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Wiener Algebras of Operators,
and
Applications to Pseudodifferential Operators

Vladimir S. Rabinovich and Steffen Roch

Abstract. We introduce a Wiener algebra of operators on L?(RY) which contains,
for example, all pseudodifferential operators in the Hormander class OPS&O. A dis-
cretization based on the action of the discrete Heisenberg group associates to each
operator in this algebra a band-dominated operator in a Wiener algebra of operators
on [2(Z?N, L?(RY)). The (generalized) Fredholmness of these discretized operators
can be expressed by the invertibility of their limit operators. This implies a crite-
rion for the Fredholmness on L?(RY) of pseudodifferential operators in OPS(()),0 in
terms of their limit operators. Applications to Schrédinger operators with continuous
potential and other partial differential operators are given.
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ness
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1. Introduction

In this paper, we consider pseudodifferential operators on L?(R") with symbols
in S(()),o- For m > 0, the Hormander class Sp, consists of all functions a €
C® (RN x RY) satisfying

ey sup  |080a(z,€)[ (€)™ < o0

N N
la|<r, |B|<t (B O ERT XR

la

for each choice of 7, t € N. Here, & = (a,..., ay) € NV is a multi-index, and
we write Jy and O for the operator 9%, applied to the functions r — a(z, )
and & — a(z, €), respectively. Further, as usual, (£) stands for (1+ \f@)é where
|| is the Euklidean norm of €.
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Let a € S7). The operator Op(a) defined on the Schwartz space S(RY) by

Op(@u)(@)i= (2m) ¥ [ alo, Qi) 0de, s eRY (1)
RN

is called the pseudodifferential operator with symbol a. The class of all pseu-

dodifferential operators with symbol in S{, is denoted by OPSg,.

The basic boundedness and compactness results for pseudodifferential op-
erators are as follows.

Theorem 1.1. Let a € S7,.
(a) The operator Op(a) is bounded on L*(RY), and

|Op(a)||r2 < Clalok, 2k, whenever 2k, > N and 2ky > N,

where C' is a constant independent of a (but depending on ki and k).
(b) The operator Op(a) is compact on L*(RY) if and only if

lim a(z, £) =0.

(z,€)—00

Assertion (a) is known as the Calderon-Vaillancourt theorem. Its proof can
be found in [16], for example. More comprehensive introductions into the world
of pseudodifferential operators are [10, 12, 25, 26].

In this paper we are going to study the Fredholm properties of pseudod-
ifferential operators in OPS(()),O. By definition, a linear bounded operator A
on a Banach space X is Fredholm if both its kernel ker A and its cokernel
coker A := X/(AX) have finite dimension. The standard approach to Fred-
holmness of pseudodifferential operators, which makes use of the composition
formulas (see, for instance, [10, 16, 22, 25]), does not work for operators in
OPSgy. So, new tools are needed, and we would like to convince the reader
that the limit operators method is very promising among these tools.

Here is a short description of that method and of its results. We write each
vector v € Z2N as (71, 12) € ZN x Z" and set U, :=V,, E,, € L*(R"), where

(Bqu)(z) := eX®®y(z) and (Vau)(z) :=u(z — B).

The operators U, are unitary. Note that these operators, together with the
scalar unitary operators e" I with r running through the integers, form a non-
commutative group, the so-called discrete Heisenberg group. In particular,

U: = €i<a2’a1>U,a, UaUs = €i<a2’ﬂ1)Ua+5 (2)

UiUg = €i<a2’a1_ﬂ1>Uﬂ_a - ei(/B%Oll—/Bl)U*_ﬁ (3)

a



Wiener algebras 439

where o := (a1, ay), 8:= (b1, B2) € ZN x ZV.

Further we denote the set of all sequences in Z?" which tend to infinity by
‘H. In accordance with the notations from [18, 19], we call an operator A;, €
L(L*(RY)) the limit operator of A € L(L*(RN)) with respect to the sequence
h € H if

The set o,,(A) of all limit operators of A will be called the operator spectrum
of A. With these notions, we will prove the following.

Theorem 1.2. A pseudodifferential operator A in OPS&O 1s Fredholm if and
only if each of its limit operators is invertible. In particular, the essential spec-
trum oe5(A) = o(A+ K(L2(RY))) of A is given by

Uess(A) = UAhEUop(A)G(Ah)
where o(Ay) refers to the usual spectrum of the operator Ap,.

In many important instances, the structure of the limit operators is much
simpler than the structure of the operator itself, which allows one to obtain
explicit and effective Fredholm conditions.

Our strategy to prove Theorem 1.2 is as follows. We introduce an algebra
W(L?*(RY)) of Wiener type, which consists of certain linear and bounded op-
erators on L*(R"Y). This algebra contains OPSY as its subalgebra. Similar
algebras of Wiener type were considered by Sjostrand [23, 24] and Boulkhe-
mair [4].

A suitable discretization associates to every operator in W(L?(RY)) a band-
dominated operator acting on an appropriate (?(Z?")-space. Moreover, these
discretizations belong to an algebra W(I?(Z*")) of Wiener type again, the el-
ements of which are band-dominated operators on [?(Z?"). Here we call an
operator band-dominated if it is the norm limit of a sequence of band operators.

It turns out that an operator in W(L?(RY)) is Fredholm if and only if
its discretization satisfies a generalized Fredholm condition called P-Fredholm-
ness. The P-Fredholmness of band-dominated operators has been studied in
[18, 19] by means of the limit operators method. Basically, the result is as
follows: A band-dominated operator is P-Fredholm if and only if each of its
(appropriately defined) limit operators is invertible, and if the norms of their
inverses are uniformly bounded.

In practice, it proves to be hard to verify the condition of uniform bound-
edness of the inverses of the limit operators. It is one of the main results of the
present paper that this condition is redundant for band-dominated operators in
the discrete Wiener algebra W(I2(Z?")). That is, an operator in this algebra is
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P-Fredholm if and only if each of its limit operators is invertible. Combining
these devices, we obtain the Fredholm criterion for pseudodifferential operators
stated in Theorem 1.2.

A similar strategy has been pursued for operators of convolution type on
LP(RY) in [17]. The discretization used in [17] is based on the action of the
commutative group Z. It yields that the P-Fredholmness of the discretized
operator is equivalent to some kind of generalized Fredholmness of the opera-
tor itself. Thus, one needs a further property of the operator (for example, its
local compactness) in order to guarantee that its generalized Fredholmness im-
plies its common Fredholmness. In contrast to this situation, the discretization
employed in this paper is much finer. It is based on the action of a discrete
Heisenberg group, and it leads to a simultaneous discretization with respect to
the variable in L?(RY) and to the co-variable in the Fourier image, which we
call bi-discretization.

The paper is organized as follows. We start with the introduction of the
discrete Wiener algebra W(I*(Z*")) in Section 2. In particular, we will derive
the announced criterion for operators in W(I?(Z?")) to be P-Fredholm. The
bi-discretization is described in Section 3. It is applied to the study of the
Fredholm properties of pseudodifferential operators in Section 4 (with the main
result being Theorem 4.6), and several applications to more concrete classes of
pseudodifferential operators are given in Section 5. Let us mention some of these
classes explicitely. In Section 5.1, we consider operators in OPSg,O with slowly
oscillating symbols. For operators in this class, all limit operators are either
operators of multiplication by a bounded function, or operators of convolution.
Thus, the invertibility of these operators can be effectively checked, and this
yields an explicit description of the essential spectrum. The Fredholm theory of
pseudodifferential operators in O P STy with symbols which are slowly oscillating
with respect to the spatial variable x has been considered by Grushin [9].

In Section 5.2, we consider operators in OPS{, the symbols of which are
almost-periodic with respect to x. Here we use the limit operators method to
get a simple proof of the following results: The class of these operators does not
contain non-trivial compact operators, and an operator in this class is Fredholm
if and only if it is invertible. For elliptic operators in this class, conditions for the
invertibility are given in Shubin [20, 21], Fedosov and Shubin [8] and Coburn,
Moyer and Singer [5]. These conditions are based upon the concept of the
almost periodic index.

In Section 5.3, we will deal with operators with semi-almost periodic sym-
bols, and in Sections 5.4 and 5.5 we consider operators of nonzero order. Finally,
in 5.6, we are going to apply the results of Section 5.5 to describe the essential
spectrum of some electromagnetic Schrodinger operators.
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2. Operators in the discrete Wiener algebra

2.1. Band-dominated operators and their P-Fredholmness. We start
this section with recalling the notions of rich band and band-dominated op-
erators and the criterion for P-Fredholmness from [19]. The reader should
take into account that we used the notion invertibility at infinity instead of
P-Fredholmness in [19].

Given a Banach space X, a positive integer N and a real number p > 1, we
let IP(Z", X) stand for the Banach space of all sequences z on Z" with values

in X such that
IAIE = llzallf < oo,

aeZN
and we write [*°(Z", X) for the Banach space of all sequences z : ZY — X
with

1 £lloe := sup ||zallx < 0.
acZN

Further, E* stands for one of the Banach spaces IP(Z", X) with 1 < p < o0,
whereas E refers to one of the spaces [P(ZY, X) with 1 < p < oo.

Every function a € [*°(Z", L(X)) gives rise to a multiplication operator on
E®*° on defining

(ax), = a,z.,, €L

We denote this operator by al. Evidently, al € L(E*) and [al| = |a]|c-
A band operator on E® is a finite sum of the form Y a,V, where o € Z?V,
ao € 1°(ZN, L(X)), and where V,, is the shift operator

(Vo) = gy, o€ ZV.

A band-dominated operator is the norm limit of a sequence of band opera-
tors. The band-dominated operators form a closed and symmetric subalgebra
of L(E®°) which we denote by A.

Given v € Z", let S, stand for the operator on E> which sends a sequence
f to the sequence g with g, = f7 and g, =0 for A # 7- For n > 0, define B, as
the sum >, ., S,, and let P stand for the family (B, Jn>0- The operators P,
are projections which converge strongly to the identity operator if p < co.

Let A € L(E®), and let h : N — Z" be a sequence which tends to infinity.
We say that the operator A, is the limit operator of A with respect to the
sequence h if

l1m 1 Pe(V ) AVmy — An)|| = hm (V) AViny — An) Bil| = 0

for every k € N. Let further % denote the set of all sequences h : N — Z~
which tend to infinity, and let A® refer to the set of all operators A € A enjoying
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the following property: Every sequence h € H possesses a subsequence g for
which the limit operator A, exists. We refer to the operators in A® as rich
band-dominated operators.

Further, we have to mention the notions of generalized compactness and
generalized Fredholmness. We did not use these notions explicitely in [19], but
a closer look will convince the reader that the definitions given in [19] are in full
coincidence with these notions. An operator K € L(E*) is called P-compact if

|IKP, — K| -0 and ||P,K—K|—0 as n— oco.

