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Well-Posedness and Asymptotics
for Initial Boundary Value Problems

of Linear Relaxation Systems
in One Space Variable

Shu-Yi Zhang and Ya-Guang Wang

Abstract. In this paper we study the well-posedness and relaxation limit for the
initial boundary value problem of a general linear hyperbolic system with a relaxation
term in one space variable. We mainly consider the asymptotic convergence and the
boundary layer behavior under the sub-characteristic condition and the stiff Kreiss
condition when the relaxation rate goes to zero, which generalizes the results of Xin
and Xu in [J. Diff. Eqs. 167 (2000), 388 - 437] for homogeneous problems to the
non-homogeneous case.
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1. Introduction

In this paper, we study the following initial-boundary value problem (IBVP) in
the quarter plane {x > 0, t > 0} for the linear form of Jin-Xin [3] relaxation
system: 

∂tu
ε + ∂xv

ε = q1(x, t),
∂tv

ε + a∂xu
ε = q2(x, t)− 1

ε
(vε − f(uε)),

uε(x, 0) = u0(x)
vε(x, 0) = v0(x),

Buu
ε(0, t) + Bvv

ε(0, t) = b(t),

(1)

where ε > 0 is the relaxation parameter, a > 0 satisfies a sub-characteristic
condition which will be given precisely later, uε, vε ∈ Rn are vector-valued
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unknowns, Bu and Bv are n× n constant real matrices, and f(u) is linear, i.e.

f(u) = Fu

for a n× n real constant matrix F . Furthermore, we assume that F has n real
eigenvalues and a complete set of eigenvectors, i.e. there are n× n matrices L
and R such that

LFR = Λ := diag{λ1, . . . , λn}, LR = In. (2)

Our main purpose is to study the boundary layer behaviors of the solution
(uε, vε) to the problem (1), and its asymptotic convergence to the solution of
the corresponding equilibrium system{

∂tu + ∂xf(u) = q1(x, t),

v = f(u),
(3)

when ε goes to zero.

Till now, there exists a rich literature devoted to the qualitative behaviors
of solutions to the Cauchy problems of relaxation systems, e.g. refer to [1, 3 -
5, 8] and references therein. However, there are only a few rigorous theories on
the asymptotic behaviors of solutions to the initial boundary value problems
of relaxation systems when the relaxation parameter goes to zero, due to the
complicated behaviors of the boundary layers in the process of the limits. This
problem was studied by Wang and Xin in [6] for the scalar case of the limit
equation. For the system case, in [9] Yong proposed the generalized Kreiss
condition (GKC) for the well-posedness of both the relaxation system and the
corresponding limit system, and rigorously studied the existence of the bound-
ary layers without the initial layers. In the constant coefficient case, Xin and
Xu [7] have established the well-posedness, the asymptotic behavior of bound-
ary layers and initial layers for the homogeneous case of the problem (1). More
precisely, in [7], it is required that for problem (1) that

q1(x, t) = q2(x, t) ≡ 0

and
u0(0) = v0(0) = u′0(0) = v′0(0) = 0, b(0) = b′(0) = 0.

Here, we want to study the well-posedness of the problem (1) and the asymptotic
behavior of the solutions (uε, vε) when ε → 0 without the above restriction of
Xin and Xu [7]. As usual, we impose the following compatibility conditions on
the problem (1):

v0(0) = Fu0(0), v′0(0) = Fu′0(0), F q1(0, 0)− q2(0, 0) = Fv′0(0)− au′0(0) (4)
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and

Buu0(0) + Bvv0(0) = b(0) (5)

Buv
′
0(0) + aBvu

′
0(0) = −b′(0) + Buq1(0, 0) + Bvq2(0, 0). (6)

We denote

U ε =

(
uε

vε

)
A =

(
0 In

aIn 0

)
S =

(
0 0
F −In

)
Q =

(
q1

q2

)
U0 =

(
u0

v0

)
B = (Bu, Bv).

First for completeness, let us recall a definition on the L2-well-posedness of the
problem (1) from [7] as follows.

Definition 1.1. The IBVP (1) is stiffly well-posed if there exists a positive
constant KT independent of ε such that∫ T

0

∫ ∞

0

|U ε(x, t)|2 dx dt +

∫ T

0

|U ε(0, t)|2 dt

≤ KT

(∫ T

0

|b(t)|2 dt +

∫ ∞

0

|U0(x)|2 dx +

∫ T

0

∫ ∞

0

|Q(x, t)|2 dx dt

)
for all U0 ∈ L2(R+), b ∈ L2(R+) and Q ∈ L2(R+ × [0, T )) with R+ = {x > 0}.

