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Analysis of the Operator ∆−1div∆−1div∆−1div
Arising in Magnetic Models

Dirk Praetorius

Abstract. In the context of micromagnetics the partial differential equation

div(−∇u + m) = 0 in Rd

has to be solved in the entire space for a given magnetization m : Ω → Rd and Ω ⊆ Rd.
For an Lp function m we show that the solution might fail to be in the classical
Sobolev space W 1,p(Rd) but has to be in a Beppo-Levi class W p

1 (Rd). We prove
unique solvability in W p

1 (Rd) and provide a direct ansatz to obtain u via a non-local
integral operator Lp related to the Newtonian potential. A possible discretization
to compute ∇(L2m) is mentioned, and it is shown how recently established matrix
compression techniques using hierarchical matrices can be applied to the full matrix
obtained from the discrete operator.
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1. Motivation and introduction

Let Ω ⊆ Rd, for d = 2, 3, denote the spatial domain of a ferromagnetic body.
In the classical model for stationary micromagnetics due to Weiss, Landau, and
Lifshitz [3, 11], an energy functional E has to be minimized over an admissible
set A of magnetizations m : Ω → Rd. The functional E comprises four terms,
which are known as exchange energy, anisotropic energy, exterior energy, and
stray-field (or magnetostatic) energy,

E(m) = α

∫
Ω

|∇m|2 dx +

∫
Ω

φ(m) dx−
∫

Ω

f ·m dx +
1

2

∫
Rd

|∇u|2 dx. (1)
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Here, the exchange parameter α > 0 and the anisotropy density φ ∈ C∞(Rd;R≥0)
are given. Frequently, Ω is supposed to be a large body so that the exchange
contribution can be neglected, i.e. α = 0 in (1) [7]. The magnetic potential
u : Rd → R and the magnetization m are linked through Maxwell’s equations
which imply the partial differential equation

∆u = div m (2)

in the entire space Rd (where m is extended by zero outside of Ω). As usual,
Equation (2) is treated in the sense of distributions. By definition, we are
looking for a weakly differentiable function u which satisfies

〈∇u ; ∇v〉 = 〈m ; ∇v〉 for all v ∈ D(Rd), (3)

where 〈· ; ·〉 denotes the scalar product of L2(Rd; Rd) and D(Rd) denotes the
vector space of all C∞-functions with compact support.

The length |m| of the vector field depends only on the temperature and
is therefore usually assumed to be constant. In particular, one has m ∈
L∞(Ω; Rd). Thus, it seems to be interesting to investigate the solvability of
(3) for m ∈ Lp(Ω; Rd).

For bounded Ω and d = 3 it is well known that, given m ∈ L2(Ω; Rd), there
is a unique solution u ∈ H1(Rd) which solves (3) [12, 14]. But, for unbounded
Ω or d = 2, the solution u ∈ H1

`oc(Rd) in general fails to be in L2(Rd; Rd). In
particular, we show that, for d = 2, this is related to the fundamental solution
of the Laplacian.

The paper is organized as follows: Section 2 recalls the necessary definitions
and classical results applied in the following sections. In Section 3 the Banach
spaces W p

1 (Rd) are introduced, and it is shown that for a magnetization m ∈
L2(Rd; Rd) the Hilbert space W 2

1 (Rd) is the right space to be considered; there
is a unique solution u ∈ W 2

1 (Rd) of (3). Section 4 recalls the definition of
Calderón-Zygmund kernels and states the main theorem on Calderón-Zygmund
convolutions which is applied in Section 5. We show that for m ∈ Lp(Rd; Rd)
and 1 < p < ∞ the potential equation (3) has a unique solution u = Lpm ∈
W p

1 (Rd). At least for a magnetization m ∈ L1(Rd; Rd)∩Lp(Rd; Rd), the potential
Lpm is given as a classical convolution

Lpm =
d∑

j=1

∂G

∂xj

∗mj,

where G denotes the Newtonian kernel and mj is the j-th component of m.
The extension of Lp defines a continuous linear operator from Lp(Rd; Rd) to
W p

1 (Rd). Finally, Section 6 gives the application of the provided results for a
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Galerkin discretization with piecewise constant ansatz functions in the context
of computational micromagnetics. We show how the theory of H2-matrices can
be applied to the Galerkin elements to decrease computational cost down to
(almost) linear.

2. Preliminaries

For functions u, v : Rd → R we define the convolution u ∗ v of u and v by

(u ∗ v)(x) :=

∫
Rd

u(x− y)v(y) dy for all x ∈ Rd,

whenever the integral exists. As usual in the context of convolutions, functions
w : Ω → R, for Ω ⊆ Rd, are identified with their trivial extension w : Rd → R,
i.e. w(x) := 0 for x ∈ Rd\Ω. We summarize some well-known facts about
convolutions [17, 20, 21, 22].

Proposition 2.1.