By K (E°°,75) we denote the set of all ﬁ-compact operators on E*°, and by
L(E>,P) the set of all operators A € L(E*) for which both AK and KA are
75—compa,ct whenever K is ﬁ—compact. Then L(E*,P) is a closed subalgebra
of L(E™) which contains K (E>, P) as its closed ideal. Moreover, K (E>,P)
contains all compact operators if 1 < p < oc. An operator A € L(E°°,73) is
called P-Fredholm if it is invertible modulo operators in K (E®, P). In case X
has finite dimension, this is just the usual notion of a Fredholm operator. Now
the main result of [19] can be stated as follows.

Theorem 2.1. An operator A € A% is P-Fredholm if and only if each of its
limit operators is invertible and if

sup{[|(A4n) ' : An € 00p(A)} < 00, (5)

2.2. The Wiener algebra. The result of Theorem 2.1 takes a more satisfac-
tory form for band-dominated operators which belong to the Wiener algebra,
in which case the uniform boundedness of the inverses of the limit operators is
not required.

Let (aq)aczn be a sequence of functions in [®°(ZY, L(X)) satisfying

> laallee < oo (6)

acZN

A~

Then the series ) ;. a,Vo converges in the norm of L(E*), and

< 3 llaalle- (1)

L(E>) a€ZN

Let W stand for the set of all operators A = Y _,~ agV,, with coefficient
functions a, satisfying (6). Provided with the usual operations and the norm

1Al = Y llaalloc:

a€cZN
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the set W becomes a Banach algebra, the so-called Wiener algebra. By (7), the
Wiener algebra is continuously embedded into L(E>, P) and, hence, into A for
all choices of E*°.

Later on, we will also have to deal with Wiener algebras of operators on
L*(RY). In this setting, we will refer to the Wiener algebra W on the sequence
spaces as the discrete Wiener algebra.

A basic basic property of the Wiener algebra is described in the following
theorem the proof of which can be found in [13].

Theorem 2.2. The Wiener algebra W is inverse closed in L(E®).
This means that, if A € W is invertible in L(E>), then A~! € W.

Corollary 2.1. Let A € W be invertible on one of the spaces £*°. Then A is
invertible on all of these spaces, and the norms of the corresponding inverses
are uniformly bounded.

Indeed, if A is invertible on one of the spaces E*®, then A~! € W by
Theorem 2.2, and from ||A™!| gy < ||A7Y|w we conclude that A™! is the

inverse for A on every of the spaces E*, and that the norm of A~ in L(E*)
is bounded by [|[A7Y|. |

2.3. Fredholmness of operators in the Wiener algebra. The intersection
Wn A8 is called the rich Wiener algebra and will be denoted by W%, It is not
hard to see and will be used in the following proposition that the multiplication
operators forming the diagonals of an operator A in the rich Wiener algebra are
rich operators themselves.

Here is what can be said about limit operators of rich operators in the
Wiener algebra.

Proposition 2.1. Let A € W* and let h C Z" be a sequence tending to infinity.
Then there is a subsequence g of h such that the limit operator A, exists with
respect to all spaces E*°. This limit operator belongs to W, and || Agllw < || A]lw-

Proof. Let A=) _,~ o Vy with Y wczn ||aal| < 0o. Since all diagonals a, are
rich multiplication operators, a Cantor diagonal argument yields the existence
of a subsequence g of h such that the limit operators (a,/), exist with respect
to E* for all a. These limit operators are again operators of multiplication by
certain functions a, 4, and

”aa,g”oo = ”(aaI)g”L(E‘X’) < laalloos

which follows immediately from the definition of limit operators. Thus,

> llaaglle < o0,

a€cZN
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and the operator A, := )" .~ aa,gf/a is correctly defined. This operator be-
longs to the Wiener algebra W, and ||4,4]lw < ||A|lw. Now it is evident that
A, is indeed the limit operator of A with respect to the sequence g in each of
the spaces E*. [ |

The main result of this section is the following theorem which states that,
for rich operators A in the Wiener algebra, the uniform boundedness condition
from Theorem 2.1,

sup{||(4n) "I, A € 0(4)} < o0,
is automatically satisfied if all limit operators of A are invertible.

Theorem 2.3. Let X be a reflexive Banach space. Then the following assertions
are equivalent for every operator A € W8:

(a) There is a space E such that A is P-Fredholm on E.
(b) There is a space E such that all limit operators of A are invertible on E.
(c) All limit operators of A are invertible on I*°(Z", X).

(d) All limit operators of A are invertible on [*°(ZN,X), and the norms of
their inverses are uniformly bounded.

(e) All limit operators of A are invertible on E* for all spaces E*, and the
norms of their inverses are uniformly bounded.

(f) The operator A is P-Fredholm on all spaces E.

Proof. (a) = (b): This implication can be easily checked. See, for example,
the simpler part of the proof of Theorem 2.16 in [19].

(b) = (c¢): Let Aj, be a limit operator of A with respect to the Banach space
E. If A, is invertible on F, then Agl is in the Wiener algebra YV by Proposition
2.1 and Theorem 2.2, and A;' € L(I®°(Z", X)) by Corollary 2.1.

(c) = (d): Let x : RY — [0, 1] be a continuous function which is identically
1 in a certain neighborhood of 0 and which vanishes outside the cube [—1, 1].
Further, given a positive integer k, define the function xx by xx(z) := x(z/k),
and let T}, refer to the operator of multiplication by the restriction of the function
X% onto Z~. We claim that there are constants C' > 0 and k& € N such that

u]|oo < C (||Aul|oo + || Thtt||os) for all u € 1%°(ZY, X). (8)
The claim is evidently equivalent to the existence of constants C, k£ such that
1
e < Ao + || Tht|loo  for all unit vectors u € [®(ZY, X).

Assume, such constants do not exist. Then, for all C' > 0 and £ € N, there
exists a vector uy o € [®(Z", X) with |lugc|lc = 1 such that

1
o > lAukclloo + [[Thtr,clloc



Wiener algebras 445

In particular, we can choose C' = k, i.e. for each £ € N, there is a uy €
1°(Z", X) with ||ug||sc = 1 such that

1
% > [Auklloo + | Thug]loo- (9)

From |Jug||c = 1 and || Tuk |l < 7 we conclude the existence of points z; € Z
such that

and |xg| — o0.

DN | —

uk (k) ||xy >

Let h be the sequence h(m) := z,,. Since A is rich, there is a subsequence g
of h for which the limit operator A, exists. Let vy, := V_g(n)Ug(m). Then, for
arbitrary k, m € N,

1Ay Tivmll < 1(Ag = V_gm) AVt ) Tell lomll + 1V V- gm) AV T |
< 11(Ag = Vogim) AV Tl
+ (V- gmy AV my T = TV g(am) AVg(rm) Vi
+ 1TV g(m) AVgamy i
< 1(Ag = Vegm) AVyim) ) T (10)

+ IV gm) AV ey Tk — TV gm) AV || + 1| Aty |-

Let € > 0 be arbitrary. Then choose and fix £ such that the second term on
the right hand side of estimate (10) becomes less than ¢ for all m, which can be
done due to Proposition 2.2 in [19]. Now choose m > % so large that the first
term in (10) also becomes less than e. Since ||Auy,|| < - by (9), then the third
term in (10) is less than &, too. Thus,

Ve>03k meN : [|ATivm|lo < 3e. (11)

On the other hand, [|v,,(0)|| = [Jugm)(g(m))]| > 3, whence || Txvpm|lso > 5. Thus,

by (11), and since all limit operators of A are invertible by hypothesis,

< Tivmlloo < 1A 1 1 AgTivmlloo < 32 (|45

N —

whence .
14,1 > e for alle > 0.

This is clearly impossible, and our claim (8) is proved. We will now employ (8)
to prove the uniform boundedness of the inverses of the limit operators of A on
1°(ZN, X).

From (8) we conclude that, for all u € [*(Z",X), r € Nand [ € Z",

||‘A/2Tru||oo < C(”AVITTUHOO + ”Tk‘zTru”w)-
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Let h € H be a sequence for which the limit operator A, exists. Since every V]
is an isometry, we get

1T |00 < C(Hv_h(m)AVh(m)Tru”oo + ||V—h(m)Tth(m)TrU”oo)- (12)

Further, since T,u belongs to co(ZY, X) and V_h(m)Tth(m) converges to 0
strongly on ¢y(Z", X), we can pass to the limit as m — oo in (12) to obtain

1T 0o < C|| AT u|oo (13)

for all u € 1*°(Z",X) and r € N. For r — oo, the left hand side of (13) goes
to ||u]|eo. For the right hand side, some more care is in order. Again from
Proposition 2.2 in [19], we conclude that the right hand side of

AT ul) = | T Apull | < |ART, — T, Ap| |ull

tends to zero as 7 — oo (note that Aj is band dominated if A is so). Since
|7 Apu|| — ||Apu|| as 7 — oo, this estimate implies that || Ay T, u|| — ||Anul|| as
r — oo. Thus, passage to the limit r — oo in (13) gives

[ulloo < Cl|Apullo  for all u € I°(ZN, X)

whence ||A, || < C, i.e. the uniform boundedness of the inverses of the limit
operators.

(d) = (e): The proof of this implication is based on the possibility to
associate with every operator in the Wiener algebra a naturally defined adjoint
operator. To make this point clear we will indicate the dependence of the Wiener
algebra from the underlying Banach space X by writing Wx in place of W. For
A =3 cavalV, € Wx, we define its Wiener adjoint A* as ) ,~ V_aa}l,
where @ (z) is the usual Banach dual operator of a,(z), acting on X*. Clearly,
we have A* = ", ~b,V_o where b,(7) = a}(z + «). This shows that A*
belongs to the Wiener algebra Wy, and it is easy to check that the mapping
A — A* is an anti-linear isometry from Wy into Wx. which satisfies (AB)* =
B*A* for all A, B € Wx. In particular, I* = I and, if A is invertible in Wy,
then A* is invertible in Wy« and (A*)~! = (A71)*.

For the proof of the implication (d) = (e), let now A € W% be an operator
with

Coo(A) := sup {”A}IIHL(PO(ZN,X)) t Ap € op(A)} < 0. (14)
The limit operators of A* are just the Wiener adjoints of the limit operators of
A. Thus, the invertibility of all limit operators of A implies the invertibility of all

limit operators of A*. So we conclude from the already established implication
(c) = (d) that

Coo(A%) 1= sup {|[(A}) " gy xey) * An € 0op(A)} < 0.
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Since the limit operators of A* as well as their inverses belong to the Wiener
algebra Wy~ (due to Proposition 2.1 and Theorem 2.2), the operators A} also
act as bounded and invertible operators on ¢y(Z", X*), and

1(A5) ooz xy) < I1(AR) Hlpgeez ™, x))-
This shows that
C()(A*) = sup {“(A;(z)_l”L(Co(ZN,X*)) c Ay € O'op(A)} < 0. (15)

The operator A, thought of as acting on ['(Z", X), can be identified with the
usual Banach dual operator of A* € L(cy(Z", X*)) (this is the place where we
need the reflexivity of X). Hence,

Cl(A) = Sup{”A;l“L(ll(ZN,X)) . Ah € Uop(A)} = C()(A*) < 00.