We shall denote by ‖ · ‖s the classical Hs norm, by O(1) some absolute
constants independent of ε, t, b(t), U0(x) and Q(x, t), and by C0 some absolute
constants depending only on U0(0), U ′

0(0) and Q(0, 0). Our main results are as
follows.

Theorem 1.1. (IBVP, n=1.) For the scalar case n = 1, let f(u) = λu,
λ ∈ R, assume that the constant a satisfies the sub-characteristic condition

a ≥ λ2 (7)

and the boundary condition satisfies the following stiff Kreiss condition (SKC):

Bv = 0 or
Bu

Bv

/∈
[
−
√

a,−λ + |λ|
2

]
. (8)

Then the IBVP (1) is stiffly well-posed. It holds:

1. Assume (7),(8) and b ∈ L2(R+), U0 ∈ H1(R+), Q ∈ H1(R+×R+) satis-
fying the compatibility condition (5). Then there exists a unique solution
U = (u, v) to the IBVP of the equilibrium system (3) such that∫ ∞

0

∫ ∞

0

|U ε − U |2e−2αtdxdt → 0

as ε → 0 for any α > 0.
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2. If we further assume b ∈ H2(R+), U0 ∈ H2(R+), Q ∈ H1(R+ × R+)
satisfying the conditions (5) and (6) then

∫ ∞

0

∫ ∞

0

|U ε − U |2e−2αt dx dt

≤ O(1)ε‖v0 − f(u0)‖2
0 + O(1)ε2‖U0‖2

2

+


O(1)ε2

(
‖b‖2

2 + ‖Q‖2
1 + C0

)
if λ > 0

O(1)ε
1
2

(
‖b‖2

0 + ‖Q‖2
1 + C0

)
if λ = 0

O(1)ε
(
‖b‖2

0 + ‖Q‖2
1 + C0

)
if λ < 0

.

(9)

3. There exist an initial layer

U IL = U IL
(
x,

t

ε

)
and a boundary layer

UBL =


0 if λ > 0

UBL
(

x
ε
, t
)

if λ < 0

UBL
(

x√
ε
, t
)

if λ = 0

with uIL = 0, vBL = 0 such that

∫ ∞

0

∫ ∞

0

|U ε − U − U IL − UBL|2e−2αt dx dt

≤ O(1)ε2‖U0‖2
2

+

{
O(1)ε2

(
‖b‖2

2 + ‖Q‖2
1 + C0

)
if λ 6= 0

O(1)ε
3
2 ‖b‖2

2 + O(1)ε
(
‖Q‖2

1 + C0

)
if λ = 0

.

(10)

Theorem 1.2. (IBVP, n > 1.) Assume that the constant a satisfies the
following sub-characteristic condition

a ≥ max
1≤i≤n

λ2
i (11)

and the boundary condition satisfies the following stiff Kreiss condition

| det(BuR + BvRG(ξ))| ≥ C (12)
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for some C > 0 and all ξ ∈ C with Reξ ≥ 0, where

G(ξ) = diag{g1(ξ), g2(ξ), . . . , gn(ξ)}

gj(ξ) =
λj +

√
λ2

j + 4aξ(1 + ξ)

2(1 + ξ)
,

then the IBVP (1) is stiffly well-posed. It holds:

1. Assume (11), (12) and b ∈ L2(R+), U0 ∈ H1(R+), Q ∈ H1(R+ × R+)
satisfying the condition (5). Then there exists a unique solution U = (u, v)
to the IBVP of (3) such that∫ ∞

0

∫ ∞

0

|U ε − U |2e−2αtdxdt → 0

as ε → 0 for any α > 0.

2. If we further assume b ∈ H2(R+), U0 ∈ H2(R+) and Q ∈ H2(R+ ×R+)
satisfying (5) and (6), then∫ ∞

0

∫ ∞

0

|U ε − U |2e−2αt dx dt

≤ O(1)ε
1
2

(
‖b‖2

2 + ‖Q‖2
1 + C0

)
+O(1)ε2‖U0‖2

2 + O(1)ε‖v0 − f(u0)‖2
0.

