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Homogenization Structures and Applications II

Gabriel Nguetseng

Abstract. In a recent work we presented a mathematical theory of homogeniza-
tion structures and we subsequently constructed a new homogenization approach
that proves highly fitted to systematically tackle nonstochastic homogenization prob-
lems beyond usual periodic homogenization theory. In this way, various concrete
homogenization problems arising in nonperiodic physical processes can henceforth
be considered. Of course, this releases us from the classical periodicity hypothesis
to which reference is usually systematically made for lack of a suitable mathemat-
ical framework beyond the periodic setting. With a view to pointing out the wide
scope of this new homogenization approach, we consider in this paper two classes
of homogenization problems of major interest as regards their close connection with
practical applications: the so-called discrete problems dealing with differential op-
erators whose coefficients are constant on each cell ε (k + Y ) with k ∈ ZN , where
ε > 0 and Y = (0, 1)N , and the so-called composite homogenization problems aris-
ing in the technology of composite materials. The exactness of the homogenization
results confirms the essential role the homogenization structures are destined to play
in homogenization.
Keywords: Homogenization structures, discrete homogenization, composite homog-

enization.

AMS subject classification: 46J10, 35B40

1. Introduction

In this paper we continue the studies begun in [14] on the homogenization
structures and their application to the homogenization of partial differential
equations. Let us return to the model boundary value problem considered in
[14], viz.

−
N∑

i,j=1

∂

∂xi

(
aε

ij

∂uε

∂xj

)
= f in Ω, uε ∈ H1

0 (Ω) (1.1)

where ε > 0, Ω is a bounded open set in RN
x , f ∈ H−1(Ω), aε

ij(x) = aij(
x
ε
)

(x ∈ Ω) with aij ∈ L∞(RN
y ) and the ellipticity condition : there exists a constant
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α > 0 such that

Re
N∑

i,j=1

aij(y)ξjξi ≥ α |ξ|2 (ξ ∈ CN , a.e. in y ∈ RN). (1.2)

It is well known that uε is uniquely determined by (1.1). For convenience we
will in the sequel assume the symmetry condition aji = aij (1 ≤ i, j ≤ N).

Now, suppose our purpose is to investigate the behaviour of uε as ε → 0.
Very likely, this is not possible without requiring the family {aij} to satisfy
one further appropriate condition called a structure hypothesis, which gives spe-
cific information on the way the said family is structured from an algebraic, a
topological or a geometric point of view.

The classical structure hypothesis is the so-called periodicity hypothesis
which states that each aij is S-periodic, that is, it satisfies for each k ∈ S
the equality aij(y + k) = aij(y) a.e. in y ∈ RN , where S is a given network in
RN , say S = ZN (Z denotes the integers). The periodicity hypothesis has since
long ago led to a powerful periodic homogenization theory for which there is
an enormous bibliography; see, e.g., refs. [1, 2, 7-9, 17-20]. However, the pe-
riodicity hypothesis is only a particular structure hypothesis. No doubt, there
is a wide variety of concrete structure hypotheses, and one major concern in
this area is to bridge the gap between periodic and stochastic homogenization
(concerning stochastic homogenization, see, e.g., ref. [6]).

In [14] we considered the homogenization problem for (1.1) under an ab-
stract structure hypothesis (see (2.2)) depending on a given suitable homog-
enization structure, and we obtained a homogenization result which is in all
respects similar to that provided by classical periodic homogenization theory,
with the same explicitness and the same degree of accuracy. This is a great
progress, since we are henceforth in a position to tackle a homogenization prob-
lem for (1.1) under any concrete structure hypothesis reducible to the preceding
abstract structure hypothesis. Various examples of such concrete structure hy-
potheses (including the periodicity hypothesis, of course) are given in [14]. The
present study is intended to illustrate this still more, for it goes without saying
that the scope of our undertaking will depend on the variety of the concrete
cases that can be covered by this new homogenization approach. Also, we
prove in passing a practical outstanding result that was merely stated in [14:
Example 5.5].

In this work we discuss two classes of homogenization problems for (1.1),
namely the so-called discrete homogenization problem and the composite homog-
enization problem. Let us first state what is meant by a discrete homogenization
problem for (1.1). Let

Y =

(
−1

2
,
1

2

)N

and S = ZN . (1.3)
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Suppose aij (1 ≤ i, j ≤ N) is constant on each cell k + Y (k ∈ S) . Clearly
it amounts to assuming that for each fixed k ∈ S,

aij(y) = rij(k) a.e. in y ∈ k + Y (1 ≤ i, j ≤ N) (1.4)

where

rij(k) =

∫
k+Y

aij(z)dz. (1.5)

Then, it is easily seen that the statement of a structure hypothesis on aij cannot
be made otherwise than by means of the family {rij} (rij denotes the complex
mapping on S defined at each k ∈ S by (1.5)). For an obvious reason such a
structure hypothesis is qualified as discrete. As examples of discrete structure
hypotheses on aij (1 ≤ i, j ≤ N), we have the following three cases :

(1) rij ∈ B∞ (S)

(2) rij = cij + γij with cij ∈ C and γij ∈ `1 (S)

(3) rij = tij + γij with tij ∈ B∞ (S) and γij ∈ `1 (S)

where B∞ (S) denotes the space of all complex mappings on S that converge at
infinity, and `1 (S) denotes the usual space of all mappings a : S → C that are
summable, i.e., that they satisfy

∑
k∈S |a (k)| < +∞.

This being so, by a discrete homogenization problem for (1.1) we understand
the study of the behaviour, as ε → 0, of uε (the solution of (1.1)) under a discrete
structure hypothesis on {aij}.

Remark. To say that aij is constant on each cell k + Y (k ∈ S) again
amounts to say that aij writes as aij =

∑
k∈S rij(k)χ

k+Y
(a locally finite sum),

where rij(k) is given by (1.5) and χ
k+Y

denotes the characteristic function of
k + Y.

Remark. The discrete structure hypothesis arises quite naturally in ho-
mogenization theory. To see this, let us place ourselves in the general case
where we know merely that aij lies in L∞(RN

y ) (i.e., we do not assume that aij

is constant on each k + Y ). Then, it is easily verified that aij, as a function in
L∞(RN

y ), is uniquely expressible in the form

aij = λij + µij (1.6)

where λij and µij are functions in L∞(RN
y ) with

λij(y) = rij(k) a.e. in y ∈ k + Y (1.7)

(rij(k) given by rel. (1.5)), and∫
k+Y

µij(y)dy = 0 (1.8)
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for each fixed k ∈ S. Thus, a structure hypothesis on aij (1 ≤ i, j ≤ N) may be
reduced to two complementary structure hypotheses : one on rij (1 ≤ i, j ≤ N),
the other on µij (1 ≤ i, j ≤ N). The notion of a discrete structure hypothesis
falls under the particular case where µij = 0 (1 ≤ i, j ≤ N).

We will next consider a so-called composite homogenization problem for
(1.1), that is, roughly speaking, a homogenization problem for (1.1) under a
structure hypothesis on {aij} depending on a given suitable partition of RN

y .
From a practical point of view, such a problem is of considerable interest in so
far as it is closely connected to the homogenization of composite materials.

The rest of the work is organized as follows. In Section 2 we quickly recall
the notion of a homogenization structure together with the manner in which the
latter arises in the homogenization of partial differential equations. Section 3
deals with the so-called discrete homogenization structures together with their
application to the homogenization of (1.1). Finally, in Section 4 we develop a
short theory of composite homogenization for (1.1) and we present two practical
examples.

We conclude this section by summarizing some of the basic notation we
will be using. Except where otherwise stated, all vector spaces are considered
over C (the complex numbers) and the scalar functions are assumed to take
their values in C. If X and F denote a locally compact space and a Banach
space, respectively, then we denote by C (X; F ) the space of all continuous map-
pings of X into F , by K (X; F ) the space of those functions in C (X; F ) having
compact supports, and by B (X; F ) the space of those functions in C (X; F )
that are bounded. We will always assume B (X; F ) to be equipped with the
supremum norm ‖u‖∞ = supx∈X ‖u (x)‖ (u ∈ B (X; F )) where ‖·‖ denotes the
norm in F. For shortness we write C (X) = C (X; C) , K (X) = K (X; C) and
B (X) = B (X; C) . Likewise the spaces Lp (X; F ) and Lp

loc (X; F ) (where X
is provided with a positive Radon measure) will be denoted by Lp (X) and
Lp

loc (X) , respectively, when F = C. We refer to [3], [4] and [10] for integration
theory. Finally, the space RN and its open sets are assumed to be provided
with the Lebesgue measure denoted by λ or, as usual, dx = dx1 · · · dxN .