(i) For 1 ≤ p, q, r ≤ ∞ with 1
p

+ 1
q

= 1 + 1
r
, the convolution u ∗ v of

u ∈ Lp(Rd) and v ∈ Lq(Rd) satisfies

u ∗ v ∈ Lr(Rd) with ‖u ∗ v‖Lr(Rd) ≤ ‖u‖Lp(Rd)‖v‖Lq(Rd).

(ii) For q = p
p−1

=: p′, the convolution u∗v ∈ C(Rd)∩L∞(Rd) is uniformly

continuous. Further, 1 < p < ∞ and q = p′ imply u ∗ v ∈ C0(Rd), i.e.
u ∗ v vanishes at infinity.

(iii) For k ∈ N, u ∈ Lp
`oc(Rd), v ∈ Ck

c (Rd), and multi-indices α ∈ Nd
0 with

|α| ≤ k, we have

u ∗ v ∈ Ck(Rd) with ∂α(u ∗ v) = u ∗ (∂αv).

For d ≥ 2, we define the Newtonian kernel G : Rd\{0} → R by

G(x) :=

{
1
γd

log |x| for d = 2,
1

(2−d)γd
|x|2−d for d > 2,

(4)

where γd = |∂B(0, 1)| denotes the surface measure of the unit sphere, in par-
ticular γ2 = 2π, γ3 = 4π. The Newtonian kernel is the fundamental solution of
the Laplacian, i.e. we have the following well-known proposition [8].

Proposition 2.2. For any test function f ∈ D(Rd) the Newtonian potential
w := G ∗ f satisfies w ∈ C∞(Rd) with ∆w = f in Rd. Moreover, for the partial
derivatives of w it holds that ∂w/∂xj = (∂G/∂xj) ∗ f = G ∗ (∂f/∂xj).
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Corollary. For any smooth magnetization m = (m1, . . . ,md) ∈ D(Rd; Rd),
a solution of Equation (2) is given by u := G ∗ (div m) =

∑d
j=1(∂G/∂xj) ∗mj.

For later use, we need the standard notation of Sobolev and Lebesgue
spaces. For 1 ≤ p < ∞ and ω ⊆ Rd an open set, we denote with Lp(ω)
the Banach space of all measurable functions whose absolute value to the power
p is integrable. The inner product of the Hilbert space L2(ω) is given by

〈u ; v〉 :=

∫
ω

u(x)v(x) dx for all u, v ∈ L2(ω). (5)

For p = ∞, L∞(ω) denotes the Banach space of all measurable functions which
are essentially bounded. For n ∈ N0, the classical Sobolev space W n,p(ω) con-
sists of all functions u : ω → R which are n times weakly differentiable and
whose (weak) derivatives of order |α| ≤ n satisfy ∂αu ∈ Lp(ω). The norm on
W n,p(ω) is given by

‖u‖W n,p(ω) :=
( ∑
|α|≤n

‖∂αu‖p
Lp(ω)

) 1
p

‖u‖W n,∞(ω) := max
|α|≤n

‖∂αu‖L∞(ω).

(6)

In this sense we have Lp(ω) = W 0,p(ω) and it is quite common to denote the
Hilbert space W n,2(ω) by Hn(ω). The subspace W n,p

0 (ω) is the completion of
the test functions D(ω) with respect to ‖ · ‖W n,p(ω). The subscript `oc, e.g.
in W n,p

`oc (ω), indicates that u ∈ W n,p
`oc (ω) satisfies u ∈ W n,p(K) for all compact

subsets K ⊆ ω. We write W n,p(ω; Rd) whenever we are dealing with vector
valued functions. Finally, we point out that, for any 1 ≤ p ≤ ∞, the conjugate
index is denoted with p′ := p

p−1
∈ [1,∞]. Further, B(x, ε) denotes the closed

ball with radius ε > 0 and center x ∈ Rd. As usual, | · | denotes both the
absolute value of a scalar λ ∈ R and the (Euclidean) norm of a vector x ∈ Rd,
respectively. The scalar product of two vectors x, y ∈ Rd is written as x · y.

3. The Banach spaces W p
1 (Rd)

For 1 ≤ p ≤ ∞, we define the vector space [15, 13]

Lp
∇(Rd; Rd) :=

{
f ∈ Lp(Rd; Rd)

∣∣ ∃u ∈ W 1,p
`oc (R

d) ∇u = f
}

(7)

of all Lp functions which are weak gradients.

Lemma 3.1. Lp
∇(Rd; Rd) is a closed subspace of Lp(Rd; Rd), whence a Ba-

nach space. Furthermore, Lp
∇(Rd; Rd) is reflexive for 1 < p < ∞ and a Hilbert

space for p = 2.
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Proof. Let (fn) be a Cauchy sequence in Lp
∇(Rd; Rd) with limit f ∈ Lp(Rd; Rd).

Further, let (un) be a sequence in W 1,p
`oc (Rd) with fn = ∇un. For k ∈ N, define

v
(k)
n := un − −

∫
B(0,k)

un dx, where −
∫

B
dx := 1

|B|

∫
ω

dx denotes the integral mean

over B ⊆ Rd. Since ∇v
(k)
n = fn, a Poincaré inequality on B(0, k) yields that

(v
(k)
n )n∈N converges to a function v(k) ∈ W 1,p(B(0, k)) with ∇v(k) = f |B(0,k).