(13)

3. There exist an initial layer U IL = U IL(x, t
ε
) and a boundary layer UBL

with uIL = 0, vBL = 0 such that∫ ∞

0

∫ ∞

0

|U ε − U − U IL − UBL|2e−2αt dx dt

≤ O(1)ε
(
‖b‖2

2 + ‖Q‖2
1 + C0

)
+ O(1)ε2‖U0‖2

2.

(14)

Remark. From the stiff Kreiss condition (12), we can easily derive the
boundary condition for the equilibrium problem. Without loss of generality, we
assume that F is diagonal:

F =

 Λ+

0
Λ−

 ,

where Λ+ = diag{λ1, · · · , λp}, Λ− = diag{λp+q+1, · · · , λp+q+r} with λi > 0
(1 ≤ i ≤ p), λi < 0 (p + q + 1 ≤ i ≤ p + q + r) and p + q + r = n, p, q, r ∈ N ,
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p, q, r ≥ 0. Correspondingly we set

Bu =

 B+
u

Bn
u

B−
u

 Bv =

 B+
v

Bn
v

B−
v


and u = (u+, un, u−)T , v = (v+, vn, v−)T , b = (b+, bn, b−)T with same block size
of F . By setting ξ = 0 in (12), we have∣∣∣∣∣∣det

 B+
u + B+

v Λ+

Bn
u

B−
u

∣∣∣∣∣∣ ≥ C > 0.

Therefore, we have ∣∣det(B+
u + B+

v Λ+)
∣∣ ≥ C > 0.

Then the IBVP of the equilibrium system is given by
∂tu + F∂xu = q1,

v = Fu,
(B+

u + B+
v Λ+)u+(0, t) = b+(t),

u(x, 0) = u0(x).

It is easy to see that the IBVP of the equilibrium system is well-posed.

Remark. In contrast with [7], here we have established some more general
results which remove the restrictions of [7]. Moreover, we extend the results in
[9] to the inhomogeneous systems.

The remainder of this paper is arranged as follows: In Section 2, we will
decompose the oringinal problem into two partial problems and give the solution
in the scalar case. In Section 3, we will prove the asymptotic convergence of
the solution of the relaxation system towards the solution of the corresponding
equilibrium problem in the scaler case. In Section 4, we will calculate the
boundary layer and establish the convergence rate in this case. In Section 5, we
will prove Theorem 1.2.

2. Solution of the problem: the scalar case

In this section, we decompose the oringinal problem into two ones by a change
of variables and give the solution of the problem. We rewrite the problem (1)
as follows: 

∂tU
ε + A∂xU

ε = 1
ε
SU ε + Q

U ε(x, 0) = U0(x)

BU ε(0, t) = b(t).

(15)
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2.1. Decomposition of the problem. The first step we take is to make a
change of variables

wε = uε − ū, zε = vε − v̄, (16)

where ū, v̄ ∈ H3(R+ × R+) are to be specified satisfying the conditions

ū(0, 0) = u0(0) v̄(0, 0) = v0(0) (17)

∂xū(0, 0) = u′0(0) ∂xv̄(0, 0) = v′0(0) (18)

∂tū(0, 0) = −v′0(0) + q1(0, 0) ∂tv̄(0, 0) = −au′0(0) + q2(0, 0) (19)

v̄ = λū. (20)

We use the notations

Ū =

(
ū
v̄

)
W ε =

(
wε

zε

)
and rewrite system (15) with the above change of variables as

∂tW
ε + A∂xW

ε = 1
ε
SW ε − (∂tŪ + A∂xŪ) + Q

W ε(x, 0) = U0(x)− Ū(x, 0)

BW ε(0, t) = b(t)−BŪ(0, t).

The above problem does not change the form of the problem (15). We still
denote it by 

∂tW
ε + A∂xW

ε = 1
ε
SW ε + N

W ε(x, 0) = W0(x)

BW ε(0, t) = c(t)

(21)

where N =

(
n1

n2

)
and

N = Q− (∂tŪ + A∂xŪ)

W0(x) = U0(x)− Ū(x, 0)

c(t) = b(t)−BŪ(0, t).