Consequently, by the Riess-Thorin interpolation theorem (Theorem 1 and Re-
mark 4 in Section 1.18.3 of [27]), we have for every 1 < p < oo and A, € o(A),
||A;1||I£(lp(ZN,X)) < ”Ai:l”ZI;ZZ}”(ZN,X))”A}:1”L(l1(ZN,X)) < Coo(A)p_lcl(A)a
which verifies the uniform boundedness of the norms of the inverses of the limit

operators of A on all spaces IP(Z", X) with 1 < p < co. For E® = ¢(Z", X),
this result follows in the same way as we derived (15).

Finally, the implication (e) = (f) is Theorem 2.1, and the implication
(f) = (a) is evident. -

Observe that the implication (¢) = (d) holds for arbitrary rich operators A
and arbitrary (not necessarily reflexive) Banach spaces X.

Corollary 2.2. Let X be a reflexive Banach space. Then the P-essential spec-
trum of an operator A € W* in the space E* does not depend on E*, and

Opess(A) = Uop(Ap)

where the union is taken over all limit operators A, of A and where the P-
essential spectrum o5 . (A) consists of all A € C for which the operator A —AJ

is not P-Fredholm.

If the space X is finite dimensional, then the P-essential spectrum is the
usual essential spectrum. The proof of the independence of the P-essential
spectrum of the underlying space follows from Theorem 2.2 and from the fact
that limit operators of operators in the Wiener algebra belong to the Wiener
algebra again.
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3. Bi-discretization of operators on L?(RY)
3.1. Bi-discretization. Let f € C5°(RY) be a non-negative function such

that f(z) = f(—z) for all z, f(z) =1if |;] < % foralli=1,..., N and that
f(z) = 0if [z;] > 2 for at least one i. Define a non-negative function ¢ by

z eRY,

¥ (-T) = ZﬁezN f(l' — /6)7

and set p,(7) = ¢(z — a) for a € Z". The family (¢,) forms a partition of
unit on RY in the sense that

Z ©2(r) =1 forallz e RV, (16)

acZN

For v := (a, B) € ZN x ZN, we set ¢, (x, &) =
These operators are compact by Theorem 1.1 (b

Yo @b = Y Oples) Y 920p(pp)u

Pa(@)ps(§) and @y := Op(d,).
), and (16) implies that

= Z Op(pp)’u=F! Z o5 Fu=u
BezN BezN

for all w € L*(RY). Thus, the operator family (®,),cz2~ forms a partition of
unit in the sense that
Y oo, =1 (17)
’YGZQN

where the series converges strongly on L?(RY). Analogously, one checks that
27 ®,®7 = I. Moreover,

lullze = > 1®ullze = D [[®5ull: (18)
7€Z2N 7EZ2N

for every u € L?>(RY) which follows easily from (17):

lullfe = D (@3@yu, u) = Y (Pyu, Byu) = Y [[@yullZa.

7€Z2N 7€Z2N EZQN

One also easily checks that ®, = U,®oU; with the unitary operators U, intro-
duced in the introduction.

We define the bi-discretization Gu of a function v € L?(RY) by

(Gu)y := ®Uju, 7€ /s
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i.e. we consider Gu as a vector-valued function on Z?" with values in L*(R").
These functions form a Hilbert space (?(Z*", L?(R")) with scalar product

(£, 9) = (v 9)r2mn)-

’)’EZ 2N

Proposition 3.1. The operator G : L>(RY) — 12(Z?N| L2(RY)) is an isometry.
Its adjoint is given by

G'f= Y U®f,

,),Ez2N

where the series converges in L?(RY).

Proof. The isometry of G follows from (18) since

IGull = D lleUsullz = Y |1U,@Usullz: = Y [I@ullze = [lullza-

7€z2N ’yEZZN 7€22N

Further, one has

(Gu, fle = > ((Gu)y, f)rz = D> (DUSu, fo)re

7622N ’YEZzN
= > (u, Uy®f)e = (u, G*f)re
,),Ez2N
for every u € L*(RY) and f € I*(Z*N, L*(RY)). i

Thus, G*G = I, and the operator () := GG* is an orthogonal projection on
I12(Z?N, L?(RN)). We denote its range by Im ). Then

G:L*(RY) - ImQ

is a unitary operator, and every operator A € L(L%(RY)) is unitarily equivalent

to the operator
AG = GAG*|IIHQ

We extend Ag to an operator ['(A) acting on all of 1*(Z?N, L?(R")) by setting
T(A) = AgQ+1—Q = GAG" + 1 — Q.

Clearly,
G'T(A)G =G (GAG" + I — GG")G = A.



450 V. S. Rabinovich and S. Roch

3.2. Bi-discretization and Fredholmness. We will now exarpine the rela-
tion between the Fredholmness of an operator on L?(R") and the P-Fredholmness
of its discretization.

Proposition 3.2.

(a) The operators PRQ and Qpn are compact for every k € N.

(b) The projection @ belongs to L(l2,75).

(c) For every A € L(L*(RY)), the operator T'(A) belongs to L(I,P).

(d) Let K € L(I*(Z*N, L*(RY))) be a P-compact operator of the form K =
QRKQ. Then G*KG is compact.

(e) The operator A € L(L*(RY)) is invertible (Fredholm) if and only if the
operator I'(A) € L(I2(Z*N, L?(RY))) is invertible (P-Fredholm,).

Proof. Part (a): It is sufficient to verify the compactness of all operators
S,Q and @QS,. A straightforward calculation yields

$Q= > T,U;Us®;Rs (19)

Bez2N

where we wrote
Rﬂ:ImSﬂ%LQ(RN), (...,O, fg, 0, )i—)f/g

and
T,: *(RY) - ImS,, f,—~(..,0,£,0,..),

for a moment. Since, with certain constants c,g,
(I)OU:Ug(I)S = C%gq)oU 5(13 675U /3(1)7 ,(3(1)* =0

if § is sufficiently large, the sum (19) has only a finite number of non-vanishing
items. Each of these items is compact because ®, is compact. Thus, S, and
RS, = (5,Q)* are compact.

Part (b): It is easy to check that the operator ) belongs to L(lZ,’ﬁ) if
and only if, for every k € N,

12:Q(I —P,)|| =0 and |(I—P,)QP:| —0

as n — oo. These conditions follow immediately from the compactness of B.Q
and QP and from the *-strong convergence of the P, to the identity.

Part (c): As in the previous step, we have to show that, for every k£ € N,

IZL(A) (I = Po)ll = 0 and ||(I = B)T(A) Bl — 0
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as n — 0o. Let us check the first condition. We have
BIT(A)I - P,) = PQGAG*(I — B,) + B,(I — P,) — B.Q(I — P,).

The first and the third term in this sum tend to zero in the norm since P,Q is
compact and since the I — P,, converge strongly to 0. The second term is zero
whenever n > k.

Part (d): If K is P-compact, then |[K(I — B,)|| — 0. Consequently,
|G*K(I — B,)G|| = ||G*KGG*(I — P,)G|| = ||G*KG(I — G*P,G)|| — 0.
Since X
G*P,G = Y e,
a€[—n,n]2NNZ2N
and @} ®, is compact, the operator G* K G is the norm limit of compact opera-
tors and, hence, compact.

Part (e): Since A and Ag are unitarily equivalent, the operator A is
invertible (Fredholm) if and only if Ag is invertible (Fredholm). We claim that
the latter happens if and only if the operator I'(A) is invertible (P-Fredholm).

Let Ag be invertible on Im (), and let B be its inverse. Then, clearly,
@BQ + I — @ is the inverse of I'(A). Conversely, if C' is the inverse of I'(A),
then QCQ is the inverse of Ag, since ['(A)Q = QT'(A)Q = QT'(A).

Let now Ag be Fredholm, and let B be a regularizer of Ag, i.e. the operators
AgB — I and BAg — I are compact. Then the operators

rA)@BR+I1-Q)—1
= (QAcQ+1-Q)QBQ+I-Q) -1
= QAeBQ - Q =Q(A¢B - 1)Q
and (QBQ + I — Q)T'(A) — I are compact and, hence, also P-compact, whence

A

the P-Fredholmness of I'(4). Let, conversely, I'(A) be a P-Fredholm operator.
Thus, there are an operator B € L(I?,P) and P-compact operators K, L such
that
I'NA) B=1I+K and BI'(A)=1+1L.

We multiply both equalities from both sides by (). Since I'(A) commutes with
Q, we get

QI (A)QRBQ =Q+ K' and QBQI(A)Q=Q+ L (20)
with P-compact operators K’ and L' satisfying

K'=QK'Q and L' =QL'Q.

Multiplying (20) by G* from the left band by G from the right hand side we
find
AG*BG =1+ G*K'G and G*BGA=1+G*L'G.

The operators G*K'G and G*L'G are compact by assertion (d). |



452 V. S. Rabinovich and S. Roch

3.3. Bi-discretization and limit operators. Our next goal is to relate the
limit operators of operators A on L?(R") with the limit operators of its dis-
cretization I'(4) on L(I2(Z*N, L?(RY))). The latter ones are defined as in
Section 2.1 (with p, N and X replaced by 2, 2N and L?(RY)). Given v =
(71, 12) € Z*N = ZN x ZN, we define a unitary operator T}, on [>(Z*N, L*(RV))
by (T7u)a = eflmen)y

Lemma 3.1. Let v € Z?N. Then
V.,G=T,GU; and G'V,=U,G'T;
on L*(RY) and on I*(Z*, L*(RY)), respectively.
Proof. Let f € L>(RY) and a € Z" x Z". Then
(VorGUy o = (GUyfary = 0Usy,Unf
ei("m,ou)@o[]ﬂC = e@'(vz,m)(gf)a
= (Tva)a

where we used (3). Hence, V ,GU, = T,G on L*(RY), which implies the
assertions. |

Lemma 3.2. Every sequence h € H possesses a subsequence g such that the

functions _
fm i ZN =T, o 9o (21)

converge uniformly on Z" as m — oo.

Proof. Set r_; := h, and let v : N — Z" be an enumeration of Z". By the
compactness of the unit circle T, there is a subsequence r¢ of r_; such that

eilro(m),vo) _ f(v) €T asm — oo

and .
|i{rotm:0) _ (o) <2 for all m € ZV.

We proceed in this way and get, for every positive integer n, a subsequence r,
of r,_1 such that

ei(Tn(m)77n> — f(f)/n) €T asm — oo

and _
|rn(m)mm) _ ()| < 27" for all m € ZV.

Set g(n) := ry(n). Since g is (with exception of a finite number of entries) a
subsequence of each sequence r,, we have g € H,
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and
|ei<g(m),7n) — f(7)] <2™ forallme ZY andn € N,

We claim that the functions f,, converge uniformly to the function f : Z¥ — T
defined in this way. Given ¢ > 0, choose K € N such that 27% < ¢, and then
choose M € N such that

e9m) ) _ f(y )| <e forallm> M andn < K.
Then |eX9(m):@) — f(a)| < ¢ for all m > M and « € Z". |

Proposition 3.3. Let A € L(L*(RY)) be such that the limit operator A, with
respect to the sequence h € H exists. Then there is a subsequence g of h such
that the limit operator I'(A), of T'(A) exists and that the operators I'(A), and
['(Ap) are unitarily equivalent.