Now define u(k) := v(k) − −
∫

B(0,1)
v(k) dx and observe u(k) ∈ W 1,p(B(0, k)) with

u(k)|B(0,k−1) = u(k−1). Thus, k →∞ gives a function u ∈ W 1,p
`oc (Rd) with ∇u = f .

The remaining claims follow from principles of functional analysis [20].

Now, we consider the vector space

W̃ p
1 (Rd) :=

{
u ∈ W 1,p

`oc (R
d)

∣∣∇u ∈ Lp(Rd; Rd)
}
. (8)

Note that the natural definition

‖u‖W p
1 (Rd) := ‖∇u‖Lp(Rd;Rd) (9)

only induces a seminorm on this space. Two functions u, v ∈ W̃ p
1 (Rd) have the

same gradient, i.e. ∇u = ∇v, if and only if u = v + c for a constant c ∈ R.
Factored out the piecewise constants from W̃ p

1 (Rd), i.e

W p
1 (Rd) := W̃ p

1 (Rd)/R, (10)

the quotient space equipped with ‖ · ‖W p
1 (Rd) obviously satisfies the following

lemma.

Lemma 3.2. W p
1 (Rd) is a Banach space which is reflexive for 1 < p <

∞, and W 2
1 (Rd) is a Hilbert space. Moreover, the gradient ∇ : W p

1 (Rd) →
Lp
∇(Rd; Rd) is an isometric isomorphism.

Remark. The inclusion ip : W 1,p(Rd) ↪→ W p
1 (Rd) which maps a function

u ∈ W 1,p(Rd) to the corresponding equivalence class in W p
1 (Rd), is continu-

ous and injective. Thus, W 1,p(Rd) and D(Rd) can be treated as subspaces of
W p

1 (Rd).

The following result can be found in [13, Appendix A] or easily be verified
by use of the Fourier transform.

Lemma 3.3. The test functions D(Rd) are dense within W 2
1 (Rd).

Proposition 3.1. For m ∈ L2(Rd; Rd), there is a unique u = um ∈ W 2
1 (Rd)

which satisfies (3). The operator L : L2(Rd; Rd) → W 2
1 (Rd),m 7→ um is linear

and bounded with operator norm ‖L‖ = 1. The composition

P := ∇ ◦ L ∈ L(L2(Rd; Rd); L2(Rd; Rd)) (11)

is the L2-orthogonal projection onto L2
∇(Rd; Rd), and we have

L2
∇(Rd; Rd)⊥ =

{
m ∈ H(div; Rd)

∣∣ div m = 0
}
. (12)
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Proof. According to the Cauchy inequality and ‖v‖W 2
1 (Rd) = ‖∇v‖L2(Rd;Rd),

Φ(v) := 〈m ; ∇v〉

defines a bounded linear functional Φ ∈ W 2
1 (Rd)∗ with norm ‖Φ‖ ≤ ‖m‖L2(Rd;Rd).

Now, (3) reads

〈u ; v〉W 2
1 (Rd) = Φ(v) for all v ∈ D(Rd). (13)

With respect to Lemma 3.3, D(Rd) in (13) can be replaced by W 2
1 (Rd) and Riesz’

theorem yields the existence of a unique u ∈ W 2
1 (Rd) satisfying the equality.

The estimation of the norm again follows from the Cauchy inequality,

‖u‖2
W 2

1 (Rd) = 〈∇u ; ∇u〉 = 〈m ; ∇u〉 ≤ ‖m‖L2(Rd;Rd)‖u‖W 2
1 (Rd),

i.e. ‖Lm‖W 2
1 (Rd) ≤ ‖m‖L2(Rd;Rd). For m ∈ L2

∇(Rd; Rd), we have m = ∇(Lm),

whence ‖L‖ = 1 and P is a projection onto L2
∇(Rd; Rd). From ‖P‖ = ‖L‖ =

1, we derive that P is orthogonal [20]. Equation (12) follows directly from
Lemma 3.3.

Remark. Since the embedding i2 : H1(Rd) ↪→ W 2
1 (Rd) is injective and (3)

has a unique solution in W 2
1 (Rd), there is at most one solution in H1(Rd). Later

we will investigate in which cases the unique solution u ∈ W 2
1 (Rd) is represented

by a function in H1(Rd).

Remark. For the numerical treatment of P the latter proposition is mean-
ingless. However, in Section 5 an analytical representation of L is introduced
which carries over to the case 1 < p < ∞ instead of p = 2.

4. The analytical main result

The theorem we want to prove requires some preliminaries on the Calderón-
Zygmund kernels defined below. For any kernel h : Rd\{0} → R we make

the convention to write h̃ and hε for h̃(x) := h(−x) and hε := hχRd\B(0,ε)

with arbitrary ε > 0, respectively, where χRd\B(0,ε) denotes the characteristic
function.