The compatibility conditions (5) and (6) of the problem (1) are equivalent to
that (21) admits the following compatibility conditions:

W0(0) = 0 c(0) = 0 (22)

W ′
0(0) = 0 c′(0) = 0 N(0, 0) = 0. (23)

Remark. The precise construction of (ū, v̄) in (17)-(20) was based on the
compatibility conditions (5) and (6) hold simultaneously. In the case that one
only has the zero-th order compatibility condition (5) for the problem (1), we
can choose the functions (ū, v̄) satisfying (17) and (20) only, and the transformed
problem (21) admits the zero-th order compatibility condition (22) as well.
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Now, we begin to deal with the problem (21). Note that with the compati-
bility condition (22), we can decompose problem (21) into the two problems

∂tW
ε + A∂xW

ε = 1
ε
SW ε

W ε(x, 0) = W0(x)

BW ε(0, t) = c(t)

(24)

and 
∂tW

ε + A∂xW
ε = 1

ε
SW ε + N

W ε(x, 0) = 0

BW ε(0, t) = 0 .

(25)

If (21) admits the compatibility conditions (22) and (23), the compatibilty
conditions of (24) and (25) up to order one are satisfied as well. The first
problem (24) is a homogeneous one which has been studied in [7]. We only
need to focus on the second one (25).

In the end of this subsection, we show the structure of Ū . With Taylor’s
series, it is easy to give a C∞(R2) function V (x, t) satisfying the condition
(17)-(20), namely

V (x, t) =

(
u0(0)
v0(0)

)
+

(
u′0(0)x + (q1(0, 0)− v′0(0))t
v′0(0)x + (q2(0, 0)− au′0(0))t

)
.

If we set

Ū(x, t) = φ
(x

δ
,
t

δ

)
V (x, t),

where φ(x, t) ∈ C∞
0 (R2

+) is a truncation function satisfying

φ(x, t) =

{
1 0 ≤ x, t ≤ 1

2

0 x, t ≥ 1
,

then it is easy to verify that

‖Ū‖2
s ≤ O(1)δ2−2s(|U0(0)|2 + |U ′

0(0)|2 + b2(0) + b′
2
(0)).

By setting δ = 1, we get

‖Ū‖2
s ≤ C0. (26)

2.2. Solution by the Laplace transform. In this subsection, we study the
problem (25). We denote the Laplace transform by

W̃ ε(x, ξ) = LW ε =

∫ ∞

0

e−ξtW ε(x, t)dt , Reξ ≥ 0.
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Therefore, the problem (25) becomes{
∂xW̃

ε = 1
ε
M(εξ)W̃ ε + A−1Ñ(x, ξ)

BW̃ ε(0, ξ) = 0
(27)

where
M(ξ) = A−1(S − ξI).

The general solution W̃ ε(x, ξ) of the equation in (27) can be represented as

W̃ ε(x, ξ) = eM(εξ)x
ε

(
W̃ ε(0, ξ) +

∫ x

0

e−M(εξ) y
ε A−1Ñ(y, ξ) dy

)
where

eM(ξ)x = eµ+xΦ+(ξ) + eµ−xΦ−(ξ)

with

µ± =
λ±

√
λ2 + 4aξ(1 + ξ)

2a
, k(ξ) =

aµ−(ξ)

1 + ξ
, g(ξ) =

aµ+(ξ)

1 + ξ

and

Φ+(ξ) =
1

g(ξ)− k(ξ)

(
1

k(ξ)

)(
g(ξ), −1

)
Φ−(ξ) =

1

g(ξ)− k(ξ)

(
1

g(ξ)

)(
−k(ξ), 1

)
.

Therefore W̃ ε can be rewritten as

W̃ ε(x, ξ) = eµ+(εξ)x
ε Φ+(εξ)(W̃ ε(0, ξ) +

∫ x

0

e−µ+(εξ) y
ε A−1Ñ(y, ξ)dy)

+ eµ−(εξ)x
ε Φ−(εξ)(W̃ ε(0, ξ) +

∫ x

0

e−µ−(εξ) y
ε A−1Ñ(y, ξ)dy).

The boundary value W̃ ε(0, ξ) remains to be determined. From the boundary
condition

BW̃ ε(0, ξ) = 0

of the problem (25) and a natural boundary condition

Φ+(εξ)
(
W̃ ε(0, ξ) +

∫ ∞

0

e−µ+(εξ) y
ε A−1Ñ(y, ξ)dy

)
= 0,

we have

W̃ ε(0, ξ) =
r̃ε(ξ)

Bu + Bvg(εξ)

(
Bv

−Bu

)
,
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where

r̃ε(ξ) =

∫ ∞

0

e−µ+(εξ) y
ε

(
ñ1(y, ξ)− 1

a
g(εξ)ñ2(y, ξ)

)
dy.