Proof. Let h € H be a sequence such that the limit operator A, exists. By
the preceding lemma, there is a subsequence g of A such that the functions (21)
converge uniformly on Z?" to a certain function f, : Z?Y — T. Let the operator
T, : 2(Z*N, LA(RY)) — *(Z*", L>(RY)) be defined by (T,u)q = fy(c1)uq.
Since all values of f, are unimodular, the operator 7, is unitary. Moreover,
from the uniform convergence of the functions (21) to f, we conclude that

| Tymy — T,ll = sup [e¥9™@ — £ ()] = 0 asm — occ.

anZN

Now we have, by Lemma 3.1,
V_gm)GAG Vy(my = To(m) GUqg (1) AUg(rm) G Ty(rm)

and the right hand side of this equality converges *-strongly to T,GA,G*T.
Hence, the limit operator (GAG*), exists, and

(GAG"), = T,GAG*T?. (22)

Choosing A = I, we see in particular that every sequence h which tends to
infinity possesses a subsequence g such that the limit operator @, of @ = GG~
exists and that this limit operator is equal to T,QT;. Of course, one can choose
the same subsequence g as in (22). Consequently, the limit operator of I'(A4) =
GAG* + I — Q) with respect to g also exists, and

F(A)g = (GAG*)!J + (I - Q)g
= TgGAhG*Tg* —i—Tg(I — Q)T; = TgF(Ah)T;. (23)

This proves the assertion. |
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4. Fredholmness of pseudodifferential operators

We are now going to single out a class of operators on L?(R") which become
band-dominated operators in the rich Wiener algebra after bi-discretization.
This will enable us to derive Fredholm criteria for these operators. Particular
examples of operators which belong to this class are provided by the pseudod-
ifferential operators with symbol in 58,0.

4.1. A Wiener algebra on L*(R"). We introduce a Wiener algebra of opera-
tors on L*(RY) by imposing conditions on the decay of the norms ||®,A®?, _||.
Definition 4.1. Let A be a linear (at this moment not necessarily bounded)
operator on L?(R"). We say that A belongs to W(L*(R")) if

||A||W(L2(RN)) = Z sup ||‘I’aA(I)Z—7”L(L2(RN)) < oo.

’)’EZ2N OLEZ2N

The class W(L?(R")) contains sufficiently many interesting operators. Ac-
tually we will see that all pseudodifferential operators with symbol in 58,0 belong
to W(L?(RY)). To check this, we need some auxiliary results. The following
proposition is proved in [16], Proposition 5.5.2.

Proposition 4.1. Let A = Op(a) € OPSY,, and let (¢,) be a partition of unit
satisfying (16). Then, for all o, B € Z" and ki, ko > 7,

leaAppl 2@y < C{B — a) > |alok,, 2%, (24)
with a constant C > 0 independent of a, B and a (but depending on ki and k).

Proposition 4.2. Let A = Op(a) € OPS),. Then, for all o = (0, o), f =
(ﬁh /62) e ZN x ZN,

[P0 APE || Lz2@®y)) < Clalartom, 2k+2m {01 — Br) oy — Bo) "

whenever 2k > N, m € N is large enough, and with a constant C' > 0 indepen-
dent of a and of o and 8 (but depending on k and m).

Proof. Applying Proposition 4.1 to the operator B := Op(p,,)AOp(pp,) we
get

1PaALsILr2@yy) = N19a10P(0as) AOP(05,) 0.1 L2 @y
< Clay — B1) " |symp|ok, on

for all 2k > N. By [16], Theorem 4.2.1, |symp|ok, 2k < C|a|2k+2m, 26-+2m Whenever
2m > N. Thus,

||®O¢A(DEHL(L2(RN)) S C(al - ﬂl)_2k|a|2kz+2m, 2k+2m - (25)
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Similarly, denoting the Fourier transform on L?(RY) by F', writing FOp(a)F~!
as the pseudodifferential operator with double symbol a(z, y, &) = a(—¢, v),
and estimating the right hand side of the estimate

||(I)CKA¢E||L(L2(RN)) - ||F¢aA¢EF_1||L(L2(RN))

||Op(goa1)(:002FAF_lgp/J’zOp((paQ)||L(L2(RN))
< @ FAF 0,1 2@y

by using Theorem 4.3.2 from [16] and the Calderon-Vaillancourt Theorem, we
obtain

| D0 A®S || 1 r2@yy < Claz — Bo)**|alokt2m, 26+2m- (26)
for every 2k > N and for every m which is sufficiently large (recall that ¢ is

an even function by hypothesis). Multiplying (25) by (26) and taking square
roots, we get the assertion. |

Corollary 4.1. OPS{, € W(L*(R")).

Indeed, for A € OPSY,, and with v := (v, 72) and « := (a1, oz), the
preceding proposition implies

sup || @A, . [lr2myy) < Clalokrom, 2k12m Z () ()7,

2N
NEZ2N Qe NEZ2N

which is finite if £ is chosen large enough. [

Here are some basic properties of W(L?(RY)).

Proposition 4.3.
(a) W(L2(RY)) C L(L*(RY)), and

||A||L(L2(RN)) S ||A||W(L2(RN)) for allA € W(LQ(RN))

(b) When provided with the norm A ||Ally2rn~y) and with the involution
A — A* (= the Hilbert space adjoint of A), the set W(L*(RY)) becomes
a unital involutive Banach algebra.

Proof. Part (a): The boundedness of A € W(L?*(R"Y)) as well as the norm
estimate can be obtained as follows, where we employ (17) and (18) several
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times:

[ Au]® =

IN

IN

<

with ka(@) := sup,ezn | @, AP

> e, Auf?

yeZ2N

7622N

2

2.

0,4 Y ;Psu

56Z2N

2
T ( S 18,49 | ||<I>wu||)

NEZ2N N qeZ2N

Z(memwﬁ

,YGZZN anZN

7€Z2N

> (% kAw—a)n@aun)Q

an2N

_o|l- Since k4 is in I}(ZY),

2
JAul? < ( 3 mm) S gl = Al gyl

’YEZZN

whence assertion (a).

a€Z2N

Part (b): Let A, B € W(L?(RY)). Then, clearly,

||aA||W(L2(IRN)) = |af ||A||W(L2(RN))

and

1A+ Bllwee@wyy < [Alwee@yyy + 1Bllwe@yy-
For the product AB, one finds

[ABlw(z2@~))

Further, since ||®.,Ad;|]

<

<

sup ||<I>aAB<bZ_7||

~EL2N a€Z2N

Z sup

D A Doy B,

yezan €L || gezan

. > ka®)ks(y—90)
YEZ2N 972N

Al @y IBllwe @y

||®,A*®@3||, the operators A and A* belong to the

Wiener algebra W(L?*(R")) only simultaneously, and one has

||A||W(L2(RN)) = ||A*||W(L2(RN))-
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That the identity operator belongs to W(L?*(RY)) follows from Corollary 4.1.
Finally, if (A,) is a Cauchy sequence in W(L?*(R")) then, by part (a), it is
also a Cauchy sequence in L(L?(R")), hence convergent. Let A € L(L?*(RY))
denote the limit of this sequence. Given £ > 0, choose M such that ||A, —
Am|lwre@yyy < € for all m, n > M. Letting m go to infinity in this inequality,
we get the convergence of the A,, to A with respect to the norm in the Wiener
algebra. |

Next we consider bi-discretizations of operators in the Wiener algebra. For
notational convenience, we denote the discrete Wiener algebra W of operators
on [?(Z*N, L*(R")) introduced in Section 2.2 by W(I*>(Z?")) in what follows.

Proposition 4.4.
(a) Let A € W(L*(RY)). Then the operators GAG* and I'(A) belong to the
Wiener algebra W(I*(Z*Y)).
(b) Let B € W(I*(Z*N)). Then the operator G*BG belongs to the Wiener
algebra W(L?*(RM)).

Proof. Part (a): Let u € I2(Z*N, L*(RY)) and o € Z?N. Then
(GAG*w)a = (GA Y UyPjuy)a = RUZA Y U,Ppu,

’)’EZ2N ’)’EZZN
= Y U AU Pitia—ry = Y oUsAUsey®j(Vyu)a,
YELZN yEZ2N

which shows that GAG* € W(I?(Z*")). When applied to the operator A = I
(which is in W(L?*(RY)) by Proposition 4.3), this inclusion implies in particular
that Q = GG* € W(I*(Z*")). Clearly, the discrete Wiener algebra W(I*(Z*"))
also contains the identity operator, whence the first assertion.

Part (b): Let B € W(I*(Z*")) be given by
B= Y bsVs with |Blwegny= Y lbsll <oo
BeL2N Bez2N

with multiplication operators bg. Further, let o, v € Z*N and v € L*(RY).
Then

©.G"BGP;,_u = Y ®UsL5(BGP;,_u)s
JEZQN
= Z @aUgch Z bﬂ(é)(G@Z_WU)(s_g
66Z2N ﬂeZ2N
= D PaUs®) D bs(O)PoU; 5Piupna u
6€Z2N BEZ2N

= Y P Y Ushs(0)Us_5®s_ P} _u

66Z2N ,BEZ2N
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whence

12aG"BG®, | < Y 12a®5ll D llbsll |®s-525 |

§€Z2N BEZ2N
= > lbsll Y 193l 195 5@, I
ﬂEZZN 66Z2N

We write all indices as o = (a1, ap) € ZY x Z" and use Proposition 4.2 to get

> 12 P51 |Ps—p @,

0€zZ2N

<C Z (a1 —61) ag — 62) (i + 61— — B1) 7"

(SEZZN

X{y2 4 0 — g — /32>_k
=C Z (1 =6) 46 —an = pi)~"

§eZN

X Y {on =8y F(ra+ 08—y — Bo) ",

So€ZN

If k is large enough, then the sequence z — (z)~* belongs to I'(Z"). Since
IY(ZN) is closed under convolution, there is a sequence f € I}(Z") such that

12aG"BG®; | < C Y lbsllf(m = 1) f(72 = Ba)-

ﬁEZZN

The sequence g : (z1, #2) — f(x1)f(x2) belongs to I'(Z?"). Hence, by the
convolution theorem,

|2aG*BGP;, | <C Y bsll gy — B) = h(7)

ﬂEZzN

with a certain function h € ['(Z*") independent of o and +. This estimate
implies the assertion (b). |

Proposition 4.5. The algebra W(L*(RY)) is inverse closed in L(L*(RY)), i.e.
if A€ W(L?(RY)) is invertible in L(L?*(RY)), then A~' € W(L*(RV)).
Proof. Let A € W(L?(RY)) be invertible on L*(RY). Then the operator
['(A) belongs to W(I?(Z?")) by Proposition 4.4 (a), and it is invertible in
L(I2(Z*N, L2(RY))) by Proposition 3.2. The well known inverse closedness
of the discrete Wiener algebra ([13], Theorem 2.2) implies that T['(4)™! €
W(I%(Z2?YN)). Since

G'T(A)'GA = G*T(A)'GAG*G = G*T(A)"'T(4)QG = I,
one has G*T'(4)7!G = A™! € W(L*(RY)) by Proposition 4.4 (b). n
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4.2. Fredholmness of operators in W(L?*(R")). Operators on L?(R") which
possess a rich operator spectrum are defined in complete analogy to the discrete
setting. More precisely: We let W*(L?(R")) stand for the set of all operators A
in the Wiener algebra W(L?(RY)) with the following property: every sequence
h € H possesses a subsequence g such that the limit operator A, with respect
to this sequence exists. It can be easily checked that W%(L?(R")) is a closed
and unital subalgebra of W(L?(RY)).