2. Fundamentals of homogenization structures: Basic no-
tation and results

For the benefit of the reader we summarize below basic notions and results
concerning the theory of homogenization structures. We refer to [14] for more
details.

We start with a definition which is at the root of the notion of a homoge-
nization structure. A structural representation on RN

y is defined as being any
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subset Γ of B(RN
y ) such that

(HS)1 Γ is a group under multiplication in B(RN
y )

(HS)2 Γ is countable

(HS)3 if γ ∈ Γ then γ ∈ Γ (γ the complex conjugate of γ)

(HS)4 Γ ⊂ Π∞,

where Π∞ denotes the space of all functions u ∈ B(RN
y ) with the property

that uε → M(u) in L∞(RN
x )-weak ∗ as ε → 0, M(u) being a complex number

(depending on u), and

uε (x) = u
(x

ε

)
for x ∈ RN (ε > 0) . (2.1)

Let us note in passing that the mapping u → M(u) of Π∞ into C is a positive
continuous linear form M with M(1) = 1 and M(τau) = M(u) for u ∈ Π∞ and
a ∈ RN , where τau(y) = u(y − a) for y ∈ RN (it is shown that τau ∈ Π∞ for
u ∈ Π∞ and a ∈ RN). See [15] for further detail.

Now, in the collection of all structural representations on RN
y we consider

the binary relation : Γ ∼ Γ′ if and only if CLS (Γ) =CLS (Γ′), where CLS(Γ)
denotes the closed vector subspace of B(RN

y ) spanned by Γ. It is easily checked
that this is an equivalence relation. By an H-structure on RN

y (H stands for
homogenization) is meant any equivalence class modulo ∼ . If Σ is a given
H-structure on RN

y , we let A = CLS(Γ), where Γ is any equivalence class
representative of Σ (such a Γ is termed a representation of Σ). A is a so-called
H-algebra on RN

y , that is, a closed subalgebra of B(RN
y ) with the propreties :

(HA)1 A with the supremum norm is separable

(HA)2 A contains the constants

(HA)3 if u ∈ A then u ∈ A

(HA)4 A ⊂ Π∞.

Futhermore, A depends only on Σ and not on the chosen representation Γ of
Σ, so that we may set A = J (Σ) (image of Σ). The mapping Σ → J (Σ) thus
defined carries the collection of all H-structures bijectively over the collection
of all H-algebras on RN [14: Theorem 3.1].

An H-algebra A on RN is clearly a commutative C∗-algebra with identity.
We denote by ∆(A) the spectrum of A, i.e., ∆(A) is the set of all nonzero
multiplicative linear forms on A, ∆(A) being endowed with the relative weak ∗
topology on A′ (the topological dual of A). The Gelfand transformation on A is
denoted by G. We recall that G is the mapping u → G(u) of A into C(∆(A)) such
that G(u)(s) = 〈s, u〉 for s ∈ ∆(A), where 〈 , 〉 denotes the duality between A′

and A. It is shown that ∆(A) is a compact metrizable space and G is an isometric
isomorphism of the C∗-algebra A onto the C∗-algebra C(∆(A)) (see, e.g., [12:
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p. 277]). The space ∆(A) will be equipped with the so-called M -measure for
A, that is, the Radon measure β on ∆(A) such that

M(u) =

∫
∆(A)

G(u)(s)dβ(s) (u ∈ A).

On the other hand, by means of the transformation G we can carry over to

∆(A) the partial derivatives on RN
y . Specifically, let A1 =

{
Ψ ∈ C1(RN

y ) : Ψ, ∂Ψ
∂yi

∈ A (1 ≤ i ≤ N)}. The partial derivative of index i (1 ≤ i ≤ N) on ∆(A) is
defined to be the mapping ∂i = G ◦ ∂

∂yi
◦G−1 (usual composition) of D1(∆(A)) =

{ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A1} into C(∆(A)), where G−1 (the inverse of G) is
viewed as defined on D1(∆(A)). Higher order derivatives are defined analogously
(see [14]). Now, let A∞ be the set of all functions Ψ ∈ C∞(RN

y ) (the complex

functions of class C∞ on RN
y ) such that Dα

y Ψ = ∂|α|Ψ
∂y

α1
1 ···∂y

αN
N

∈ A for any multi-

index α = (α1, . . . , αN) ∈ NN . Let D(∆(A)) = {ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A∞} .
Endowed with a suitable locally convex topology (see [14]), each of these two
spaces is a Fréchet space and, further, G viewed as defined on A∞ is a topological
isomorphism of A∞ onto D(∆(A)).

Any continuous linear form on D(∆(A)) is referred to as a distribution on
∆(A). The space D′(∆(A)) (topological dual of D(∆(A))) of all distributions on
∆(A) is endowed with the strong dual topology. If we assume that A∞ is dense
in A, which is equivalent to assuming that D(∆(A)) is dense in C(∆(A)), then
we have Lp (∆ (A)) ⊂ D′ (∆ (A)) (1 ≤ p ≤ +∞) with continuous embedding.
Hence we may define the Hilbert space (see [14])

H1(∆(A)) =
{
u ∈ L2(∆(A)) : ∂iu ∈ L2(∆(A)) (1 ≤ i ≤ N)

}
where the derivative ∂iu is taken in the distribution sense on ∆(A). Furthermore,
we consider the space

H1(∆(A))/C =

{
u ∈ H1(∆(A)) :

∫
∆(A)

u (s) dβ (s) = 0

}
equipped with the seminorm

‖u‖H1(∆(A))/C =

(
N∑

i=1

‖∂iu‖2
L2(∆(A))

) 1
2

(u ∈ H1(∆(A))/C),

which makes it a pre-Hilbert space. In general H1(∆(A))/C so topologized is
non-separated and non-complete. This leads us to introduce the separated com-
pletion H1

#(∆(A)) of H1(∆(A))/C, and the canonical mapping J of H1(∆(A))/C
into H1

#(∆(A)) (see [5: Chapter II]). It is shown that the distribution derivative
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∂i viewed as a mapping of H1(∆(A))/C into L2(∆(A)), extends to a unique con-
tinuous linear mapping, still denoted by ∂i, of H1

#(∆(A)) into L2(∆(A)) such
that ∂iJ (v) = ∂iv for v ∈ H1(∆(A))/C. Furthermore,

‖u‖H1
#(∆(A)) =

(∑N

i=1
‖∂iu‖2

L2(∆(A))

) 1
2 (

u ∈ H1
#(∆(A))

)
.

As we mentioned in [14], the role of the proper H-structures is essential
in this study. Before we recall the definition of a proper H-structure, let us
introduce one simple notion that will be needed. By a fundamental sequence is
meant any ordinary sequence of real numbers 0 < εn ≤ 1 (n ∈ N) with εn → 0
as n → +∞.

Now, let Σ be an H-structure on RN , and let A = J (Σ). We say that Σ is
proper if the following conditions hold :

(PR)1 Σ is of class C∞, i.e., D(∆(A)) is dense in C(∆(A)).

(PR)2 Σ is total, i.e., D(∆(A)) is dense in H1(∆(A)).

(PR)3 For any bounded open set Ω ⊂ RN
x , H1(Ω) is Σ-reflexive in the

following sense : given a fundamental sequence E and a sequence
(uε)ε∈E which is bounded in H1(Ω), a subsequence E ′ can be ex-
tracted from E such that as E ′ 3 ε → 0 , we have uε → u0 in
H1(Ω)-weak and ∂uε

∂xj
→ ∂u0

∂xj
+ ∂ju1 in L2(Ω)-weak Σ (1 ≤ j ≤ N),

where u1 ∈ L2(Ω; H1
#(∆(A))) (see [14: Remark 4.3]).