The solution of problem (25) is given by

W̃ ε(x, ξ) =
1

g(εξ)− k(εξ)

×
[(

1
k(εξ)

)∫ ∞

x

eµ+(εξ)
(x−y)

ε

(
ñ1(y, ξ)− 1

a
g(εξ)ñ2(y, ξ)

)
dy

+

(
1

g(εξ)

)∫ x

0

eµ−(εξ)
(x−y)

ε

(
ñ1(y, ξ)− 1

a
k(εξ)ñ2(y, ξ)

)
dy

− Bu + Bvk(εξ)

Bu + Bvg(εξ)
r̃ε(ξ)eµ−(εξ)x

ε

(
1

g(εξ)

)]
.

(28)

We denote by W̃ ε
I , W̃ ε

II and W̃ ε
III the three items on the right side of the above

equality respectively.

Remark. Since the uniform Lopatinski condition is just a consequence of
the stiff Kreiss condition, the stiff well-posedness is easily established. We shall
only focus on the asymptotic convergence and the boundary layer.

3. Asymptotic convergence: the scalar case

In this subsection, we show the convergence of W ε towards the solution of the
corresponding equilibrium system. It is easy to verify the following relations:

∣∣∣∣ ε

Reµ+(εξ)

∣∣∣∣ =


O(1)ε λ > 0
O(1)

√
ε λ = 0

O(1) λ < 0
,

∣∣∣∣ ε

µ+(εξ)

∣∣∣∣ =


O(1)ε λ > 0

O(1)( ε
|ξ|)

1
2 λ = 0

O(1)|ξ|−1 λ < 0

(29)

∣∣∣∣ ε

Reµ−(εξ)

∣∣∣∣ =


O(1)ε λ < 0
O(1)

√
ε λ = 0

O(1) λ > 0
,

∣∣∣∣ ε

µ−(εξ)

∣∣∣∣ =


O(1)ε λ < 0

O(1)( ε
|ξ|)

1
2 λ = 0

O(1)|ξ|−1 λ > 0

(30)

|k(εξ)| =


O(1)ε λ > 0
O(1)

√
ε λ = 0

O(1) λ < 0
, |g(εξ)| =


O(1)ε λ < 0
O(1)

√
ε λ = 0

O(1) λ > 0
(31)

as well as

| 1

g(εξ)− k(εξ)
| =

{
O(1) λ 6= 0
O(1)ε−1 λ = 0

(32)
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and
|ez − 1| ≤ O(1)|z| for Rez < 0. (33)

In the following discussion, we shall always set ξ = α + iβ (α, β ∈ R).

First, we deal with W ε
III . Thanks to the stiff Kreiss condition (8), we have

0 < C1 ≤ |Bu + Bvg(ξ)| ≤ C2 < ∞ (34)

for all ξ with Reξ ≥ 0. On the other hand, we have the following simple estimate
on r̃ε(ξ):

|r̃ε(ξ)|2 ≤
∣∣∣∣∫ ∞

0

e−µ+(εξ) y
ε (ñ1(y, ξ)− 1

a
g(εξ)ñ2(y, ξ)) dy

∣∣∣∣2
≤
∫ ∞

0

|e−µ+(εξ) y
ε |2dy

∫ ∞

0

∣∣∣ñ1(y, ξ)− 1

a
g(εξ)ñ2(y, ξ)

∣∣∣2 dy

≤ O(1)
ε

Reµ+(εξ)

∫ ∞

0

|Ñ(y, ξ)|2dy.

(35)

When λ 6= 0, noticing (29), (32) and (34), we have∫ ∞

0

∫ ∞

0

|W ε
III(x, t)|2e−2αt dx dt

=

∫ ∞

0

(∫ ∞

−∞
|W̃ ε

III(x, ξ)|2dβ
)

dx

≤ O(1)− ε

Reµ+(εξ)
· ε

Reµ−(εξ)

∫ ∞

0

∫ ∞

−∞
|Ñ(x, ξ)|2dβdx

≤ O(1)ε

∫ ∞

0

∫ ∞

0

|N(x, t)|2 dx dt.