Proposition 4.6. Let A € W¥(L?(RY)). Then GAG* and T'(A) belong to the
algebra WA (I2(Z*)), and

oop(GAG™) = {TgGAhG*Tg* t Ay € o,p(A)},
op(I'(4)) = {TgF(Ah)T; L Ap € ogp(A) }-

Proof. Let k£ € H. Since A has a rich operator spectrum, there is a subsequence
h of k such that A, exists. By the Proposition 3.3, there is a subsequence g
of h such that the limit operators (GAG*), and I'(A4), exist. Hence, GAG*
and I'(A) are rich, too. The description of the corresponding operator spectra
follows immediately from (22) and (23). |

Theorem 4.1. Let A € W3(L?(RY)). Then A is a Fredholm operator if and
only if all limit operators of A are invertible, and the essential spectrum of A is
the union of all spectra of its limit operators.

Proof. It is easy to see that, if A is a Fredholm operator, then all limit oper-
ators of A are invertible. Let, conversely, all limit operators of A be invertible.
Then, by Propositions 4.6 and 3.2 (e), all limit operators of I'(A) are invertible.
Consequently, I'(A) is a P-Fredholm operator by Theorem 2.3. By Proposition
3.2 (e) again, A is a Fredholm operator. |

Let A%(L?(R™)) denote the closure in L(L?(R")) of the rich Wiener algebra
W3 (L?(RY)). Further we agree upon calling a family of operators uniformly
invertible if each member of the family is invertible and if the norms of their
inverses are uniformly bounded.

Theorem 4.2. An operator A € A%(L*(RY)) is Fredholm on L*(RY) if and
only if all limit operators of A are uniformly invertible on L?(RY).

Proof. Let (A,) be a sequence of operators in W*(L?(R")) which converges to
A in the norm. By B we denote the smallest C*-subalgebra of L(L?(RY)) which
contains all operators A, and the ideal K(L?(RY)) of the compact operators,
and we write Hp for the set of all sequences h in H such that the limit operator
By, exists for every operator B € B. Then the mappings

Wy A/K(L*(RY)) — L(L*(RY)), A+ K(L*(RY)) — A,
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are correctly defined C*-algebra homomorphisms for h € Hg. Employing a
Cantor diagonal argument is is also not hard to verify that

oop(B) = {Whr(B) : h € Hg} for every B € B.

Let now the limit operators of A be uniformly invertible. Then, by Neumann
series, all limit operators of all operators A,, are uniformly invertible if only n is
large enough. By Theorem 4.1, this implies that all operators A, with n large
enough are Fredholm or, equivalently, their cosets modulo the compact opera-
tors are invertible. Moreover, these cosets are even uniformly invertible which
follows easily from the second assertion of Theorem 4.1 (or, likewise, from the
symbol calculus developed in [18]). Since the cosets of A4, converge to the coset
of A, and since these cosets are uniformly invertible, we obtain the invertibility
of the coset of A modulo the compact operators, i.e. the Fredholmness of A.

|

Corollary 4.2. Let A € AS(L*(R")). Then
[Alless = |4 + K (L*(R™))]| = sup{[| Apl| : An € 05p(A)}-

There is also a local version of the latter result. Given a radius R > 0,
a direction n € S¥~! with SN~! referring to the unit sphere in RY, and a
neighborhood U C SV~ of 5, define

Wgry = {2 € RV : |2| > Rand z/|2| € U}. (27)

We call Wgy a neighborhood at infinity of n. If h is a sequence which tends to
infinity, then we say that h tends into the direction of n € SN~ if, for every
neighborhood at infinity Wgy of n, there is an my such that

h(m) € Wgy for all m > my.

Finally, we call an operator A € L(L?(RY)) locally invertible at the infinitely
distant point n € SN ~1 if there exist a neighborhood at infinity W of 1 as well
as operators R, L € L(L?(R")) such that

where yw refers to the characteristic function of the set W, i.e., xw takes the
values 1 on W and 0 outside W. We denote by o,,,(A) the set of all limit
operators of A € B(L?(RY)) which are defined by sequences h = (hy, hy) :
N — ZY x Z¥ for which h; tends to infinity into the direction of 7.

Theorem 4.3. Let A € W(L?(RY)). Then A is locally invertible at the in-
finitely distant point n € SN~ if and only if all limit operators Ay € Oppyn(A)
are 1nvertible.
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The proof is similar to the proof of Theorem 4.1. An analogous result (with
the invertibility of all limit operators in the local operator spectrum replaced
by their uniform invertibility) holds for operators in A%(L?(RV)).

Finally, we say that A € C belongs to the local spectrum o,(A) of the
operator A at n if A — Al is not locally invertible at the infinitely distant point
n € SN=1. The following is a corollary of Theorem 4.3.

Theorem 4.4. Let A € W¥(L*(RY)). Then

on(A)=|J o)

Ap€dop,n(A)

4.3. Fredholmness of pseudodifferential operators in OPS],. We have
seen in Corollary 4.1, that every pseudodifferential operator with symbol in 58,0
belongs to the Wiener algebra. Now we will show, moreover, that these pseu-
dodifferential operators possess a rich operator spectrum. Thus, they become
subject to Theorem 4.1.

Theorem 4.5. OPSJ, C W¥(L*(RY)).

Proof. Let a € S), and A := Op(a), and let h € H. For k = (ky, k) €
ZN x 7", we consider the functions

a(k) : RN X RN — R, (.7)1, 332) — a($1 + kl, To + kz)

Clearly, Uy, AUn(m) = Op(a™™)). The sequence (™)), .y C C®(RN x
RY) is bounded with respect to the supremum norm. Hence, by the Arzela-
Ascoli theorem, there exists a subsequence g of h such that the functions a(9(™)
converge in the topology of C®(RY x RY) to a function a,. It is easy to see
that the limit function a, belongs to S7, and that

\ag\k,l S |a|k,l for all k, leN

We set A, := Op(a,) and claim that A, is the limit operator of A with respect
to the sequence g, i.e., we claim that

s-limy, 00Uy AUg(m) = Ay and  s-limy, 00Uy A" Ug(my = Ay (28)

For the first assertion of (28), choose a function ¢ € C§°(RY) which is equal to
1 in a neighborhood of the origin. Further, for R > 0, set pg(z) := ¢(z/R), and
consider the cut-off functions g (z, &) := pr(z)pr(£) on RY x RY. Evidently,
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The operator Op(a)Op(¢r) is a pseudodifferential operator with symbol cg €
50> given by the oscillatory integral

cn(w, ) =os2m) ™ [ [ alo, ¢+ munte +y, 9@ 0ayay (30)
R
(see, e.g. [16], Theorem 4.2.1). By means of the Lagrange formula, we write

Yr(z +y, §) = Yr(z, &) + qr(=, y, §)

where gg(z, y, £) := Y1, L r(@, y, £)y; and

1
lir(z, y, §) = /0 (0z;¥r) (@ + Oy, &) db.

Then we obtain (cf. [16], Corollary 2.2.2)

s (2m) // z, €+ n)e N dy dn = p(z, £),
RN

such that (30) can be written as

cr(z, §) = alz, )Yr(z, §) + tr(z, £)

where

N .
i, 6 = @m) ¥} [ [ e v 00, )ata € +nje @y

Simple manipulations yield the estimates

020 ta(w + 91 (m), €+ 92(m))| < Cap lalokysjoizrars (1+ R) !

for all 2k; > N and 2k, > N, and with a constant C,, g independent of a. By
the Calderon-Vaillancourt Theorem,

Op(t§™) < Clalny v (1+ R) ™ (31)
whenever N; and N, are sufficiently large. Here we used the convention
t7") (2, €) i=talz + g1(m), &+ ga(m)).

Let now u € L2(RY) and ¢ > 0. Due to (29) and (31), we can choose Ry > 0
such that, for all R > Ry,

lu = Op(ur)ull < grr - and — sup [Op(E™)] <

3||U||
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Thus, for all m € N,

. €
| (Ugmy AUg(my — Ag)ull < [(Ugny AUg(my — Ag) Op(Yr)ul| + 3
2¢e
< 1Op((@™) — aprll + . (32)

Since the functions (™) — g, tend to zero in the topology of C®(RY x RY),
the sequence of the functions (al9(™) — q,)1p tends uniformly to zero together
with their derivatives. Hence, by the Calderon-Vaillancourt Theorem, there
exist an mg such that, for all m > mq

I
Op((a9™™) — g )opg)|| < =——.

Estimates (32) and (33) imply that, for arbitrary v € L*(R") and ¢ > 0, there
exists an mg such that

| (Ugm) AUgem) — Ag)ull < e for all m > my.

This settles the first assertion of (28). For the second one, notice that the
symbol of the adjoint operator is given by the oscillatory integral

symy. (z, §) = os (2m) ™" / / a(z +y, & +n)e "M dy dn
RN

(Theorem 4.4.2 in [16]). Since a¥‘™) — q, in the topology of C®°(RY x RY),
this implies that

sym . (z + g1(m), € + ga(m))
— os(2m) Y / / a(z + 1(m) + 1, € + go(m) +n)e @M dy dy
RN

(33)

— 0S8 (27r)_N // &g(x +y, E+ n)e—i(y,n)dy dn.
]RN

Hence, the symbols sym(g( ™) converge to Sym 4 in the topology of C®° (RN xRY)
as m — 0o. Repeating the above arguments, we obtain the second assertion of
claim (28). |

Due to Theorem 4.5, the following results are straightforward consequences
of Theorems 4.2 and 4.4 and of Corollary 4.2.

Theorem 4.6. An operator A € OPSY is Fredholm on L*(RY) if and only if
all limit operators of A are invertible on L?>(RY). Thus,

Tess(A) = 0(A+ K(L*(RY))) = Unpea,(4)(An)
and, moreover,

[Alless = A + K(L*®RY))[| = inf = [J[A—K|= sup [Au]l. (34)

KeK(L*(RN)) ApEaop(A)
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Theorem 4.7. An operator A € OPS&O is locally invertible at the infinitely
distant point n € SN~ if and only if all limit operators of A in o,p,(A) are
wnvertible. In particular,

077 (A) = UAheo'op,n (A)U(Ah)

Remark. One also considers pseudodifferential operators with double symbols
a € S§o- The class S, consists of all functions a € C®(RY x RV x R") such
that

st = SUp Z \5?(9553&(33; Yy, §)|(§)™™" < o0

RNV xRN xRN
loe| <r,|B|<s, |7|<t

la

for each choice of r, s, ¢ € N. For each a € S} , the pseudodifferential operator
Opq(a) with double symbol « is defined by

(Opg(a)u)(z) = /RN /RN a(z, vy, §)u(y)ei(w_y’§>dy d¢, ue SRY).