Remark. We recall that a sequence (vε)ε>0 ⊂ Lp(Ω) (1 ≤ p < ∞) is said
to be weakly Σ-convergent in Lp(Ω) to some v0 ∈ Lp(Ω×∆(A)) as ε → 0, and
we denote vε → v0 in Lp(Ω)-weak Σ, if as ε → 0,∫

Ω

vε(x)Ψ(x,
x

ε
) dx →

∫ ∫
Ω×∆(A)

v0(x, s)Ψ̂(x, s) dx dβ(s)

for every Ψ ∈ Lp′
(Ω; A) ( 1

p′ = 1 − 1
p
), where Ψ̂ (x, ·) = G(Ψ(x)), x ∈ Ω,

and where β denotes the M -measure for A. The concept of Σ-convergence is
discussed in the fullest detail in [14] (the case where Σ is a periodic H-structure
sends back to two-scale convergence [13]).

Before we can recall how the H-structures arise in the homogenization of
partial differential equations, we still need a few preliminaries. To begin, let
1 ≤ p < +∞. Let Ξp be the set of all u ∈ Lp

loc(RN
y ) for which the sequence

(uε)0<ε≤1 is bounded in Lp
loc(RN

x ) (uε defined in (2.1)). This is a Banach space
under the norm

‖u‖Ξp = sup
0<ε≤1

(∫
BN

∣∣∣u(x

ε

)∣∣∣p dx

) 1
p

(u ∈ Ξp)
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where BN denotes the open unit ball of RN
x . This being so, given an H-structure

Σ on RN , we define Xp
Σ(RN

y ) (or Xp
Σ, or simply Xp when there is no danger of

confusion) to be the closure of J (Σ) in Ξp. Equipped with the Ξp-norm, Xp
Σ is a

Banach space. Next, let F1
0 = H1

0 (Ω)×L2(Ω; H1
#(∆(A))) with A = J (Σ). This

is a Hilbert space with norm

‖V ‖F1
0

=

[
N∑

i=1

‖DiV ‖2
L2(Ω×∆(A))

] 1
2

(V ∈ F1
0)

where

DiV =
∂v0

∂xi

+ ∂iv1 for V = (v0, v1) ∈ F1
0.

Finally, suppose
aij ∈ X2

Σ (1 ≤ i, j ≤ N). (2.2)

Then, according to [14: Proposition 2.4 and Corollary 2.2], we can define âij =
G(aij) ∈ L∞(∆(A)) for 1 ≤ i, j ≤ N, and hence the sesquilinear form âΩ on
F1

0 × F1
0 given by

âΩ(U, V ) =
N∑

i,j=1

∫ ∫
Ω×∆(A)

âij(s)DjU(x, s)DiV (x, s)dxdβ(s) (2.3)

for U, V ∈ F1
0. This sesquilinear form is continuous and coercive. Conse-

quently, if L denotes the continuous antilinear form on F1
0 given by L (V ) =

〈f, v0〉 (the same f as in (1.1)), V = (v0, v1) ∈ F1
0 , then the variational prob-

lem 
U = (u0, u1) ∈ F1

0 and

âΩ(U, V ) = L(V ) for all V ∈ F1
0

(2.4)

admits a unique solution. We are now in a position to state the following
fundamental homogenization result (for the proof see [14]).

Theorem 2.1. Let Σ be a proper H-structure on RN . Let A = J (Σ).
Suppose (2.2) is satisfied. Let U = (u0, u1) be uniquely given by the variational
problem (2.4), and for each real ε > 0, let uε be the unique solution of the
boundary value problem (1.1). Then, as ε → 0, uε → u0 in H1

0 (Ω)-weak, uε → u0

in L2(Ω) and ∂uε

∂xj
→ DjU in L2(Ω)-weak Σ (1 ≤ j ≤ N).

¿From this theorem one deduces local and macroscopic homogenization
problems (see [14: Corollary 5.1]) similar to those of the classical periodic ho-
mogenization theory. In particular u0 is here the solution of a boundary value
problem

−
N∑

i,j=1

qij
∂2u0

∂xi∂xj

= f in Ω, u0 ∈ H1
0 (Ω)
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where the coefficients qij (1 ≤ i, j ≤ N) satisfy the usual symmetry and ellip-
ticity conditions.

3. Discrete H-structures and application

Now that we have a clear idea of what is termed a discrete homogenization
problem, it is of interest to note that the mathematical analysis of discrete ho-
mogenization problems requires the use of specific H-structures called discrete
H-structures. In the present section we discuss such tools and show how to han-
dle them to tackle discrete homogenization problems and many more besides.

3.1. Essential algebras. The notion of a discrete H-structure is based on
that of an essential algebra. First we recall some fundamentals of the theory of
essential functions (for the proofs of the forthcoming results we refer to [15]).
In what follows, G denotes either RN

y or the network S = ZN (endowed with
the discrete topology). By a finite net in G we mean any family F = (ai)i∈I

of points in G, where the index set I is finite and nonempty. To F we attach
the transformation MF in B (G) defined by MF (u) = 1

|I|
∑

i∈I τai
u (u ∈ B (G)),

where |I| denotes the cardinality of I, and τai
u(y) = u(y − ai) for y ∈ G.

Definition 3.1. We say a mapping u : G → C is an essential function on
G if u lies in B (G) and further if u satisfies: for every real η > 0, there exists
a finite net F in G such that |MF (u)(y)−MF (u)(z)| ≤ η for all y, z ∈ G.

The set of all essential functions on G is denoted by ES (G) . It is easily
checked that ES (G) is a closed vector subspace of B (G) . In the sequel ES (G)
is assumed to be equipped with the supremum norm. We also note that ES (G)
contains the constants, is translation invariant, and finally that if u lies in
ES (G) then so also does u (the complex conjugate of u). We have

Proposition 3.1. The following two conditions are equivalent for a func-
tion u ∈ B (G) :

(i) u ∈ ES (G).

(ii) There exists a complex number M(u) with the property : given η > 0,
there is a finite net F in G such that |MF (u)(y)−M(u)| ≤ η (y ∈ G).
Furthermore, M(u) is unique.

This yields a unique positive continuous linear form M on ES (G) such that

(1) M(τau) = M(u) for u ∈ ES (G) and a ∈ G

(2) M attains the value 1 on the constant function 1.

Definition 3.2. The linear form M is called the essential mean value on
G, and M(u) is called the essential mean of the function u ∈ ES (G) .
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The case G = RN
y is of particular interest.

Proposition 3.2. ES(RN
y ) ⊂ Π∞(RN

y ) and M(u) = M(u) for all u ∈
ES(RN

y ) (M was defined in Section 2).

As mentioned above, the preceding propositions are proved in [15]. Also,
several examples of essential functions are given in [15].

We conclude this subsection by discussing the notion of an essential algebra.
We purposely restrict ourselves to G = S.

Definition 3.3. By an essential algebra on S is meant any closed subalge-
bra S of B (S) = `∞ (S) with the following properties :

(ESA)1 S with the supremum norm is separable.

(ESA)2 S contains the constants.

(ESA)3 If a ∈ S then a ∈ S.

(ESA)4 S ⊂ ES (S) .

A few practical examples of essential algebras are collected below.

Example 3.1. The algebra B∞ (S) . We recall that B∞ (S) denotes the set
of all mappings a : S → C such that lim|k|→+∞ a (k) = ζ ∈ C, where ζ depends
on a and where |k| is the Euclidean norm (in RN) of k ∈ S. Clearly B∞ (S) is a
closed subalgebra of `∞ (S) = B (S). Furthermore, for S = B∞ (S) , condition
(ESA)1 follows by classical arguments (see [5: page 25 of Chapter X and page
18 of Chapter IX]), (ESA)2 and (ESA)3 are evident, and finally (ESA)4 follows
by [15: Proposition 3.3]. Therefore, B∞ (S) is an essential algebra on S.

Example 3.2. The algebra `1
0 (S) . We define `1

0 (S) to be the closure in
`∞ (S) of the set of all functions a ∈ `∞ (S) of the form a = ξ + b, ξ ∈ C,
b ∈ `1 (S) . The space `1

0 (S) is an essential algebra. Indeed, for S = `1
0 (S) ,

(ESA)1 is a classical property, (ESA)2 and (ESA)3 are evident, and (ESA)4

follows by [15: Example 3.5].