Definition 4.1. A measurable function κ : Rd\{0} → R is called Calderón-
Zygmund kernel if there is a constant c1 > 0 such that for any x 6= 0 and
0 < r < R < ∞ there holds

|κ(x)| ≤ c1|x|−d (14)∫
|y|>2|x|

|κ(y − x)− κ(y)| dy ≤ c1 (15)∫
r<|y|<R

κ(y) dy = 0. (16)
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Theorem 4.1 (Calderón-Zygmund [22]). For a Calderón-Zygmund ker-
nel κ, 1 < p < ∞, ε > 0 and f ∈ Lp(Rd), the convolution of κε and f satisfies

κε ∗ f ∈ Lp(Rd) with ‖κε ∗ f‖Lp(Rd) ≤ cp‖f‖Lp(Rd), (17)

where the constant cp > 0 depends only on p and κ but neither on ε nor f .
Further, κε ∗ f converges in Lp(Rd) for ε → 0. Consequently,

Spf := lim
ε→0

(κε ∗ f) ∈ Lp(Rd) (18)

defines a bounded operator Sp ∈ L
(
Lp(Rd); Lp(Rd)

)
with norm ‖Sp‖ ≤ cp. Since

Sp extends the convolution, we shall write κ ∗̃ f := Spf .

Remark. The notation κ ∗̃ f is independent of p in the following sense: For
1 < p, q < ∞ and f ∈ Lp(Rd)∩Lq(Rd), one has Spf = Sqf since Lp convergence
for ε → 0 implies pointwise convergence almost everywhere [21].

The partial derivatives of the Newtonian kernel G, ∂G
∂xj

(x) = 1
γd

xj

|x|d , give rise

to the following definition.

Definition 4.2. A kernel h : Rd\{0} → R is homogeneous of degree α ∈ R
if h(λx) = λαh(x) for any λ > 0 and x 6= 0.

To give first examples of Calderón-Zygmund kernels and to see that the
second order partial derivatives of the Newtonian kernel κ := ∂2G/(∂xj∂xk)
are of Calderón-Zygmund type, we cite the following lemma from [1].

Lemma 4.1. For h ∈ C2(Rd\{0}) homogeneous of degree 1−d, any partial
derivative κ := ∂h/∂xj is a Calderón-Zygmund kernel.

Theorem 4.2. Let 1 < p < ∞ and h ∈ C1(Rd\{0}) be homogeneous of de-
gree 1−d such that the first order partial derivatives of h are Calderón-Zygmund
kernels. Then, there is a unique bounded operator Tp ∈ L(Lp(Rd); W p

1 (Rd)) with

Tpf = h ∗ f for all f ∈ D(Rd). (19)

For f ∈ Lp(Rd), the weak derivative of Tpf is given by

∂

∂xj

(Tpf) = κj ∗̃ f + λjf, (20)

where κj := ∂h/∂xj and λj :=
∫

∂B(0,1)
h(x)xj dsx. The operator Tp has the

following mapping properties:

(a) Tpf = h ∗ f for f ∈ L1(Rd) ∩ Lp(Rd),

(b) Tpf = h ∗ f for f ∈ Lq(Rd) ∩ Lr(Rd) with 1 ≤ q < d < r ≤ ∞ and
q ≤ p ≤ r,
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(c) Tpf = h ∗ f ∈ W 1,p(Rd) for f ∈ L1(Rd) ∩ Lp(Rd) and d > p′ (i.e.
pd > p + d).

Further, if Ω is bounded, the restriction to Lp(Ω) satisfies

(d) Tp ∈ L(Lp(Ω); W 1,p(Rd)) for d > p′.

Finally, for 1 < p, q < ∞ we have

(e) Tpf = Tqf for all f ∈ Lp(Rd) ∩ Lq(Rd).

Remark. The equalities in Theorem 4.2, e.g. (19), have to be understood

in the sense that h ∗ f ∈ W̃ p
1 (Rd) (resp. h ∗ f ∈ W 1,p(Rd)) exists and is a

representer of the equivalence class Tpf . Since the operator Tp extends the
convolution with h, we write h ∗̃ f := Tpf for f ∈ Lp(Rd). Due to (e) this
notation is independent of p.

Remark. For the first order partial derivatives h := ∂G/∂xk of the New-
tonian kernel G, λj from (20) can be computed,

λj =

{
0 for j 6= k,
1
d

for j = k.
(21)

With the unit sphere S := ∂B(0, 1) this follows from λj = 1
|S|

∫
S xjxk dsx for

j 6= k by symmetry and from |S| =
∑d

j=1

∫
S x2

j dsx = d
∫

S x2
k dsx for j = k.

The proof of the theorem needs the following elementary lemma which can
be derived directly from Proposition 2.1.