(36)

When λ = 0, due to (32), we can’t derive a estimate similar to (36), if N(x, t) ∈
L2(R+×R+). Therefore, if N(x, t) ∈ H1(R+×R+), by integration by parts we
have

W̃ ε
III =

(
1

g(εξ)

)
eµ−(εξ)x

ε (Bu + Bvk(εξ))

2ξ(Bu + Bvk(εξ))
(ñ1(0, ξ)−

1

a
g(εξ)ñ2(0, ξ)− s̃ε(ξ))

where

s̃ε(ξ) =

∫ ∞

0

e−µ+(εξ) y
ε (∂yñ1(y, ξ)− 1

a
g(εξ)∂yñ2(y, ξ))dy.

Similar to (35), we can prove∫ ∞

0

∫ ∞

0

e−2αt|W ε
III |2dxdt ≤ O(1)ε‖N‖2

1. (37)

Next, we establish the covergence of W ε
I + W ε

II towards the solution of the
corresponding equilibrium system. For this we consider two cases.
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3.1. The case of non-characteristic boundary. When λ > 0, the corre-
sponding problem of the equilibrium system is as follows:

∂tw + λ∂xw = n1

z = λw
w(x, 0) = 0
w(0, t) = 0.

By a simple calculation, we get the solution

W̃ =

(
1
λ

1

)∫ x

0

e−ξ
(x−y)

λ ñ1(u, ξ) dy.

By using (31) and (32), we have∫ ∞

−∞

∫ ∞

0

|W̃ ε
I |2dxdβ ≤ O(1)

∫ ∞

−∞

∫ ∞

0

(∫ ∞

x

eReµ+(εξ)
(x−y)

ε |Ñ(y, ξ)|dy
)2

dx dβ

Denote the item on the right side of the above inequality by I. By integration
by parts, we have for I

I =
ε

2Reµ+(εξ)

(∫ ∞

−∞

(∫ ∞

x

eReµ+(εξ)
(x−y)

ε |Ñ(y, ξ)| dy
)2∣∣∣∞

x=0
dβ

+ 2

∫ ∞

−∞

∫ ∞

0

|Ñ(x, ξ)|
(∫ ∞

x

eReµ+(εξ)
(x−y)

ε |Ñ(y, ξ)| dy
)

dx dβ

)
≤

∫ ∞

−∞

∫ ∞

0

( ε

Reµ+(εξ)
|Ñ(x, ξ)|

)
×
(1

2

∫ ∞

x

eReµ+(εξ)
(x−y)

ε |Ñ(y, ξ)| dy
)

dx dβ

≤ 2
( ε

Reµ+(εξ)

)2
∫ ∞

−∞

∫ ∞

0

|Ñ(x, ξ)|2 dx dβ +
1

2
I.

(38)

Therefore by using (29), we have∫ ∞

−∞

∫ ∞

0

|W̃ ε
I |2dxdβ ≤ O(1)I

≤ O(1)ε2

∫ ∞

−∞

∫ ∞

0

|Ñ(x, ξ)|2dxdβ

≤ O(1)ε2‖N‖2
0.

(39)
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When considering W̃ ε
II , we need to use the following estimates:∣∣∣ 1

g(εξ)− k(εξ)
− 1

λ

∣∣∣ = O(1)ε
∣∣∣ k(εξ)

g(εξ)− k(εξ)

∣∣∣ = O(1)ε (40)

∣∣∣µ−(εξ)

ε
+

ξ

λ

∣∣∣ = O(1)|ξ|ε
∣∣∣ ε

µ−(εξ)
+

λ

ξ

∣∣∣ = O(1)ε. (41)

We write W̃ ε
II − W̃ as

W̃ ε
II − W̃ =

( 1
g(εξ)−k(εξ)

− 1
λ

k(εξ)
g(εξ)−k(εξ)

)∫ x

0

eµ−(εξ)
(x−y)

ε

(
ñ1 −

1

a
k(εξ)ñ2(y, ξ)

)
dy

−
(

1
λ

1

)∫ x

0

eµ−(εξ)
(x−y)

ε
1

a
k(εξ)ñ2(y, ξ) dy

+

(
1
λ

1

)∫ x

0

(
eµ−(εξ)

(x−y)
ε − e−ξ(x−y)/λ

)
ñ1(y, ξ) dy.