Example 3.3. The algebra `1
∞ (S) . By this we denote the closure in `∞ (S)

of the set of all a ∈ `∞ (S) of the form a = θ+b with θ ∈ B∞ (S) and b ∈ `1 (S) .
It is clear that `1

∞ (S) is an essential algebra on S. Furthermore, `1
0 (S) ⊂ `1

∞ (S)
and B∞ (S) ⊂ `1

∞ (S) .

3.2. Discrete H-structures. Throughout this subsection, S denotes a given
essential algebra on S = ZN . Let F be the set of all functions f : RN

y → C of
the form

f =
∑
k∈S

a(k)τkϕ with a ∈ S and ϕ ∈ K (Y ) (3.1)
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where, as is customary, K (Y ) is identified with the space of those ϕ ∈ K(RN)
with supports in Y (see (1.3)). Attention must be drawn to the fact that the
above sum is actually locally finite.

The following lemma is essential to the notion of a discrete H-structure.

Lemma 3.1. The following statements are true :

(i) F ⊂ ES(RN
y ).

(ii) F is stable under multiplication and under complex conjugation.

Proof. Part (i). Let f ∈ F with (3.1). The restriction of f to any
arbitrarily fixed compact set K ⊂ RN

y is given by the finite sum f |K =∑
k∈F a(k)(τkϕ) |K where F denotes the (finite) set of all k ∈ S such that

K intersects k + Y (Y the closure of Y ). This shows that f is continuous on
RN

y . On the other hand, recalling that the family
{
k + Y

}
k∈S

is a covering of

RN , we see that to each given y ∈ RN there can be attached some k ∈ S such
that y ∈ k + Y , thus f(y) = a(k)ϕ(y − k). Hence |f(y)| ≤ ‖a‖∞ ‖ϕ‖∞ , which
shows that f is bounded. Therefore f ∈ B(RN

y ). To complete the proof of part
(i), let us fix an arbitrary real η > 0. Let θ =

∑
k∈S τk |ϕ| . Clearly θ ∈ B(RN

y )
and so we may fix a constant c > 0 such that |θ(y)| ≤ c for all y ∈ RN . Now,
consider a finite net F in S such that |MF (a)(k)−M(a)| ≤ η

2c
for all k ∈ S

(Proposition 3.1), where M denotes the essential mean value on S as well as on
RN

y . On the other hand, let Ψ = M(a)
∑

k∈S τkϕ, and keep in mind that Ψ lies
in ES(RN), since it is a periodic continuous function on RN

y (see [15: Remark
2.2 and Proposition 3.2]). Using the trivial equality

MF (f)−Ψ =
∑
k∈S

[MF (a)(k)−M(a)]τkϕ,

we see that

|MF (f)−Ψ| ≤ η

2
. (3.2)

Now, fix a finite net R in RN
y such that |MR(Ψ)(y)−M(Ψ)| ≤ η

2
for all

y ∈ RN , according to Proposition 3.1. Furthermore, observe that by (3.2) we
have

|MF+R (f) (y)−MR (Ψ) (y)| ≤ η

2

for all y ∈ RN . Hence |MF+R (f) (y)−M(Ψ)| ≤ η for all y ∈ RN , which shows
that f lies in ES(RN

y ) (Proposition 3.1). Therefore (i) follows.

Part (ii). The stability under complex conjugation is evident whereas
the stability under multiplication is easily checked by using the fact that if
ϕ, θ ∈ K (Y ) , then the product τkϕτlθ (k, l ∈ S) is zero whenever k 6= l. This
completes the proof.
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This being so, let A be the closure in B(RN
y ) of the space of all functions of

the form

Ψ = c +
m∑

i=1

fi with c ∈ C and fi ∈ F

where the integer m ≥ 1, the constant c and the functions fi depend on Ψ.

Proposition 3.3. A is an H-algebra.

Proof. Thanks to Lemma 3.1, A is a closed subalgebra of B(RN
y ) satisfying

(HA)3 and (HA)4 (use [15: Theorem 4.2]). On the other hand, (HA)2 is evident,
so that only (HA)1 remains to be verified. To this end let D0 be a dense
countable set in S (use (ESA)1) and K0 be a dense countable set in K (Y ) with
the supremum norm (indeed, K (Y ) with the supremum norm is separable).
Consider the set Q0 of all functions of the form

f =
∑
k∈S

a(k)τkϕ with a ∈ D0 and ϕ ∈ K0,

and put C0 = Q + iQ (Q denotes the rationals). Then, clearly the functions of
the form

Ψ = c +
m∑

i=1

fi with c ∈ C0, fi ∈ Q0 and m ∈ N, m ≥ 1

form a dense countable subset of A. The proof is complete.

This leads us to the notion of a discrete H-structure.

Definition 3.4. The H-structure on RN whose image is the H-algebra A
(see [14: Theorem 3.1]) is called the discrete H-structure on RN associated to
S, and is denoted by Σ0

S.

We will need the following

Proposition 3.4. Let ΣS be the periodic H-structure on RN represented by
the network S [14: Example 3.2]. The pair {Σ0

S, ΣS} is summable [14: Section
3].

Proof. Let A = J (Σ0
S) and Cper (Y ) = J (ΣS) (the space of all S-periodic

continuous complex functions on RN
y ; see [14: Example 2.1]). Our purpose is to

show that A + Cper (Y ) is stable under multiplication. But this is equivalent to
showing that the bilinear transformation (u, Ψ) → uΨ maps A × Cper (Y ) into
A + Cper (Y ) . So let u ∈ A and Ψ ∈ Cper (Y ) . The proposition is proved if we
can check that uΨ lies in A + Cper (Y ) . First of all, we need to express u in the
form

u = ξ + u0 with ξ ∈ C and u0 ∈ CLS(F) (3.3)
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where F denotes the set of all functions of the form (3.1) and CLS(F) stands
for the closed linear span of F . According to the definition of A, there is a
sequence (vn)n≥1 with

vn = ξn + wn with ξn ∈ C and wn ∈ 〈F〉
〈F〉 being the space of all finite sums

∑
finite

fi (fi ∈ F)

such that vn → u in B(RN) as n → +∞. Noticing that each function wn vanishes
on ∂Y (the boundary of Y ), we deduce that, as n → +∞, ξn → ξ and

wn → u0 in B(RN). (3.4)

Hence rel. (3.3) follows. Thus, uΨ = ξΨ + u0Ψ, and it suffices to show that
u0Ψ ∈ A. To this end observe that the periodicity property for Ψ (i.e., τkΨ = Ψ
for all k ∈ S) implies that fΨ ∈ F for any f ∈ F , hence wnΨ ∈ 〈F〉 for
any integer n ≥ 1. Recalling (3.4), it follows that u0Ψ ∈ CLS(F) ⊂ A. This
completes the proof.

Remark. The pair {Σ1 = Σ0
S, Σ2 = ΣS} does not satisfy condition (3.12)

in [14]. Indeed, if f is as in (3.1) with a = 1, ϕ nonzero and with zero integral,
then f ∈ (A1/C)∩A2, as is easily seen by noticing that M (f) = M(a)

∫
Y

ϕ(y)dy
(a quick survey of the proof of Lemma 3.1 reveals that M(Ψ) = M (f)) and
recalling Proposition 3.2. However f is nonzero.

According to Proposition 3.4, we set Σ = Σ0
S + ΣS. Our main purpose is

to show that, under some suitable hypothesis, Σ is proper. To accomplish this,
we need a few preliminaries. First, we define

S0 = {a ∈ S : M (a) = 0} (M is the essential mean value on S).

Thus, S = S0 ⊕ C (direct sum). For each vector subspace V of S, we denote
by FV the set of all functions f : RN

y → C of the form

f =
∑
k∈S

a(k)τkϕ with a ∈ V and ϕ ∈ K (Y ) .

However, for simplicity we will write F = FS and F0 = FS0 . Clearly F =
F0 ⊕ FC (with FC = FV =C). In the sequel 〈F〉 (resp. 〈F0〉) denotes the set of
all finite sums ∑

finite

fi with fi ∈ F (resp. F0).