Lemma 4.2. For a measurable function h : Rd\{0} → R which is of degree
1− d and h1 := hχRd\B(0,1), the following holds:

(i) h1 ∈ Lt(Rd), h− h1 ∈ Ls(Rd) for 1 ≤ s < d′ < t ≤ ∞,

(ii) h ∗ f ∈ Lp
`oc(Rd) for f ∈ Lp(Rd) ∩ Lq(Rd), 1 ≤ p ≤ ∞, and 1 ≤ q < d,

(iii) h ∗ f ∈ L∞(Rd) for f ∈ Lp(Rd) ∩ Lq(Rd) and 1 ≤ q < d < p ≤ ∞,

(iv) 〈h∗f ; g〉 = 〈f ; h̃∗g〉 for f as in (iii), g ∈ L1(Rd), and h̃(x) := h(−x).

Proof of Theorem 4.2 (main part). For f ∈ D(Rd), we have h∗f ∈ L∞(Rd).

To verify h ∗ f ∈ W̃ p
1 (Rd) it remains to show that

〈h ∗ f ; ∂φ/∂xj〉 = −〈κj ∗̃ f + λjf ; φ〉 for all φ ∈ D(Rd). (22)

For the notation, we use the conventions introduced above. Let φ ∈ D(Rd) and
choose r > 0 with supp(f) ∪ supp(φ) b B(0, r) and note

〈h ∗ f ; ∂φ/∂xj〉 = 〈f ; h̃ ∗ (∂φ/∂xj)〉

=

∫
supp(f)

f(y) lim
ε→0

∫
B(0,r)\B(y,ε)

h(x− y)
∂φ

∂xj

(x) dx dy.
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For fixed y ∈ supp(f) and small ε > 0, the inner integral reads with partial
integration∫

B(0,r)\B(y,ε)

h(x− y)
∂φ

∂xj

(x) dx

= −
∫

B(0,r)\B(y,ε)

κj(x− y)φ(x) dx +

∫
∂(B(0,r)\B(y,ε))

h(x− y)φ(x)nj(x) dsx

= −(κ̃j,ε ∗ φ)(y)−
∫

∂B(y,ε)

h(x− y)φ(x)
xj − yj

ε
dsx,

where the Calderón-Zygmund kernel κ̃j is defined by κ̃j(x) = κj(−x). Recall
that according to Theorem 4.1, κ̃j,ε ∗ φ converges to κ̃j ∗̃φ in Lp(Rd) for ε → 0.
(This allows us to exchange the limit and the integration with respect to y.)
With transformations, the surface integral reads∫

∂B(y,ε)

h(x− y)φ(x)
xj − yj

ε
dsx =

∫
∂B(0,1)

h(x)xjφ(y + εx) dsx

= λjφ(y) +

∫
∂B(0,1)

h(x)xj

(
φ(y + εx)− φ(y)

)
dsx,

and the second term in the sum vanishes for ε → 0. Combining both equations,
we end up with

〈h ∗ f ; ∂φ/∂xj〉 = − lim
ε→0

〈f ; κ̃j,ε ∗ φ〉 − 〈f ; λjφ〉

= − lim
ε→0

〈κj,ε ∗ f ; φ〉 − 〈f ; λjφ〉 = 〈κj ∗̃ f − λjf ; φ〉

and derive (22). In particular, we obtain with Theorem 4.1

‖∇(h ∗ f)‖Lp(Rd;Rd) ≤ c2‖f‖Lp(Rd),

where c2 > 0 only depends on d, p, h, and its partial derivatives. Considering
D(Rd) as a subspace of Lp(Rd), we have shown that Tpf := h ∗ f defines a
bounded operator Tp ∈ L(D(Rd); W p

1 (Rd)). Density provides a unique extension
Tp ∈ L(Lp(Rd); W p

1 (Rd)). Equality (20) carries over from D(Rd) to Lp(Rd) by
continuity.

The remaining claims of the theorem follow from classical density argu-
ments, which can be applied according to the additional assumptions on f ∈
Lp(Rd).

Proof of Theorem 4.2 (a–e). Part (a). We have to show that h ∗ f ∈
Lp

`oc(Rd) is weakly differentiable with weak derivative κj ∗̃ f +λjf . To this end,
choose a sequence (fn) in D(Rd) that converges to f in L1(Rd) and Lp(Rd)
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(for instance a sequence of mollifications of f). For all φ ∈ D(Rd), a Hölder
inequality shows

|〈h ∗ f ; ∂φ/∂xj〉 − 〈h ∗ fn ; ∂φ/∂xj〉| ≤ ‖f − fn‖L1(Rd)‖h̃ ∗ (∂φ/∂xj)‖L∞(Rd),

and the right-hand side vanishes for n →∞. Hence, we obtain

〈h ∗ f ; ∂φ/∂xj〉 = lim
n→∞

〈h ∗ fn ; ∂φ/∂xj〉

= lim
n→∞

〈κj ∗̃ fn + λjfn ; φ〉 = 〈κj ∗̃ f + λjf ; φ〉,

where we have used the convergence in Lp(Rd).