The class of all operators Opq(a) with a € Sf , is denoted by OPSf} ;. This
class seems to be much larger than the class O PS{, but actually, both classes
coincide (Theorem 4.3.2 in [16]). Thus, the results of the previous theorems
apply to pseudodifferential operators with double symbol a € 5'8,0,0, and what
they yield is the following. For k = (ki, ko) € ZN x ZV, we set

a(k)(xa Y, 6) = G(LL'—{— kb y+ kla §+ k?)

Then U;:(m)AUh(m) = Op(at"t™)) and the sequence h has a subsequence g

such that the functions a9™) converge to a function a, in the topology of
C®(RY x RV x RY) as m — oco. The limit function a, belongs to Sg,, and
the limit operator of A with respect to the sequence g exists and is equal to
Op(ag). So, these operators possess a rich operator spectrum, and Theorems
4.6 and 4.7 remain valid without changes.

5. Applications

5.1. Operators with slowly oscillating symbols A symbol a € 58!0 is called
slowly oscillating with respect to x if

lim sup |0y;a(z, §)|=0 forallj=1,..., N,

T—>00 £ERN
and a is slowly oscillating with respect to £ if

lim sup |0 a(z, §)]=0 forallj=1,..., N.
-0 J

TERN
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Proposition 5.1. Let the function a € 58’0 be slowly oscillating with respect
to x. Then every limit operator of A := Op(a), which is defined with respect
to a sequence h = (hy, hy) : N — ZN x ZN with hy(m) — oo as m — oo, is
a pseudodifferential operator Op(ay) with a symbol independent of x. In par-
ticular, Op(ay) is shift invariant and, thus, a convolution operator. Similarly,
if a is slowly oscillating with respect to &, and if he(m) — oo as m — oo,
then the limit operator Op(ay) has a symbol independent of & and is, thus, a
multiplication operator.

Proof. We will prove the first assertion only. Let a be slowly oscillating with
respect to z. As we have seen in the proof of Theorem 4.5, the symbol a; of
the limit operator is the C®°(RY x R™)-limit of the functions

aMm) RN xRN 5 R, (z, &) = a(z + hi(m), &+ ha(m)).
Since, for fixed 2/, 2" € RV,

‘a(h(m))(x/’ £) — a(h(m))(gﬁﬂj )|

N 1
<3l - / 1By, (@ (1 = t)a’ + ta”, )] dt — 0
i=1 0

as m — oo, the function a, does not depend on z. |

The most simple (and, perhaps, most important) pseudodifferential oper-
ators with slowly oscillating symbols are those whose symbols are slowly os-
cillating with respect to both variables simultaneously. We denote this class
of symbols by 5’08,0 and the corresponding set of pseudodifferential operators
by OPSOS’O. For operators in this class, all limit operators are operators of
convolution or operators of multiplication (indeed, if the sequence h = (hy, hs)
tends to infinity, then at least one of the sequences h; and hy goes to infinity,
t00). For both kinds of limit operators, their invertibility can be easily checked.

Theorem 5.1. Let a € SOg,. Then all limit operators of Op(a) are invertible
if and only if

lim inf |a(z, £)] > 0. 35

R—o0 |$|+\€\ZR| (=, &)l (35)
Proof. Let condition (35) be satisfied, and let h = (hq, hy) be a sequence which
defines a limit operator of Op(a). Further assume for definiteness that the
sequence h; tends to infinity (the case when hy — oo can be treated similarly).
Then, as we have seen in Proposition 5.1, the limit operator Op(a), is shift
invariant, i.e. there is a function ay in 58,0 which is independent of = such that
Op(a), = Op(ap). Moreover, the functions

a®m™) - (2 &) = a(z + hi(m), &€ + ha(m))
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converge to the function (z, &) — a(€) in the topology of C®(RY x RY) as
m — oo. Thus, for each L > 0,

lim  sup |a(z + hy(m), £+ ha(m)) — an(£)] = 0. (36)
OOzl gl <L
From (35) and (36) we conclude that inf [as(€)| > 0, i.e. the limit operator
Op(a), is invertible.
To prove the reverse statement, suppose that all limit operators of Op(a)
are invertible, but that condition (35) is not fulfilled. Then there exists a
sequence h = (hy, hy) : N — Z" x Z" which tends to infinity and for which
a(hi(m), ho(m)) — 0. Without loss we can assume that the limit operator of
Op(a) with respect to h exists (otherwise we choose a suitable subsequence of h).
We further assume for definiteness that h; — oo (the case when hy — oo follows
similarly). Then, as before, Op(a), = Op(ap) with a function a;, independent of
r and such that the functions a(®™)) converge to a, in C®° (RN xRY). Tt follows
from a(hy(m), ha(m)) — 0 that a;(0) = 0 which contradicts the invertibility of
Op(ah). |

Corollary 5.1. An operator Op(a) € OPSOg, is Fredholm if and only if
condition (35) holds. Moreover,
10p(@)]less = lim ~ sup |a(z, £)].
T Jzl+lel>R

The proof of the first assertion follows from the previous result and from
Theorem 4.6. For the second assertion, recall Corollary 4.2. |

These results admit generalizations to pseudodifferential operators with double
symbols. For, we call the double symbol a € 58700 slowly oscillating and write
a € 508,0,0 if, for arbitrary compact sets K C RV and for each j=1,..., N,

lim  sup |0y a(z, z+y, &) =0
F0 (y, £)eK xRN
and
lim  sup  [9a(z, y, &)= 0.
700 (z,y) RN xRV
Proposition 5.2.

(a) Let a € SO, and let h = (hy, hy) be a sequence with hy — oo for
which the limit operator Opgy(a)y exists. Then this limit operator is of the
form Op(ay,) where ay, is the limit in the topology of C*(RY x RN) of the
functions

(z, &) = a(x + hi(m), x 4+ hi(m), &+ ha(m))

as m — 0o. The function ay is independent of x in this case.
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(b) Let a € SO, and let h = (hy, hy) be a sequence with hy — oo for
which the limit operator Opg(a)y exists. Then this limit operator is of the
form Op(ay,) where ay, is the limit in the topology of C®(RY x RY) of the
functions

(z, &) = a(x + hi(m), x4+ hi(m), € + ha(m))

as m — 0o. The function ay is independent of & in this case.

Proof. We will check assertion (b) for example. The symbol a; of the limit
operator of Opg(a) with respect to h is defined as the limit as m — oo of the
oscillatory integral

os (2m) N // a(z + hi(m), T + hi(m) +y, &€+ ha(m) + n)e “¥ " dy dn.
RN

Thus,
ap(z, ) = os (QW)N// an(z, 4+ y)e WM dy dn
RN
by Corollary 2.2.2 in [16]. |

As in Theorem 5.1 and its Corollary 5.1, one can also prove that, if a €
508,0,0, then all limit operators of Opy(a) are invertible if and only if

lim sup |a(z, z, &) > 0. (37)
R0 || 4ig)>R
Hence, condition (37) is necessary and sufficient for Fredholmness of Opy(a),
and

10p4(@)||ess = lim  inf |a(z, =, €)|.

R—o0 [g|+[{|>R

5.2. Operators with almost periodic symbols. A function a in Cy(RY)
(= the C*-algebra of the bounded continuous functions on RY) is called almost
periodic if the set {V,a : r € RV} of all shifts of a is relatively compact in
Cy(RY), i.e. if every sequence in this set has a norm convergent subsequence.
Here, V,a stands for the function z +— a(z — ). The class of all almost periodic
functions will be denoted by AP(RY). Note that AP(RY) is a C*-algebra with
respect to the supremum norm. Nice references to this class are still [14, 15].

We set AP®(RY) := AP(RY) N C3°(RY) and denote by 2, the closure in
S of the class of all functions of the form

a(z, §) = Z ¢ ()b;(€) (38)

Jj=1

where J € N, ¢; € AP>(R") and b; € SOf ;. Pseudodifferential operators with
symbols in this class possess limit operators with respect to the shifts V;, where
the convergence is in the operator norm.



468 V. S. Rabinovich and S. Roch

Proposition 5.3. Let A € OP,. Then each sequence h : N — Z~ which
tends to infinity has a subsequence g such that there exists an operator A, €
OPQ[&O with

Jim [[Vegm) AVg(m) — Ag[| = 0.

Proof. To start with, let A = Op(a) where a € g, is a symbol of the form
(38), and let h € H. Since the functions ¢ are almost periodic (and by a simple

Cantor diagonal argument), there are a subsequence g of h as well as functions
cjq € AP(RY) such that

lim sup |¢;(z + g(m)) — cjy(z)| =0 (39)

m— o0 z€RN

for 1 < 5 < J. Applying the inequality

=

up Z 10%(z)] < C( sup |a(:v)|( sup |a(z)| + sup Z |aaa($)|>)

S
RN |Oz|:1 TERN TERN TeRN |C\£|:2
(see, for instance, [22], p. 22), one obtains that the sequence of the shifted

functions Vy,yc; converges to cj, in the topology of Cy° (RY), which implies
that ¢j, € AP>®(RY). Now set

A, = 0p(a,) with ay(z, §) == chg(x)bj(ﬁ).

Then it follows from (39) that indeed

i [V gm) AVim) — Al = 0.

This settles the assertion for operators A = Op(a) where a is of the form
(38). The general case follows straightforwardly by a Cantor diagonalization
procedure and standard continuity arguments. |

One can also easily check that A, € OPQ[&O again and that A, is a limit
operator of A defined by the sequence h : m — (g(m), 0) € Z" x Z" and with
respect to the shift operators Uym) (cf. Section 3.3).

Theorem 5.2. Let A € OPQ[&O. Then the following assertions are equivalent:
(a) A is a Fredholm operator.
(b) All limit operators of A are invertible.
(c) At least one limit operator of A is invertible.
(d) A is an invertible operator.
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Proof. If A is Fredholm, then all limit operators of A are invertible. Let,
conversely, A, be an invertible limit operator of A. By Proposition 5.3, there
is a subsequence g of h such that

Wlbl_lgo ||V,g(m)AV:,,(m) - Ag“ = 0.

Then A, = A, and, since the invertible operators form an open subset of L(E),
the operators V_g(m) AVy(m) must be invertible for all sufficiently large m. Hence,
A is invertible.

Similarly, if A is compact, then all limit operators of A are zero. Con-
versely, if 0 is a limit operator of A, then (again by Proposition 5.3) there is a
subsequence g of h such that ||V_gm)AVyum|| — 0. Since the operators Vj, are
isometries, A must be the zero operator. [ |

Corollary 5.2. The smallest C*-subalgebra of L(L*(R")) which contains O P2(g ,
does not contain nonzero compact operators.

We are now going to sketch briefly how these results specialize to symbols
in a subclass of 52(8,0, in which case the Fredholmness of the operator together
with its uniform ellipticity and a certain index condition yields the invertibility
of the operator.