For the sake of convenience and, above all, in order to be in accordance
with [14: Subsection 4.4], we are led to put

Σ1 = Σ0
S, Σ2 = ΣS, A1 = J (Σ1) , A2 = J (Σ2) = Cper (Y ) and

A = J (Σ) (instead of J (Σ0
S) as before) with Σ = Σ1 + Σ2.
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Finally, throughout the rest of this subsection we assume that

S0 is a subalgebra of S. (3.5)

We turn now to the proof of a basic lemma.

Lemma 3.2. The following statements are true :

(i) 〈F0〉 is a subalgebra of B(RN).

(ii) 〈F0〉 is stable under complex conjugation.

(iii) If Ψ ∈ 〈F0〉 and g ∈ A2, then Ψg ∈ 〈F0〉.
(iv) 〈F0〉 ∩ A2 = {0}.
(v) 〈F0〉+ A2 is dense in A.

Proof. It is clear that 〈F0〉 is a vector subspace of B(RN). Moreover, thanks
to (3.5) (see also the proof of Lemma 3.1), 〈F0〉 is stable under multiplication.
Hence (i) follows. Furthermore, it is clear that S0 is stable under complex
conjugation, from which (ii) follows. Property (iii) results from the fact that
f ∈ F0 and g ∈ A2 imply fg ∈ F0 (see the proof of Proposition 3.4). As
regards (iv), let us begin by noting that, according to the equality M (f) =
M(a)

∫
Y

ϕ(y)dy, where f is of the form (3.1), we have M(Ψ) = M(Ψ) = 0 for

Ψ ∈ 〈F0〉 . With this in mind, let Ψ ∈ 〈F0〉 ∩ A2. Then M(|Ψ|2) = 0, since
|Ψ|2 = ΨΨ ∈ 〈F0〉∩A2 (use (i) and (ii)). Hence Ψ = 0 (indeed, the H-structure
Σ2 satisfies property (3.14) of [14]), which shows (iv). Finally, (v) is achieved
by observing that 〈F0〉 + A2 = 〈F〉 + A2 and using the fact that the space on
the right is dense in A.

We are now in a position to prove the desired result.

Proposition 3.5. Suppose rel. (3.5) holds. Then Σ is proper.

Proof. If we show that Σ is of class C∞ and further that the pair {Σ, Σ2}
satisfies hypothesis (H) of [14: Subsection 4.4], since Σ2 is proper (see, e.g., [16]),
then the proposition will follow by [14: Theorem 4.2]. So we begin by verifying
that Σ is of class C∞. Since Σ2 is of class C∞, it is enough to check that Σ1 is
of class C∞ (see [14: Section 4.4]), i.e., that A∞

1 =
{
Ψ ∈ C∞(RN

y ) : DαΨ ∈ A1

(α ∈ NN)
}

is dense in A1. That will certainly be the case if we can show that
each f of the form (3.1) is the limit in the B(RN)-norm of a sequence of functions
of the form

g =
∑
k∈S

a(k)τkθ with a ∈ S and θ ∈ D (Y ) = K (Y ) ∩ C∞ (Y ) .

This is a direct consequence of two facts :

1) D (Y ) is dense in K (Y ) under the inductive limit topology (this is a
classical result)
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2) given f as in (3.1) and g as above (with the same a ∈ S), we have
‖f − g‖∞ ≤ ‖a‖∞ ‖ϕ− θ‖∞ .

We next show that the pair {Σ, Σ2} satisfies hypothesis (H) of [14]. Let
V = 〈F0〉 ⊕ A2 (see Lemma 3.2/(iv)). This is a dense vector subspace of A
(Lemma 3.2). Now, let `2 : V → V be the projection of V on A2 along 〈F0〉 .
We denote by ` the restriction of `2 to its range, i.e., ` is the mapping of V
into A2 such that `v = `2v (v ∈ V). We note in passing that ` is surjective.
One fundamental property worth pointing out is that each v ∈ V is uniquely
expressible in the form

v = v0 + `v, v0 ∈ 〈F0〉 . (3.6)

On the order hand, based on Lemma 3.2, the same procedure as followed in the
proof of [14: Proposition 3.6] reveals that the mapping L2 : G(V) → C(∆(A2))
defined by L2(G(Ψ)) = G (`2Ψ) (Ψ ∈ V) extends by continuity to an isometric
isomorphism L of L2(∆(A)) onto L2(∆(A2)). Finally, let F∞

0 be the set of all
f ∈ F of the form

f =
∑
k∈S

a(k)τkϕ with a ∈ S0 and ϕ ∈ D (Y ) .

Define V∞ = 〈F∞
0 〉+ A∞

2 . Clearly V∞ ⊂ (V ∩ A∞). With all that in mind, our
goal is to verify points (4.4)-(4.9) of [14]. Point (4.4) is evident. As regards (4.5),
the decomposition (3.6) and use of Lemma 3.2/(iii) reveals that `(vΨ) = `v`Ψ
for v, Ψ ∈ V . Hence (4.5) follows by (4.4) and use of the density of G(V) in
L2(∆(A)). Let us next verify (4.6). Since v − `v ∈ 〈F0〉 (v ∈ V), it suffices to
check that for each f ∈ F0, f ε → 0 in L2

loc(RN
x ) as ε → 0. For this purpose, let

K be a compact set in RN
x . Consider an open ball B ⊂ RN centred at the origin

such that Jε(K) ⊂ B for 0 < ε ≤ 1, where (for fixed ε > 0) Jε(K) denotes
the union of all ε

(
k + Y

)
that intersect K. Now, let 0 < ε ≤ 1 be fixed. Let

iε(B) denote the (finite) set of all k ∈ S such that εk ∈ B, and Iε(B) denote
the union of all ε

(
k + Y

)
as k ranges over iε(B). Clearly K ⊂ Jε(K) ⊂ Iε(B).

Consequently, given f ∈ F0, we may write∫
K

∣∣∣f (x

ε

)∣∣∣2 dx ≤
∫

Iε(B)

∣∣∣f (x

ε

)∣∣∣2 dx ≤
∑

k∈iε(B)

∫
ε(k+Y )

∣∣∣f (x

ε

)∣∣∣2 dx.

Hence, by the change of variable y = x
ε
,∫

K

∣∣∣f (x

ε

)∣∣∣2 dx ≤ εN
∑

k∈iε(B)

∫
k+Y

|f(y)|2 dy. (3.7)

According to [15: Theorem 4.3], the right-hand side of inequality (3.7) tends to
M(|f |2)λ (B) when ε → 0. But |f |2 ∈ 〈F0〉 (Lemma 3.2), hence M(|f |2) = 0.
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Therefore, when ε → 0, the left-hand side of (3.7) tends to zero. From which
(4.6) follows. Finally, the verification of (4.7)-(4.9) is an easy matter and so, by
[14: Theorem 4.2], Σ is proper, as claimed.

3.3. Discrete homogenization. We suppose here that aij (1 ≤ i, j ≤ N)
is constant on each cell k + Y (Y defined in (1.3)), that is, for each fixed
k ∈ S = ZN , we have (1.4) and (1.5). Then, given an essential algebra S on S,
our goal is to investigate the behaviour, as ε → 0, of uε (the solution of (1.1))
under the structure hypothesis

rij ∈ S (1 ≤ i, j ≤ N). (3.8)

Such a problem is referred to as a discrete homogenization problem for the
boundary value problem (1.1).

We have the following homogenization result.

Theorem 3.1. Suppose that S satisfies (3.5). Then, under the structure
hypothesis (3.8), condition (2.2) is satisfied with Σ = Σ0

S + ΣS (see Subsection
3.2 and in particular Proposition 3.4), so that the conclusions of Theorem 2.1
(or more precisely, of [14: Subsection 5.2]) hold.

Proof. First, we introduce the space (L2, `∞)(RN) of all functions u ∈
L2

loc(RN) such that

‖u‖2,∞ = sup
k∈S

[∫
k+Y

|u(y)|2 dy

] 1
2

< +∞.

This is a Banach space under the norm ‖·‖2,∞ (see [11]). We also recall that
aij =

∑
k∈S rij(k)χk+Y . This being so, let 1 ≤ i, j ≤ N be fixed. Let η > 0.