Part (b): W.l.o.g. we may assume f ≥ 0. Define fn := min(f, n)χB(0,n)

and note that fn converges to f in Ls(Rd) for s = p, q, r. According to Propo-
sition 2.1,

‖h ∗ (f − fn)‖L∞(Rd) ≤ ‖h1 ∗ (f − fn)‖L∞(Rd) + ‖(h− h1) ∗ (f − fn)‖L∞(Rd)

≤ ‖h1‖Lq′ (Rd)‖f − fn‖Lq(Rd)

+ ‖h− h1‖Lr′ (Rd)‖f − fn‖Lr(Rd),

i.e. h ∗ fn converges to h ∗ f in L∞(Rd). The application of (a) yields

〈h ∗ f ; ∂φ/∂xj〉 = lim
n→∞

〈h ∗ fn ; ∂φ/∂xj〉

= lim
n→∞

〈κj ∗̃ fn + λjfn ; φ〉 = 〈κj ∗̃ f + λjf ; φ〉

for any test function φ ∈ D(Rd).

Part (c). According to (a) it remains to show that h ∗ f ∈ Lp(Rd).
With Lemma 4.2 we have (h − h1) ∈ L1(Rd) and h1 ∈ Lp(Rd) since p > d′.
Proposition 2.1 yields h1 ∗ f , (h− h1) ∗ f ∈ Lp(Rd).

Part (d). Assertion (c) yields that the restriction T : Lp(Ω) → W 1,p(Rd)
from Tp to Lp(Ω) is well-defined and linear. Since the inclusion ip : W 1,p(Rd) ↪→
W p

1 (Rd) and the composition Tp = ip ◦T are continuous, Banach’s closed graph
theorem implies that T is also continuous.

Part (e). The claim follows directly from (20) since the right-hand side is
independent of p, q. It defines a function in Lp(Rd)∩Lq(Rd) by Theorem 4.1.

5. Unique solvability of the potential equation (3)

In the subsequent section we show that also for 1 < p < ∞ and m ∈ Lp(Rd; Rd)
(instead of p = 2) the potential equation (3) has a unique solution u ∈ W p

1 (Rd).
We provide a representation of the operator L which was introduced for p = 2
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in Proposition 4.2. Recall from Corollary 2.2 that, for any arbitrary smooth
magnetization m = (m1, . . . ,md) ∈ D(Rd; Rd),

u := L0m :=
d∑

j=1

∂G

∂xj

∗mj (23)

is a solution of Equation (2). In particular, u solves the weak form (3).

Proposition 5.1. Given 1 ≤ p ≤ ∞ and m ∈ Lp(Rd; Rd), Equation (3)
has at most one solution u ∈ W p

1 (Rd).

Proof. Assume that u1, u2 ∈ W p
1 (Rd) solve (3). Then e := u2 − u1 ∈

W p
1 (Rd) satisfies ∆e = 0 in a weak sense. In particular, any derivative f :=

∂e/∂xj satisfies ∆f = 0 and f ∈ Lp(Rd). For any φ ∈ D(Rd) it follows that
∆(φ∗f) = φ∗∆f = 0 and φ∗f ∈ C∞(Rd)∩L∞(Rd) by Proposition 2.1. But then
Liouville’s theorem implies φ ∗ f = 0. Since this holds for any test function φ,
Lebesgue’s differentiation theorem yields f = 0, whence u1 = u2 ∈ W p

1 (Rd).

Since the kernels hj := ∂G/∂xj satisfy the assumptions of Theorem 4.2,
we obtain the following result which states, in particular, the unique solvability
of (3) for m ∈ Lp(Rd; Rd) in W p

1 (Rd) for 1 < p < ∞.

Theorem 5.1. For any 1 < p < ∞, there is a unique bounded operator

Lp ∈ L
(
Lp(Rd; Rd); W p

1 (Rd)
)

(24)

which extends L0 from D(Rd; Rd) to Lp(Rd; Rd). For a magnetization m ∈
Lp(Rd; Rd), u := Lpm is the unique solution of (3). Further, Lp has the follow-
ing mapping properties:

(a) Lpm = L0m for m ∈ L1 ∩ Lp

(b) Lpm = L0m for m ∈ Lq ∩ Lr with 1 ≤ q < d < r ≤ ∞ and q ≤ p ≤ r

(c) Lpm = L0m ∈ W 1,p(Rd) for m ∈ L1 ∩ Lp and d > p′

where Lpm = L0m, in particular, states that the convolution L0m exists in the
classical sense. Further, for a bounded open set Ω ⊆ Rd, the restriction of Lp

to Lp(Ω; Rd) satisfies

(d) Lp ∈ L(Lp(Ω; Rd); W 1,p(Rd)) for d > p′.

Finally, for p = 2, the extended convolution operator L2 coincides with the
operator L introduced in Proposition 3.1 and we remark that (c) and (d) hold
for d ≥ 3.