We say that the function a € 5'8,0 belongs to S?,o if

lali =) sup  |080%a(z, £)|(&) < o

N N
al+|8|<t (B OERT XR

for all non-negative integers /. The semi-norms |.|; define the topology of S,
Further, we consider the class 27 ; which is the closure in S of the set of all
symbols of form (38) where the ¢; satisfy the estimates

10%¢; ()] < O 1(€)7

for all multi-indices a. Finally, an operator Op(a) € OPQ[?’O is called uniformly
elliptic if
B el 100 1> 0. )
It is easy to see that an operator Op(a) € OPQ[?’O is uniformly elliptic if and
only if all limit operators of A defined by sequences (g1, g2) : N — ZYN x Z" with
g — oo are invertible. Thus, the uniform ellipticity is a necessary condition
for the invertibility of Op(a). An analogous result holds for almost periodic
operators with matrix valued symbols, where one has to replace the value a(z, &)
in (40) by det a(z, &).
Let now A € OPQ[%O be a uniformly elliptic operator with M x M-matrix-
valued coefficients. Then the difference between its Fredholmness and its in-
vertibility is measured by its almost periodic index k(A). This index has been
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introduced in [5] (see also [8]) by means of Breuer’s Fredholm theory for 11,
factors. In distinction to the usual (Fredholm) index, x(A) can be an arbitrary
real number. We will not go into the details and restrict ourselves to rephrasing
a few basic properties:

o If A, B € OP2), are uniformly elliptic operators, then
k(AB) = k(A)k(B).

e The almost periodic index is stable in the following sense. Given a uni-
formly elliptic operator Op(a) € OPEZ[(l)’O, there exists an € > 0 such that
x(Op(b)) = k(Op(a)) for all operators Op(b) € OPA} ; with

}%Im sup ||a(:c, 5) - b(l‘, §)||L((CM) <eE.
0 3, £€RN, ¢[>R

o If A€ OP} is invertible, then x(A) = 0.

o Let A € OP2} be uniformly elliptic and x(A) = 0. Then A is invertible
if and only if

v(A) = int [l 4e] > 0.

o Let A € OPQl?’O be a scalar uniformly elliptic operator, and let N > 1.
Then k(A) = 0. Thus, for such operators, the condition v(A) > 0 is
necessary and sufficient for invertibility of A.

The condition v(A) > 0 is satisfied if and only if the operator A has a trivial
kernel and a closed range, which holds, for example, if A is Fredholm. Hence, if
A € OP2] ; is a scalar uniformly elliptic and Fredholm operator with x(A) = 0,
then A is invertible.

5.3. Operators with semi-almost periodic symbols. The class B9, of the
semi-almost periodic symbols with respect to x is defined as the closure in the
topology of Sf,o of the set of all functions of the form

where J € N, ¢; € AP®(RY) and b; € SO}, := SOF, N S7y.

Theorem 5.3. Let N > 1, and let a € BY ;. Then the operator A := Op(a) is
a Fredholm operator if and only if the following conditions are satisfied:

(a) A is uniformly elliptic, that is

li inf > 0.
Jim %&H%}Jrvl,'be\a(w, 3]
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(b) For each limit operator A, of A which is defined by a sequence g =
(91, 92) : N = ZN x ZN with go — oo, one has v(A,) > 0.

Proof. Let conditions (a) and (b) be satisfied. In the same way as in the proof
of Theorem 5.1, we obtain that condition (a) implies the invertibility of all limit
operators of A which correspond to sequences g = (g1, ¢g2) with go — oo. Let
now g = (g1, g2) be a sequence with g; — oo for which the limit operator A,
exists. Then, by the definition of the class %(1)70, this limit operator belongs to
OP2] , and, due to condition (a), the operator A, is uniformly elliptic with
k(Agy) = 0 (since A is an operator with scalar-valued symbol). It follows from
the last remark in the preceding subsection that A, is invertible if the lower norm
v(A,) is positive. Thus, conditions (a) and (b) provide us with the invertibility
of all limit operators of A. By Theorem 4.6, A is a Fredholm operator.

Let, conversely, A be a Fredholm operator. Then, by Theorem 4.6 again, all
limit operators of A are invertible. The invertibility of all limit operators with
respect to sequences g = (g1, g2) with go — oo yields the uniform ellipticity
of A, that is condition (a), whereas the invertibility of all limit operators cor-

responding to sequences g = (g1, g2) with g — 0o evidently implies condition
(b). |

5.4. Pseudodifferential operators of nonzero order. Let a € Sf. Then
the pseudodifferential operator A := Op(a) acts as a linear bounded operator
from H*™™(RY) into H*(RY) for every s € R (which is a simple consequence of
the Calderon-Vaillancourt theorem). We are going to study the Fredholm prop-
erties of that operator by reducing it in a standard way to a pseudodifferential
operator acting on HY(RY) = L?(R™). For, let (D)" refer to the pseudodif-
ferential operator with symbol (z, &) — (1 + |£|2)"/2. The operator (D)" is an
isometry from H**"(R"Y) onto H*(R") for each real s. Thus,

A: H™RY) - H*(RY)
is a Fredholm operator if and only if
B := (DY*A(D)™* ™ : L*(RY) — L*(R")

is a Fredholm operator. The operator B is a pseudodifferential operator in the
class to OPS,,. Hence, Theorem 4.6 implies the following.

Theorem 5.4. Let a € S%y. Then the operator A = Op(a) : H*T™(RY) —
Hé(RYN) is Fredholm operator if and only if all limit operators of the operator
B := (DYSA(D)=5™ : [2(RY) — L*(R") are invertible. In particular,

Oess (A) = UBhEU,,p(B)O-(Bh) :
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These conditions can be made more explicit for symbols which are slowly os-
cillating in the following sense. We say that the function a is in the class SO
with m € N if the function (z, £) — a(z, §)(§)"™ belongs to SOg,. Analo-
gously, the double symbol a is said to be in SO , if the function (z, y, §) —
a(z, y, £)(€)™™ belongs to SOF .

Proposition 5.4.
(a) Let A := Op(a) € OPSOq4 and B := Op(b) € OPSOy;. Then AB €
OPSOE’B“LW, and the symbol of AB is of the form sym 5z = ab+ t with
t satisfying
lim  t(z, £)(§)"™ ™ =0. (41)

(z,8) =00

(b) Let A:= Opq(a) € OPSOg, . Then A € OPSfy, and the formal symbol
of that operator is given by sym 4(z, &) := a(x, x, &) + t(x, ) where t is
such that

lim #(z, £){§) ™ =

(z,8) =00

Proof. Part (a): By Theorem 4.2.1 in [16], the symbol of the operator AB
belongs to the class SOB’B“LW, and it is given by

symg(x, £) = 0s (2m)~ //RN yE+n)b(z+y, e y’")dydn

By Lagrange’s formula, we have

a(z, £+ n) =alz —i—an/ Og; a(x, &+ 6n) db

whence via Corollary 2.2.2 in [16],

SymAB(xa 5) = a’(xa §)b(ac, f) + t(.’E, 6)7

with .
1
t(z, &) = (z, & 0)
)
and
Lj(l', 57 0)

= 0s (27r)N/ O¢;a(x, & + 6n)(—i0y;)b(z +y, £)e M dy dn
RN

= 0s (ZW)_N/AN<H>—2k2<Dy>2kz

x { () ~21(Dy) 1 8¢, a(x, € + 01) (i, )bl +y, €))} e Edy dy
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for all ki, ke with 2k; > N and 2k; > N + |m;|. Taking into account the
elementary inequality

(E+m)t <272l E) forl €R,

we obtain
Lj(z, &, 0) < CE™ ™ Kj(x, &, 0)

where
Kj(=, &, 0)

= os(2m)~ // £+ 6n)""™(n)” 2k2+|ma|

x |[(Dy)22 (y) 2D, M1 8¢, alw, € + 0n)(—idy, )b(x + y, E)(E) ™| dy d.

The latter integral converges uniformly with respect to z, £ € RY and 0 € [0, 1].
Hence, we can pass to the limit as (z, £) — oo under this integral, which yields

lim sup Kj(z, &, 0)=0.
(z,€)—=0 g0, 1]

This implies (41). Assertion (b) can be checked in the same way. |
A consequence of this proposition is that, if A = Op(a) € OPSOO 0, then

B := (D)’ A(D)~**™ = Op(am) + Op(t)

where

am(z, €) == a(z, £)(€) ™ and lim t(z, £) =0.

(z,€)—00

Thus, all limit operators B, of B depend on the main part a,, of the symbol
of B only. Moreover, these limit operators are pseudodifferential operators
B, = Op(by) which are invariant with respect to shifts (i.e. their symbols b,
depend on ¢ only), or they are operators of multiplication (i.e. their symbols
are only dependent on z). So we arrive at the following theorem.

Theorem 5.5.

(a) Consider the operator A = Op(a) € OPSOy, as acting from H*+™(RY)
into H*(RN). Then all limit operators of

B := (DY A(D)~+m™) . [2(RV) - L*(RY)
are invertible if and only if

Jm inf fa(e, /() > 0. (42)

The condition (42) is necessary and sufficient for the Fredholmness of A.
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(b) Consider the operator A = Opy(a) € OPSOg  as acting from H**™(RY)
into H*(RY). Then all limit operators of B := (D)Y* A(D)~(*™ . [2(RV) —
L?(RN) are invertible if and only if

lim inf ., ) 43
Jm int la. 2. €)/(€) (43)

Condition (43) is necessary and sufficient for the Fredholmness of A.

5.5. Differential operators. The results of the previous section apply to
study the Fredholmness of differential operators on RY by means of their limit

operators. Let
P= )" a,D"

la|<m

be a differential operator of order m with coefficients a, € C°(RY). We con-
sider this operator as acting from H**™(RY) into H*(R"). The function

P RV XRY R, (z,6) = Y aa(e)€”

lal=m
is called the main symbol of P, and the operator P is called uniformly elliptic if

inf [pp(2, w)| >0 forallwe SV 1
z€RN

Let h : N — Z" be a sequence which tends to infinity. Then there exist
a subsequence g of h and functions af € C°(RY) such that the functions
T+ ao(z + g(k)) converge to af in the topology of C:°(RY) for every . We

set
Py := Z a? D*,

lal<m

consider P, as an operator from H**™(R") into H*(R") again, and denote by

0,p(P) the set of all operators which arise in this way.

Theorem 5.6. The differential operator P : HT™(RY) — H*(RN) is Fredholm
if and only if the following conditions are satisfied:

(a) All operators Py € o,,(P) are invertible.

(b) The operator P is uniformly elliptic.

Proof. It follows from Theorem 5.4 that P is a Fredholm operator if and only
if all limit operators of (D)*P{D)~*"™ are invertible on L*(RY).

Let h = (hy, he) : N — Z" x Z" be a sequence such that h; — oo but hy
is bounded. Then there exists a subsequence g = (g1, g2) of h such that, for
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every «, the functions x — a,(z+g¢1(k)) converge to certain functions a4' in the
topology of C°(R") and that the sequence g» is constant, say go(k) = 72 € ZV
for all £. In this case, it is easy to see that

s-limy. ool (D) P(D) > ™ Uy = B2, (D)’ Py, (D) ™E,,

with (E,u)(z) := " ®)y(x). Thus, the limit operators of (D)*P{D)~*~™ which
are defined by sequences of this kind are invertible if and only if condition (a)
holds.