Denote the three items on the right side of the above equality by I, II and III
respectively. Similar to the proof of (36), we can prove the following estimates
for I and II: ∫ ∞

−∞

∫ ∞

0

|I|2dxdβ ≤ O(1)ε2‖N‖2
0∫ ∞

−∞

∫ ∞

0

|II|2dxdβ ≤ O(1)ε2‖N‖2
0.

If N(x, t) ∈ H1(R+ × R+), we have for III by integration by parts

|III| ≤
∣∣∣ ε

µ−(εξ)
+

λ

ξ

∣∣∣ · |ñ1(x, ξ)|+
∣∣∣ ε

µ−(εξ)
eµ−(εξ)x

ε +
λ

ξ
e−ξ x

λ

∣∣∣ · |ñ1(0, ξ)|

+
∣∣∣ ε

µ−(εξ)
eµ−(εξ)x

ε +
λ

ξ
e−ξx/λ

∣∣∣ · ∣∣∣ ∫ x

0

eµ−(εξ) y
ε ∂yñ1(y, ξ) dy

∣∣∣
+
∣∣∣λ
ξ
e−ξx/λ

∣∣∣ · ∣∣∣ ∫ x

0

(eµ−(εξ) y
ε − eξ y

λ y)∂yñ1(y, ξ) dy
∣∣∣

≤ O(1)ε
[
|ñ1(x, ξ)|+ (1 + x)eReµ−(εξ)x

ε |ñ1(0, ξ)|

+ (1 + x)

∫ x

0

eReµ−(εξ)
(x−y)

ε |∂yñ1(y, ξ)| dy

+ x

∫ x

0

e−Reξ
(x−y)

λ |∂yñ1(y, ξ)| dy
]
.
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Therefore, we have∫ ∞

∞

∫ ∞

0

|III|2dxdβ ≤ O(1)ε2
[ ∫ ∞

−∞

∫ ∞

0

|ñ1(x, ξ)|2 dx dβ +

∫ ∞

−∞
|ñ1(0, ξ)|2 dβ

+

∫ ∞

−∞

∫ ∞

0

(∫ x

0

eReµ−(εξ)
(x−y)

ε |∂yñ1(y, ξ)| dy
)2

dx dβ

+

∫ ∞

−∞

∫ ∞

0

(∫ x

0

xeReµ−(εξ)
(x−y)

ε |∂yñ1(y, ξ)| dy
)2

dx dβ

+

∫ ∞

−∞

∫ ∞

0

(∫ x

0

e−Reξ
(x−y)

λ |∂yñ1(y, ξ)| dy
)2

dx dβ
]
.

Denote the four items on the right side of the above inequality by I1, I2, I3 and
I4 respectively. By using the trace theorem we have for I1

I1 ≤ O(1)‖N‖2
1.

Similar to the proof of (38), we can prove for I2 the estimate

I2 ≤ O(1)‖N‖2
1.

Considering I3, by integration by parts we get

I3 =
ε

2Reµ−(εξ)

∫ ∞

−∞

[(
x

∫ x

0

eReµ−(εξ)
(x−y)

ε |∂yñ1(y, ξ)| dy
)2∣∣∣∞

x=0

− 2

∫ ∞

0

xe2Reµ−(εξ)x
ε

(∫ x

0

e−Reµ−
y
ε |∂yñ1(y, ξ)| dy

)2

dx

− 2

∫ ∞

0

xeReµ−(εξ)x
ε

(∫ x

0

e−Reµ−
y
ε |∂yñ1(y, ξ)| dy

)
|∂xñ1(x, ξ)| dx

]
dβ

≤
∫ ∞

−∞

∫ ∞

0

(
− 3ε

Reµ−(εξ)

∫ x

0

eReµ−(εξ)
(x−y)

ε |∂yñ1(y, ξ)| dy

× 1

3

∫ x

0

xeReµ−(εξ)
(x−y)

ε |∂yñ1(y, ξ)| dy
)

dx dβ

+

∫ ∞

−∞

∫ ∞

0

(
− 3ε

Reµ−(εξ)
|∂xñ1(x, ξ)|

× 1

3

∫ x

0

xeReµ−(εξ)
(x−y)

ε |∂yñ1(y, ξ)| dy
)

dx dβ

≤ 18
( ε

Reµ−(εξ)

)2

I2 +
2

9
I3

+ 18
( ε

Reµ−(εξ)

)2
∫ ∞

−∞

∫ ∞

0

|∂yñ1(x, ξ)|2dxdβ +
2

9
I3

(42)
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Therefore, with the estimate of I2, we get

I3 ≤ O(1)‖N‖2
1.