Based on the density of K (Y ) in L2 (Y ), we consider a function ϕ ∈ K (Y )
such that ‖1− ϕ‖L2(Y ) ≤

η
c
, where 1 denotes the function u ∈ L2 (Y ) such that

u(y) = 1 a.e. in y ∈ Y, and c denotes a positive constant such that |rij(k)| ≤ c
(k ∈ S). Hence ‖aij −Ψ‖2,∞ ≤ η with Ψ =

∑
k∈S rij (k) τkϕ. Therefore, since

Ψ ∈ J (Σ0
S) (see Subsection 3.2), it follows that aij lies in the closure of J (Σ0

S)
in (L2, `∞)(RN). The latter space being continuously embedded in Ξ2 (use
[16: Lemma 1.3]), we deduce that aij ∈ X2

Σ0
S
. But Σ0

S 4 Σ = Σ0
S + ΣS, i.e.,

J (Σ0
S) ⊂ J (Σ) (see [14: Subsection 3.3]), therefore aij ∈ X2

Σ. Since Σ is proper
(Proposition 3.5), the theorem follows, as claimed.

This is worth illustrating. In the following examples, the coefficients aij

(1 ≤ i, j ≤ N) are assumed to be constant on each cell k +Y (k ∈ S), as stated
above.
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Example 3.4. Suppose lim|k|→∞
∫

k+Y
aij(y)dy = ζij ∈ C (1 ≤ i, j ≤ N).

Then the mathematical analysis of the behaviour, as ε → 0, of the solution
of (1.1) leads to the conclusions of Theorem 2.1 (or more precisely, of [14:
Subsection 5.2]). Indeed, the above assumption implies (3.8) with S = B∞ (S)
(Example 3.1). Furthermore, S0 = B0 (S) (the functions in B∞ (S) that vanish
at infinity), and it is clear that (3.5) holds. Hence the desired result follows by
Theorem 3.1.

Example 3.5. Suppose there exists a family {cij} ⊂ C such that∑
k∈S

∣∣∣∣∫
k+Y

aij(y)dy − cij

∣∣∣∣ < +∞.

Then the conclusion of Example 3.4 again holds. Indeed, the present hypothesis
on aij (1 ≤ i, j ≤ N) leads to (3.8) with S = `1

0 (S) (Example 3.2). Furthermore,
S0 is exactly the closure of `1 (S) in `∞ (S) and so (3.5) is immediate. Therefore,
Theorem 3.1 applies and the alleged conclusion follows.

Example 3.6. We assume here that a family {tij} ⊂ B∞ (S) exists such

that
∑

k∈S

∣∣∣∫k+Y
aij(y)dy − tij(k)

∣∣∣ < +∞ (1 ≤ i, j ≤ N). Then we arrive at

the same conclusion as in Example 3.4. Indeed, according to the present hy-
pothesis on aij (1 ≤ i, j ≤ N), we have (3.8) with S = `1

∞ (S) (Example 3.3).
Furthermore, S0 is precisely the closure of B0 (S) + `1 (S) in `∞ (S) and hence
it is an easy task to check that (3.5) is fulfilled. Therefore, the result follows by
applying Theorem 3.1.

In fact, in the present context we can also work out a nondiscrete homoge-
nization problem for (1.1).

Corollary. We no longer suppose that the functions aij are constant on
each k + Y (k ∈ S), so that for each pair of indices 1 ≤ i, j ≤ N, (1.6)-(1.8)
hold in a unique manner. Suppose µij is S-periodic (1 ≤ i, j ≤ N) and that
(3.5) and (3.8) hold. Then the conclusions of Theorem 2.1 (or more precisely,
of [14: Subsection 5.2]) hold.

Proof. A quick survey of the proof of Theorem 3.1 reveals that λij ∈ X2
Σ0

S
,

thus λij ∈ X2
Σ with Σ = Σ0

S + ΣS. On the other hand, by hypothesis we have
that µij ∈ X2

ΣS
(see [14: Example 5.1]), hence µij ∈ X2

Σ. Therefore (2.2) holds
with Σ = Σ0

S + ΣS. Hence the conclusion follows as in Theorem 3.1.

4. Composite homogenization

4.1. Statement of the problem and preliminaries. Let Xh (1 ≤ h ≤ n) be
a finite family of nonempty open sets in RN with the following properties:
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(1) Xk ∩ Xh = ∅ (empty set) whenever k 6= h.

(2) Each Xh has a negligible boundary.

(3) εXh ⊂ Xh for every ε > 0 (1 ≤ h ≤ n).

(4) RN =
⋃

1≤h≤n

Xh (Xh is the closure of Xh).

Remark. Such a family does exist. Note that Xh is none other than a cone
in RN of vertex O (the origin in RN).

We set
Ωh = Ω ∩ Xh , 1 ≤ h ≤ n,

where Ω is the same as in (1.1). Observe that we may have Ωh = ∅ for some
indices h. With this in mind, we may assume without loss of generality that
the family {Ωh}1≤h≤n is so arranged that its nonempty members are exactly
Ωh (1 ≤ h ≤ m), where the positive integer m is less than or equal to n. In the
sequel we put

X =
⋃

1≤h≤m

Xh.

Now, for each fixed 1 ≤ h ≤ m, we consider a family {bhij}1≤i,j≤N with

bhij ∈ L∞(RN
y ) and bhji = bhij (4.1)

and the ellipticity condition
there exists a constant αh > 0 such that

Re
N∑

i,j=1

bhij(y)ξjξi ≥ αh |ξ|2 (ξ ∈ CN , a.e. in y ∈ RN).
(4.2)

This being so, for each pair of indices 1 ≤ i, j ≤ N, we define aij ∈ L∞(X) as

aij(y) = bhij(y) for y ∈ Xh (h = 1, . . . ,m) . (4.3)

Remark. Let ε > 0. We have aij

(
x
ε

)
= bhij

(
x
ε

)
for x ∈ Ωh, 1 ≤ h ≤ m (it

is essential to note that εXh = Xh, as is easily obtained by (3)). Therefore, since
Ω =

⋃
1≤h≤m(Ω ∩ Xh), and since Xh has a negligible boundary (use also (1)),

this yields a function aε
ij ∈ L∞(Ω) with aε

ij (x) = aij

(
x
ε

)
for almost every x ∈ Ω.

Furthermore, thanks to (4.2), the family {aε
ij}1≤i,j≤N thus defined satisfies the

ellipticity condition:

Re
N∑

i,j=1

aε
ij(x)ξjξi ≥ α |ξ|2 (ξ ∈ CN , a.e. in x ∈ Ω)

where α = Min1≤h≤mαh. Hence the boundary value problem (1.1) has exactly
one solution.
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Remark. Recalling that the transformation x → x
ε

maps X into itself, we
see that we may directly define aε

ij as being the function in L∞(X) given by
aε

ij(x) = aij(
x
ε
) for x ∈ X. It suffices then to ”restrict” aε

ij to Ω.

Finally, let {Σh}1≤h≤m be a family of proper H-structures on RN . Our goal
is to investigate the behaviour, as ε → 0, of the solution, uε, of (1.1) [with
(4.1)-(4.3)] under the abstract structure hypothesis

bhij ∈ X2
Σh

(1 ≤ i, j ≤ N, 1 ≤ h ≤ m). (4.4)

Such a homogenization problem is qualified as composite because for any two
distinct indices 1 ≤ k 6= h ≤ m, the behaviours of the two functions bkij and
bhij may be of completely different natures.

In the sequel are collected most of the basic notation and preliminary results
we need for the analysis of the problem under consideration. First of all, we set

Ah = J (Σh) for 1 ≤ h ≤ m.

(see Section 2). Next, we introduce the space

F1
0 = H1

0 (Ω)×
m∏

h=1

L2(Ωh; H
1
#(∆(Ah))).

Proceeding as in [14: Subsection 5.1], we see immediately that F1
0 is a Hilbert

space with norm

‖V ‖F1
0

=

[
m∑

h=1

N∑
i=1

‖DhiV ‖2
L2(Ωh×∆(Ah))

] 1
2

where V = (v0, v1, . . . , vm) ∈ F1
0 and

DhiV =
∂v0

∂xi

∣∣∣∣
Ωh

+ ∂ivh (1 ≤ i ≤ N, 1 ≤ h ≤ m).