Proof. According to Theorem 4.2, Lp is given by

Lm =
d∑

j=1

∂G

∂xj

∗̃mj for m = (m1, . . . ,md) ∈ Lp(Rd; Rd), (25)
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and this extension is unique since the test functions are dense within Lp. The
mapping properties (a)–(d) carry over from the corresponding statements in
Theorem 4.2. It remains to show that u = Lpm solves (3) for arbitrary m ∈
Lp(Rd; Rd). Let (mk)k∈N be a sequence of test functions which converges to m
in Lp and recall that (3) has already been shown for all mk. By definition of
W p

1 (Rd) we infer that ‖Lp(m −mk)‖W p
1 (Rd) = ‖∇(Lpm) − ∇(Lpmk)‖Lp(Rd;Rd).

Combined with the Hölder inequality, this yields for all v ∈ D(Rd)

|〈−∇(Lpm) + m ; ∇v〉| = |〈−∇(Lpm) +∇(Lpmk) ; ∇v〉+ 〈m−mk ; ∇v〉|
≤ ‖∇v‖Lp′ (Rd)

(
‖Lp(m−mk)‖W p

1 (Rd) + ‖m−mk‖Lp(Rd;Rd)

)
,

and the right-hand side vanishes for k →∞ since Lp is continuous.

Remark. Theorem 5.1 yields a constructive proof of Lemma 3.3: Write
W 2

1 (Rd) = H ⊕ H⊥ with H the closure of D(Rd) in W 2
1 (Rd). For u ∈ H⊥ we

have 〈∇u ; ∇v〉 = 0 for all v ∈ D(Rd), whence u is the potential of the zero
magnetization, i.e. u = 0.

6. Application to computational micromagnetics

Let Ω be a bounded Lipschitz domain in Rd. For a magnetization m ∈ L2(Ω; Rd),
let u := L2m denote the corresponding (unique) magnetic potential. According
to (3) and Proposition 3.1, the stray-field energy from (1) reads∫

Rd

|∇u|2 dx =

∫
Ω

m · ∇u dx . (26)

On the right-hand side, the continuous bilinear form

a : L2(Rd; Rd)× L2(Rd; Rd) → R, a(m, m̃) := 〈∇(L2m) ; m̃〉 (27)

appears. For the discretization of which, let T = {T1, . . . , TN} be a triangulation
of Ω, i.e.

(i) every T ∈ T is a (bounded) Lipschitz domain which satisfies T ⊆ Ω

(ii) Ω =
⋃ {

T
∣∣ T ∈ T

}
, where T denotes the closure of T ⊆ Rd

(iii) for different Tj, Tk ∈ T , we have Tj ∩ Tk = ∅.
Further, let S0(T ) denote the vector space of all T -piecewise constant functions.
Then, for piecewise constant magnetizations m, m̃ ∈ S0(T )d, the following
proposition gives a formula to compute a(m, m̃) analytically.

Remark. At least for the large body model of micromagnetics due to DeS-
imone [7] the consideration of piecewise constant functions is reasonable, cf. [5]
for a discrete relaxed model and the corresponding numerical analysis.
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Proposition 6.1. For bounded Lipschitz domains ω, ω̃ ⊆ Rd and vectors
m, m̃ ∈ Rd, we have

a(χωm, χ̃ω̃m̃) = −
∫

∂ω

∫
∂ω̃

G(x− y)(n(x) ·m)(ñ(y) · m̃) dsydsx, (28)

where χω and χω̃ denote the corresponding characteristic functions and n, ñ
denote the outer normal vectors on ∂ω and ∂ω̃, respectively. Further, we have
the symmetry properties

a(χωm, χω̃m̃) = a(χω̃m̃, χωm) = a(χωm̃, χω̃m). (29)

In particular, Bjk := a(χωej, χω̃ek) defines a symmetric matrix B ∈ Rd×d
sym such

that

a(χωm, χω̃m̃) = m ·Bm̃. (30)

In the case dist(ω, ω̃) > 0, the coefficients of B can be computed by

Bjk =

∫
ω

∫
ω̃

∂2G

∂xj∂xk

(x− y) dy dx. (31)

Proof. Since ∇ ◦ L2 is an orthogonal projection, the bilinear form a(·, ·)
is symmetric [20]. This shows the first equality in (29). To obtain the other
claims of the proposition, note that the bilinearity of a(·, ·) leads to

a(χωm, χω̃m̃) =
d∑

j,k=1

mjm̃k a(χωej, χω̃ek) = m ·Bm̃.

Therefore only the special case m = ej and m̃ = ek has to be treated. To abbre-
viate notation, we write h` := ∂G/∂x` and κjk := ∂2G/(∂xj∂xk). Theorem 4.2
and Remark 4 yield

∂(hj ∗ χω)

∂xk

= κjk ∗̃χω +
δjk

d
χω =

∂(hk ∗ χω)

∂xj

with Kronecker’s δjk. Further, we have L2(χωej) = L0(χωej) = hj ∗ χω. With
the definition of the Calderón-Zygmund convolution κjk ∗̃χω, we obtain

Bjk = 〈∇ ◦ L(χωej) ; χω̃ek〉 = 〈κjk ∗̃χω ; χω̃〉+
δjk

d
〈χω ; χω̃〉

The symmetry κjk(x) = κjk(−x) shows 〈κjk ∗̃χω ; χω̃〉 = 〈χω ; κjk ∗̃χω̃〉 and
therefore Bjk = Bkj, i.e. we obtain the second equality in (29). To prove (28)
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note that Theorem 4.2 in particular states hk ∗ χω̃ ∈ W 1,p
`oc (Rd). Thus, partial

integration on the bounded Lipschitz domain ω yields∫
ω

∂(hk ∗ χω̃)

∂xj

dx =

∫
∂ω

(hk ∗ χω̃)(x)nj(x) dsx.