Now consider limit operators of (D)*P{D)~*~™ which are defined by se-
quences g = (g1, go) such that g» — oo and g¢; is constant, say g, (k) = v, € Z".
Suppose for definiteness that g, tends to infinity into the direction of the in-
finitely distant point w € SV¥~!. Then

S-limy 00 Eg, 1) (D) P(D) """ Egy (k) = P (-, w)1

g2
whence

s-limy oo Uy (DY P(D) ™ Uy = al(. — 11)w"L.
|a|=m

Hence, all limit operators defined by these sequences are operators of multipli-
cation by the functions

Pm, g (T, w) — Z a(. — y1)w®.
|a|=m

Finally, if both ¢g; and g9 go to infinity, and if ¢g; and g9 are chosen such
that the functions z — a,(x + g1(k)) converge to certain functions a?' in the
topology of C*°(RY) and that g, tends to infinity into the direction of the
infinitely distant point w € SV¥~!, then

s-limy oo Uy(y (DY P(D) > "Uygey = Y adiw®I.
|a|=m
Thus, we get multiplication operators again, this time by the functions
Pm,g : (T, w) — Z adl (x)w®.
|a|=m

Evidently, if the operator is uniformly elliptic, then in all cases
inf |pg, q(x, w)| > 0.
inf [ g(a, )|

Hence, the limit operators Op(py, 4)! are invertible on L?(RY), and condition
(b) implies the invertibility of all limit operators defined by sequences g with
g2 — 00. Conversely, choosing sequences g = (g1, g2) with g;(k) = 0 for all &
and with g, tending to infinity into the direction of w € SV~!, we obtain that
the invertibility of all associated limit operators implies condition (b). |
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Corollary 5.3. Let P: H™(RY) — L*(R") be a uniformly elliptic differential
operator of order m. Then
Gess(P) = UPQEU(}IJ(P)O-(PQ)'
Proof. By Theorem 5.4, the operator P— Al : H™(RY) — L?(R") is Fredholm
if and only if all limit operators
Py— A : HMR") = L*(RY), P, €q,,(P),
are invertible and if P — Al is uniformly elliptic. Since the uniform ellipticity of

a differential operator depends on its main symbol only, the uniform ellipticity
of P — AI follows from the conditions of the corollary. |

We denote by SO®(RY) the class of the smooth slowly oscillating functions
on RY, that is the class of all functions a € C°(RY) with

lim §p,a(z) =0 forallj=1,..., N.
T—00

Let the coefficients a, of the differential operator P belong to SO®(RY). Then
all limit operators P, € g,,(P) are of the form

P, =Op(py) = >, a* D"
o <m
with constant coefficients af!. The operator P, is invertible if and only if

inf [py(€)/(6)™" = inf | > afe

ERN eRN
¢ S P

&~ >0.
Hence, if P is a differential operator with smooth slowly oscillating coefficients,

then
Uess(P) = U {pg(f) : 5 € RN}

Pgeaolp(P)

Remark. A differential operator P of order m can be considered as an un-
bounded operator on the Hilbert space L?(RY) with domain H™(RY). If P
is uniformly elliptic, then P is a closed operator. An unbounded operator P
is called a Fredholm operator if its range is closed in L?(R") and if ker A and
ker A* are finite dimensional spaces, and the essential spectrum oess(A) of A
consists of all A € C for which A — A\I is not a Fredholm operator.

It is well known that, if P is uniformly elliptic, then P is a Fredholm oper-
ator in this sense (i.e. as an unbounded operator) if and only if P : H™(RY) —
L*(R") is a Fredholm operator in the common sense (i.e. as a bounded opera-
tor). Hence, if P is a uniformly elliptic differential operator, then

Uess(P) = UPgEq}p(P)O-(Pg)’

where now both the essential spectrum on the left hand side and the spectra on
the right hand side are understood in the unbounded operator sense.
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5.6. Schrodinger operators. Here we are going to specialize the results of
the previous section to operators of the form

N
H= Z (105, + a11)g"™ (i0,,, + aml) +wl

I,m=1

where ¢'™, a; and w are real-valued functions in C°(RY). This operator can be
viewed of as the electro-magnetic Schrodinger operator on the Riemann space
RY provided with the metric tensor (gim);",,—; Which is the tensor inverse of
(glm)ﬁmzl. Schrodinger operators of this form arise in multi-particle problems
after separating the mass center of the system (see, for instance, [6], pp. 29 —

33 and [11], pp. 172 — 176). Throughout this section, we will suppose that

N
inf Z i ()M > 0.

Tz€RN nesSN-1
l,m=1

Let h : N — Z" be a sequence which tends to infinity. Then there exists a
subsequence k of h such that the functions

r g™z +k(n)), z— aqlr+kn) and z— wx+k(n))

converge in the topology of C°(RY) to certain functions gi™, af and w*, re-
spectively. In particular, these limit functions belong to C{°(RY) again. If & is
chosen in this way, then the limit operator H; of H with respect to k exists,

and
N

H, = Z (10, + af I)gi™(i0,,, + ak,I) + w*I.
l,m=1

We consider H as an unbounded operator on L*(RY) with domain H?(RY).
Note that A € C is a point in the discrete spectrum of the unbounded operator
H if and only if A belongs to the discrete spectrum of the bounded operator
H : H?*(RY) — L?(RY). Hence, the essential spectrum of H, considered as
an unbounded operator, coincides with the essential spectrum of the bounded
operator H : H*(RY) — L*(R"). With Corollary 5.3, we find

vess(H) = ] o(Hy). (44)
Hj, €0, (H)

Here are a few instances where the structure of the limit operators is sufficiently
simple such that their invertibility can be effectively checked.

Example A. Let the functions ¢'™, a; and w be in SO®(RY). Then each limit
operator of H is a differential operator with constant coeflicients, i.e.

N
H, = Z (10, + af I)gi™(i0,,, + ak,I) + w*I.

l,m=1
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with real numbers ¢gi™, a¥ and w*. Set o := (a¥, ..., d%) and (E,u)(z) :=
eX® 2y (z) for o € RV. Then

E HE ! = — Z 90,0, +wkl.

I,m=1

Thus,

Hk :{Zg §l§m+w (61’.--’§N)ERN}:[U)IC,+OO]’

l,m=1

and the essential spectrum of H is
Uess(H) = U [wk’ +OO] = [mw: +OO]

where my, := inf w¥ = lim inf,cgnv w(z).
Example B. We let vy, v, and v12 be C*®-functions on R? with

lim v1(y) = lim vy(y) = lim vi5(y) = 0,

y—00 y—00 y—00
define functions w;, wy, wis on R® x R® by
wi(z) = v1(zV),  wa(z) == wa(2?), wiz(x) := via(z® — 2?@)
where z = (z(V); 2(?)) € R® x R?, and consider the Hamiltonian on L?(R?® x R?),
H:=-A,0) — Ay —wil —wol —wial.

Hamiltonians of this special structure arise in nuclear physics (but, usually, with
non-smooth functions vy, vy and vy2, which moreover will have singularities at
0; see, for instance, [7], p. 163, and [6], p. 29).

We will describe the essential spectrum of H by means of its limit operators.
Let the sequence h := (hy, hy) : N — Z3 x Z3 tend to infinity. After passing
to suitable subsequences of h, if necessary, we have to distinguish between four
cases.

[A] We have h; — oo, and hy is a constant sequence, say ho(k) = o € ZY for
all k. Then the limit operator of H with respect to h exists, and

(Hau)(2) = —(A0u) (@) = (Agou) (@) — wa(a® + 12)u().

The operator Hj, is unitarily equivalent to the operator

H1 = —Axu) — Ax(z) - U)QI.
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[B] If hy — oo, and if hy (k) = 7, € Z" for all k, then the limit operator of H
with respect to h exists, and it is unitarily equivalent to the operator

H2 = —Azu) — Az(z) - wll.

[C] If both hy and hy tend to infinity, and if also h; — he — 00, then the limit
operator of H is equal to the Laplacian

3. _
H° = —Awa) — Aw(z).

[D] If, finally, h; and hy tend to infinity, and if the difference h; — hy is a
constant sequence, then the limit operator of H with respect to A exists,
and it is unitarily equivalent to the operator

4.
H® = _Az(l) - Az(Q) — ’LU12[.

Let j = 1,2. Applying the Fourier transform with respect to (), we obtain
that the operator H’ is unitarily equivalent to the operator of multiplication by
the operator-valued function

B :R® = LLA(R® x R?)), & [€]> — Ay — wy_;1.

It is well-known that the essential spectrum of the operator A; :== —A ¢ —
ws_;I is the interval [0, co) and that its discrete spectrum consists of finitely
many points in (—oo, 0). Let Afﬂ}n < 0 be the minimal eigenvalue of A;. Then,

since |£|? varies over the semi-axis [0, c0), the spectrum of HY is the interval
[)\(J) o).

min’

Now consider the operator H*. After a change of variables

the operator H* becomes
—2(A,0 +Aye) — Wil

(12)

with wm(y)) := v15(y®). The spectrum of this operator is the interval [\, ;’, oc)
2

where )\gin < 0 is the minimal eigenvalue of —2Ay(2) — Wil

Summarizing, we get

Oess(H) = [Amin, 00) where Ay := min{,\(l) A2 )\(12)}‘

min’ “‘min’ “‘min
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5.7. Partial differential-difference operators. Finally, we consider differ-
ential-difference operators of the form

P:= Y aaDVp,
la|<m, j<N

where (Vzu)(z) = u(z — B) for 8 € RY and where the coefficients a,; belong to
SO>(RY). The operator P is a pseudodifferential operator in the class OPSf,
with symbol
P )= Y anla)gen,
la|<m, j<N

Hence, P : H™(RY) — L?(R") is a Fredholm operator if and only if all limit
operators of the operator R := P(D)™™: L?(RY) — L?(R") are invertible.

Let h = (hy, ha) : N — Z" X Z" be a sequence tending to infinity which de-

fines a limit operator of R. We distinguish between three cases for the sequence
h

[A] Let hy — oo, and let hy tend to infinity into the direction of the infinitely
distant point € S¥~!. Then the limit operator of R is a difference
operator with constant coefficients the form

— h o
Ry:= Y aynVa,,
la|=m, j<N

i.e. with numbers a; € C. It is evident that Ry is invariant with respect
to shifts, and this operator is invertible if and only if

laj=m, j<N

inf > 0.

€ERN

[B] Let h; — oo, and let hy be a constant sequence. Then the limit operator
Ry, is unitarily equivalent to the pseudodifferential operator with symbol

rp € Z agj—g mei(’B"‘f’@.
|a|<m, j<N <§>
Clearly, this operator is invertible if and only if
inf {|r,(&)|: £ € RV} > 0.

[C] Finally, let hs tend to infinity into the direction of the infinitely distant
point n € SN~ and let h; be a constant sequence. Then the limit
operator Ry, is unitarily equivalent to the difference operator with variable

coefficients,
Z a'aj 77a V/Baj .

la|=m,j<N
Effective sufficient conditions for the invertibility of difference operators
with variable coefficients can be found in the monographs [1, 2, 3].
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