We also need the space

F∞
0 = D(Ω)×

m∏
h=1

[D (Ωh)⊗ J(D (∆ (Ah)) /C)]

where J denotes the canonical mapping of H1(∆(Ah))/C into its separated com-
pletion H1

#(∆(Ah)), and D(∆(Ah))/C denotes the space of all ϕ ∈ D(∆(Ah))
with

∫
∆(Ah)

ϕ(s)dβ(s) = 0, β being the M -measure for Ah. Again following the

same line of proceeding as in [14: Subsection 5.1], we have that F∞
0 is dense in

F1
0.
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No doubt, there is much to be gained by exhibiting a clear representation
of functions in F∞

0 . To do this, let A∞
h /C denote the space of all Ψ ∈ A∞

h such
that M(Ψ) = 0 (see Section 2). It is easily seen that the Gelfand transformation
G on Ah carries A∞

h /C bijectively over D(∆(Ah))/C. Consequently, Φ belongs
to F∞

0 if and only if Φ writes as

Φ = (Ψ0, JΩ1(Ψ̂1), JΩ2(Ψ̂2), · · ·, JΩm(Ψ̂m)) (4.5)

with
Ψ0 ∈ D(Ω) and Ψh ∈ D (Ωh)⊗ (A∞

h /C) (1 ≤ h ≤ m) (4.6)

where JΩh
(Ψ̂h) denotes the mapping x → J(Ψ̂h(x, ·)) of Ωh into J(D(∆(Ah))/C)

and Ψ̂h denotes the mapping x → G(Ψh(x, ·)) of Ωh into D(∆(Ah)).

Now, for U, V ∈ F1
0, let

âΩ (U, V ) =
m∑

h=1

N∑
i,j=1

∫ ∫
Ωh×∆(Ah)

b̂hij(s)DhjU(x, s)DhiV (x, s)dxdβ(s)

where β denotes the M -measure for Ah (1 ≤ h ≤ m) and b̂hij = G(bhij), G
being here the canonical mapping of X2

Σh
into L2(∆(Ah)) [14: Subsection 2.3].

This defines a sesquilinear form âΩ on F1
0 × F1

0. In view of (4.1) and (4.2), the
form âΩ is continuous, Hermitian and coercive (proceed as in [14: Subsection
5.1]). Therefore, if L denotes the continuous antilinear form on F1

0 given by
L (V ) = 〈f, v0〉 (V = (v0, v1, v2, . . . , vm) ∈ F1

0) then the variational problem{
U = (u0, u11, u12, . . . , u1m) ∈ F1

0 and

âΩ (U, V ) = L (V ) for all V = (v0, v1, v2, . . . , vm) ∈ F1
0

(4.7)

has one and only one solution.

On the other hand, for fixed ε > 0, let

aε (u, v) =
N∑

i,j=1

∫
Ω

aε
ij

∂u

∂xj

∂v

∂xi

dx (u, v ∈ H1
0 (Ω))

and

bε
h (u, v) =

N∑
i,j=1

∫
Ωh

bε
hij

∂u

∂xj

∂v

∂xi

dx (u, v ∈ H1 (Ωh) ).

Then,

aε (u, v) =
m∑

h=1

bε
h(u |Ωh

, v |Ωh
) (u, v ∈ H1

0 (Ω)) (4.8)

where, as usual, u |Ωh
denotes the restriction of u to Ωh.
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We end this subsection with one basic convergence result. Let 1 ≤ h ≤ m
be fixed. Let D

(
Ωh

)
denote the space of all complex functions θ on Ωh such that

θ = ϕ |Ωh
for some ϕ ∈ D(RN

x ). For θ0 ∈ D
(
Ωh

)
and θ1 ∈ D

(
Ωh

)
⊗ (A∞

h /C),

we put Θ = (θ0, JΩh
(θ̂1)) and Θε (x) = θ0 (x) + εθ1

(
x, x

ε

)
for x ∈ Ωh. Of course,

Θε ∈ D
(
Ωh

)
.

Lemma 4.1. Let (vε)ε∈E′ ⊂ H1 (Ωh) , where E ′ is a fundamental sequence.
Suppose that as E ′ 3 ε → 0,

∂vε

∂xj

→ DjW =
∂w0

∂xj

+ ∂jw1 in L2 (Ωh) -weak Σh (1 ≤ j ≤ N)

where W = (w0, w1) with w0 ∈ H1 (Ωh) and w1 ∈ L2(Ωh; H
1
#(∆(Ah))). Then,

in the above notation, bε
h (vε, Θε) → b̂Ωh

(W, Θ) as E ′ 3 ε → 0, where

b̂Ωh
(W, Θ) =

N∑
i,j=1

∫ ∫
Ωh×∆(Ah)

b̂hij(s)DjW (x, s)DiΘ(x, s)dxdβ(s).

Proof. This is a simple adaptation of the proof of [14: Lemma 5.1].

4.2. Homogenization results. The first point is to prove the following basic
theorem.

Theorem 4.1. Let U be the solution of (4.7). For each fixed real ε > 0, let
uε be the solution of (1.1) with (4.1)-(4.3). Suppose that (4.4) holds. Then, as
ε → 0,

uε → u0 in H1
0 (Ω)-weak (4.9)

uε → u0 in L2(Ω) (4.10)

∂uε

∂xj

∣∣∣
Ωh

→ DhjU in L2 (Ωh) -weak Σh (4.11)

for 1 ≤ j ≤ N, 1 ≤ h ≤ m.

Proof. Clearly aε (uε, v) = 〈f, v〉 for any v ∈ H1
0 (Ω). Hence, taking in

particular v = uε and using the ellipticity property, we see immediately that
the sequence (uε)ε>0 is bounded in H1

0 (Ω). Therefore, given an arbitrary fun-
damental sequence E and recalling that H1(Ω) is Σh-reflexive (see (4.4)) for
1 ≤ h ≤ m, we are led to a subsequence E ′ extracted from E, and to a family
of functions u0 ∈ H1

0 (Ω) and v1h ∈ L2(Ω; H1
#(∆(Ah))) (1 ≤ h ≤ m) such that

when E ′ 3 ε → 0, we have (4.9), (4.10) (by the Rellich Theorem) and

∂uε

∂xj

→ ∂u0

∂xj

+ ∂jv1h in L2(Ω)-weak Σh (1 ≤ j ≤ N, 1 ≤ h ≤ m).
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Let
U = (u0, u11, . . . , u1m) with u1h = v1h|Ωh

(1 ≤ h ≤ m) .

Clearly U ∈ F1
0 and further (4.11) holds when E ′ 3 ε → 0. Thus, the theorem

is proved if we can check that U satisfies the variational equation in (4.7) (we
refer to the line of argument followed in the proof of [14: Theorem 5.1]). For
this purpose, fix an arbitrary Φ ∈ F∞

0 , i.e., Φ is given by (4.5) and (4.6). Next,
let

Φε = Ψ0 +
m∑

h=1

εΨε
h (ε > 0)

where Ψε
h (x) = Ψh

(
x, x

ε

)
for x ∈ Ω. Evidently Φε ∈ D(Ω) and Ψε

h ∈ D (Ωh) ⊂
D(Ω). Thus, according to (4.8),

m∑
h=1

bε
h(uε|Ωh

, Φε|Ωh
) =

〈
f, Φε

〉
.

Noting that Φε → Ψ0 in H1
0 (Ω)-weak as ε → 0 (see,e.g., [16: Proposition 5.3]),

we deduce by Lemma 4.1 and use of (4.11) that âΩ (U, Φ) = L (Φ) for all Φ ∈
F∞

0 . Hence the theorem follows by the density of F∞
0 in F1

0.

The next point deals with the so-called local equations. Let us fix freely an
integer γ with 1 ≤ γ ≤ m. Let b̂γ denote the sesquilinear form on H1

#(∆(Aγ))×
H1

#(∆(Aγ)) defined by b̂γ (u, v) =
N∑

i,j=1

∫
∆(Aγ)

b̂γij (s) ∂ju (s) ∂iv (s) dβ (s)

for u, v ∈ H1
#(∆(Aγ)).