For fixed x ∈ ∂ω another partial integration for G ∈ W 1,1
`oc (Rd) gives

(hk ∗ χω̃)(x) =

∫
ω̃

∂G

∂xk

(x− y) dy

= −
∫

ω̃

∂G

∂yk

(x− y) dy

= −
∫

∂ω̃

G(x− y)ñk(y) dsy.

Combining this with L(χω̃ek) = hk ∗ χω̃ we infer

a(χω̃ek, χωej) =

∫
ω

∂(hk ∗ χω̃)

∂xj

dx = −
∫

∂ω

∫
∂ω̃

G(x− y)nj(x)ñk(y) dsydsx.

Finally, (31) follows by simple convolution properties. We have hk ∗ χω̃ ∈
C1(Rd\ω̃) with ∂(hk ∗ χω̃) = (∂hk/∂xj) ∗ χω̃, whence

a(χω̃ek, χωej) =

∫
ω

∂(hk ∗ χω̃)

∂xj

dx =

∫
ω

κjk ∗ χω̃ dx =

∫
ω

∫
ω̃

κjk(x− y) dy dx.

This concludes the proof.

Remark. Equation (28) was also proved by Hackbusch and Melenk [10] for
d = 3 by direct calculation. Although their proof does not use the result due
to Calderón and Zygmund, this is what is behind when they use the Fourier
transform to show the continuity of the bilinear form a(·, ·).

Remark. Obviously, the given proof of Equation (29) carries over to ar-
bitrary functions ϕ, ϕ̃ ∈ L2(Rd), i.e. the characteristic functions χω, χω̃ can be
replaced by ϕ, ϕ̃.

Computing the stiffness matrix A for a(·, ·). For a Galerkin discretization
of (26) with piecewise constant ansatz and test functions, one has to compute
the matrix

A ∈ RdN×dN
sym with Ajk := a(ϕj, ϕk) (32)

and a fixed basis {ϕ1, . . . , ϕdN} of S0(T )d. A reasonable choice for a basis is

ϕj := χTj
e1, ϕN+j := χTj

e2 etc. for 1 ≤ j ≤ N, (33)
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as is shown in the following: This basis gives rise to the definition of the matrices

Aαβ ∈ RN×N
sym for fixed 1 ≤ α, β ≤ d, Aαβ

jk := a(χTj
eα, χTk

eβ), (34)

where the symmetry of Aαβ (i.e. an additional symmetry of A) follows from
(29). Note that — again by Equation (29) — we have Aαβ = Aβα. Therefore,
A is a symmetric (d × d)-block matrix with the symmetric blocks Aαβ = Aβα

of dimension N ×N ,

A =

(
A11 A12

A12 A22

)
and A =

 A11 A12 A13

A12 A22 A23

A13 A23 A33


for d = 2 and d = 3, resp. As a first consequence we obtain that one has only to
compute and store 1

4
d(d + 1)N(N + 1) instead of (dN)2 coefficients of the fully

populated matrix A. Provided the geometry of the elements Tj ∈ T is simple,

the entries Aαβ
jk can be computed exactly: Assume that the boundaries of Tj

and Tk are finite unions of pairwise disjoint affine boundary pieces Γ1, . . . , Γ`

and Γ̃1, . . . , Γ̃˜̀, respectively. Then, Equation (28) reads, for m = eα, m̃ = eβ,

Aαβ
jk = −

∑̀
µ=1

˜̀∑
ν=1

(nα|Γµ)(ñβ|Γ̃ν
)

∫
Γµ

∫
Γ̃ν

G(x− y) dsydsx. (35)

The double boundary integrals are well-known in the context of boundary
integral methods being the Galerkin elements of Symm’s integral equation
discretized by piecewise constant functions. Note that analytic formulae are
known, cf. [4, 16] for d = 2 and [9, 16] for d = 3, respectively.

Remark. Equation (31) of Proposition 6.1 motivates panel clustering tech-

niques to obtain an approximation Ã of A such that assembling, storage, and
matrix-vector multiplication of Ã are of (almost) linear complexity although
the error, for instance, in the Frobenius norm can be controlled [2]. To apply
these techniques to each of the matrices Aαβ ∈ RN×N , note that the kernel

gαβ(x, y) :=
∂2G

∂xα∂xβ

(x− y)

is asymptotically smooth and use the representation (31) for the entries Aαβ
jk on

admissible blocks. Numerical experiments for a blockwise H2-matrix approach
will appear in [18].
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