(A— B) = 0, then consider A5 := A+dC
for 6 > 0,C € R™%\{0}. Note that B + t(As — B) # 0 for every ¢ € [0,1] and
by the first step, inequality (49) holds for A; and B for every 6 > 0. Taking
the limit 6 — 0 yields the assertion.

Inequality (50). Assume first that o > 1. For |z| > |y| > 0, Taylor’s
expansion yields

1
0< (k+[e)® = (s +[y))® S/ a(k+tlel+ 1= [y)* |z -yl dt
0

1
<a [ (e lol +lyh" defo -y
0

and (50) is proved for @ > 1. Assume now that 0 < o < 1 and |z| > |y| > 0.
Then

0 < (k+ o))" = (k + [y) " +(r + |2]) (5 + |y])
<k 2|+ y)* |2 -yl < (26 + || + [y))* |2 -y

from the first step and since ((x + |z|)*™* — (k + |y)*™!) < 0. The lemma is
proved. [ |
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