For almost every x ∈ Ωγ, u1γ (x) turns out to be the solution of the coercive
variational problem

u1γ (x) ∈ H1
#(∆(Aγ)) and

b̂γ(u1γ (x) , v) = −
N∑

k,j=1

∂u0

∂xj
(x)
∫

∆(Aγ)
b̂γkj (s) ∂kv (s) dβ (s)

for all v ∈ H1
#(∆(Aγ)),

(4.12)

as is easily seen by taking in (4.7) the particular V ’s such that v0 = 0, vh = 0
if h 6= γ, vγ (x) = ϕ (x) θ (x ∈ Ωγ) with ϕ ∈ D(Ωγ) and θ ∈ H1

#(∆(Aγ)).

More can be said about u1γ (x) . For fixed 1 ≤ j ≤ N, let χj
γ be the (unique)

solution of the coercive variational problem
χj

γ ∈ H1
#(∆(Aγ)) and

b̂γ(χ
j
γ, v) =

N∑
k=1

∫
∆(Aγ)

b̂γkj (s) ∂kv (s) dβ (s) (v ∈ H1
#(∆(Aγ))).
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Then, thanks to the uniqueness of the solution of (4.12) (see (4.2)), we see at
once that

u1γ (x) = −
N∑

k=1

∂u0

∂xk

(x) χk
γ a.e. in x ∈ Ωh. (4.13)

Finally, let us derive the boundary value problem for u0. To this end, let

pγij =

∫
∆(Aγ)

b̂γij (s) dβ (s)−
N∑

k=1

∫
∆(Aγ)

b̂γik (s) ∂kχ
j
γ (s) dβ (s)

where 1 ≤ i, j ≤ N. An elementary adaptation of the proof of [16: Lemma 5.3]
shows that the family {pγij}1≤i,j≤N satisfies the symmetry property pγji = pγij

(1 ≤ i, j ≤ N) and an ellipticity condition similar to (4.2). Consequently, if
for each pair of indices 1 ≤ i, j ≤ N we define qij ∈ L∞(Ω) as qij (x) = pγij

a.e. in x ∈ Ωγ (1 ≤ γ ≤ m), then the family {qij}1≤i,j≤N also satisfies similar
symmetry and ellipticity conditions.

This being so, by considering in (4.7) the V ’s characterized by vh = 0
(1 ≤ h ≤ m) and then using (4.13), we obtain

N∑
i,j=1

∫
Ω

qij (x)
∂u0

∂xj

(x)
∂v

∂xi

(x) dx = 〈f, v〉

for all v ∈ H1
0 (Ω). Hence the boundary value problem for u0 follows :

−
N∑

i,j=1

∂

∂xi

(
qij

∂u0

∂xj

)
= f in Ω, u0 ∈ H1

0 (Ω). (4.14)

Problem (4.7) is referred to as the global homogenized problem for (1.1) [with
(4.1)-(4.4)], whereas (4.12) and (4.14) are called the local problem at x ∈ Ωh and
the macroscopic homogenized problem, respectively, for (1.1). The behaviour
(as ε → 0) of uε has two fundamental aspects: the macroscopic behaviour and
the microscopic behaviour. The macroscopic behaviour is described by the so-
lution u0 of the macroscopic homogenized problem. The microscopic behaviour
depends on the observation point in Ω, and is characterized by means of the
m-tuple U1 = (u11, . . . , u1γ, . . . , u1m). Specifically, the microscopic behaviour (as
ε → 0) of uε at point x ∈ Ωγ is described by the solution u1γ (x) of (4.12).

Problem (4.7) is qualified as global because it involves both the macroscopic
and microscopic descriptions. From a physical point of view, problem (4.7)
lays emphasis on the fact that the macroscopic and microscopic effects appear
concomitantly.
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4.3. Applications. The present subsection deals with two practical applica-
tions of Theorem 4.1.

Application 1. Let the basic notation be as in Subsection 4.1. Let bhij (1 ≤
i, j ≤ N, 1 ≤ h ≤ m) with (4.1) and (4.2). We assume moreover that, for fixed
1 ≤ i, j ≤ N, the family {bhij}1≤h≤m is structured as follows :

(i) b1ij ∈ B∞(R; L2
per(Y

′)) where L2
per (Y ′) denotes the usual Hilbert space

of all functions u ∈ L2
loc(RN−1) (N ≥ 2) that are periodic in the sense

that u(y′ + k) = u(y′) a.e. in y′ = (y1, · · ·, yN−1) ∈ RN−1 for each
fixed k ∈ ZN−1, and B∞(R; L2

per(Y
′)) denotes the space of all bounded

continuous functions u : R → L2
per (Y ′) such that u(yN) converges in

L2
per (Y ′) as |yN | → ∞ (Y ′ is a copy of the open unit cube in RN−1)

(ii) b2ij ∈ L2(RN
y ) + L2

per (Y ) (Y defined in (1.3))

(iii) bhij ∈ L2
AP (RN

y ) (3 ≤ h ≤ m), where L2
AP (RN

y ) denotes the space of all
functions in L2

loc(RN
y ) that are almost periodic in Stepanoff sense [16].

Under the preceding hypotheses, our goal is to investigate the behaviour, as
ε → 0, of uε given by (1.1) with aε

ij (x) = aij

(
x
ε

)
(x ∈ Ω) where aij is defined in

(4.3). The desired result will follow by Theorem 4.1 if we can verify that there
exists a family of proper H-structures Σh (1 ≤ h ≤ m) on RN such that (4.4)
holds. According to [14: Examples 5.1, 5.3 and 5.4], we have indeed (4.4) with
Σ1 = ΣR′ × Σ∞ (where R′ = ZN−1), Σ2 = Σ∞,S (use [14: Corollary 5.2]) and
Σh = ΣR [14: Example 3.3] for 3 ≤ h ≤ m, where R is a suitable countable
subgroup of RN

y .

Application 2. Let aij ∈ L∞(RN
y ) (1 ≤ i, j ≤ N) with the symmetry property

aji = aij and the ellipticity property (1.2). We consider the boundary value
problem (1.1) in which the bounded open set Ω ⊂ RN is assumed to intersect
the hyperplane

{
x ∈ RN : xN = 0

}
. Our purpose is then to investigate the be-

haviour, as ε → 0, of uε (the solution of (1.1)) under the following structure
hypothesis:

aij lies in C(R; L2
per(Y

′)) and further,

limyN→+∞ aij(·, yN) = ζ1
ij, limyN→−∞ aij(·, yN) = ζ2

ij,

in the L2
per (Y ′) -norm, where ζh

ij ∈ L2
per (Y ′) (h = 1, 2) .

(4.15)

for 1 ≤ i, j ≤ N . To this end, fix freely two integers 1 ≤ i, j ≤ N and let

b1ij(y
′, yN) =

{
aij(y

′, yN) for y′ ∈ RN−1 and yN ≥ 0

aij(y
′,−yN) for y′ ∈ RN−1 and yN ≤ 0

and

b2ij(y
′, yN) =

{
aij(y

′,−yN) for y′ ∈ RN−1 and yN ≥ 0

aij(y
′, yN) for y′ ∈ RN−1 and yN ≤ 0.
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Clearly this gives two functions bhij ∈ B∞(R; L2
per(Y

′)) (h = 1, 2) with (in
the L2

per (Y ′)-norm)

lim
|yN |→∞

bhij(·, yN) = ζh
ij (h = 1, 2) .

However, bhij ∈ X2
Σ (1 ≤ i, j ≤ N, h = 1, 2) with Σ = ΣR′ × Σ∞ exactly as

in Application 1. Hence it follows that the problem under consideration falls
within the scope of Subsection 4.1 with

m = n = 2, Σh = Σ (h = 1, 2)

X1 =
{
y ∈ RN : yN > 0

}
and X2 =

{
y ∈ RN : yN < 0

}
,

and therefore Theorem 4.1 is applicable to the present case.

Remark. If in (4.15) we replace L2
per (Y ′) by the space L2

AP (RN−1) of all
functions in L2

loc(RN−1) that are almost periodic in Stepanoff sense (see [11],
[16]), then the preceding results are still valid provided some minor modification
is made (see [14: Remark 5.2]).

Remark. If ζ1
ij = ζ2

ij (1 ≤ i, j ≤ N), then the present study reduces to [14:
Example 5.3].
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