Similar to (42), we can establish the estimate

I4 ≤ O(1)‖N‖2
1.

Combining all the estimates of Ik (k = 1, 2, 3, 4) in the above, we have∫ ∞

−∞

∫ ∞

0

|W̃ ε
II − W̃ |2dxdβ ≤ O(1)ε2‖N‖2

1. (43)

Therefore, we get the asymptotic convergence of W ε
I +W ε

II towards the solution
W of the corresponding problem of the equilibrium system via∫ ∞

0

∫ ∞

0

e−2αt|W ε
I + W ε

II −W |2dxdβ ≤ O(1)ε2‖N‖2
1 → 0 (44)

as ε → 0.

When λ < 0, the corresponding problem of the equilibrium system is given
by 

∂tw + λ∂xw = n1

z = λw
w(x, 0) = 0.

The solution of the above problem is

W̃ =

( − 1
λ

1

)∫ ∞

x

e−ξ
(x−y)

λ ñ1(u, ξ)dy.

Similar to the case of λ > 0, we can prove that the following estimates are true
in the case of λ < 0:∫ ∞

−∞

∫ ∞

0

|W̃I − W̃ |2dxdβ ≤ O(1)ε2‖N‖2
1

and ∫ ∞

−∞

∫ ∞

0

|W̃II |2dxdt ≤ O(1)ε2‖N‖2
0.

Here we omit the details of the derivation of the above estimates. Therefore,
we can prove that (44) is also true in this case.
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3.2. The case of uniform characteristic boundary. When λ = 0, the
corresponding problem of the equilibrium system is given by

∂tw = n1

z = 0
w(x, 0) = 0.

The solution of the above problem is

W̃ =

( ñ1

ξ

0

)
.

If N(x, t) ∈ H1(R+ × R+), then by integration by parts we have

W̃ ε
I + W̃ ε

II − W̃

=
1 + εξ

2ξ

[
−
(

1
g(εξ)

)
eµ−(εξ)x

ε

(
ñ1(0, ξ)−

1

a
k(εξ)ñ1(0, ξ)

)
+

(
1

k(εξ)

)∫ ∞

x

eµ+(εξ)
(x−y)

ε

(
∂yñ1(y, ξ)− 1

a
g(εξ)∂yñ1(y, ξ)

)
dy

−
(

1
g(εξ)

)∫ x

0

eµ−(εξ)
(x−y)

ε

(
∂yñ1(y, ξ)− 1

a
k(εξ)∂yñ1(y, ξ)

)
dy

]

+

(
0

a2εñ2(x,ξ)
1+εξ

)
.

(45)

Denote the four items on the right side of the above equality by I1, I2, I3 and
I4 respectively. By direct calculation and using (31), we have for I1 and I4 the
estimates ∫ ∞

−∞

∫ ∞

0

|I1|2 dx dβ ≤ O(1)ε
1
2‖N‖2

1∫ ∞

−∞

∫ ∞

0

|I4|2 dx dβ ≤ O(1)ε2‖N‖2
0.

Similar to (39), we can establish the following estimates for I2 and I3:∫ ∞

−∞

∫ ∞

0

|I2|2dxdβ ≤ O(1)

(
ε

Reµ+(εξ)

)2 ∫ ∞

−∞

∫ ∞

0

|∂xÑ(x, ξ)|2 dx dβ

≤ O(1)ε‖N‖2
1,

and ∫ ∞

−∞

∫ ∞

0

|I3|2dxdβ ≤ O(1)

(
ε

Reµ−(εξ)

)2 ∫ ∞

−∞

∫ ∞

0

|∂xÑ(x, ξ)|2 dx dβ

≤ O(1)ε‖N‖2
1.
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Therefore, we get the convergence of W ε
I + W ε

II towards W according∫ ∞

0

∫ ∞

0

e−2αt|W ε
I + W ε

II − W̃ |2dxdt ≤ O(1)ε
1
2‖N‖2

1.

Thus combining all the convergence results in this section, together with
the results in [7], we have proved the asymptotic convergence and the estimate
(9) for the convergence rate.

4. Boundary layers and convergence rate: the scalar case

In this section, we will study the boundary layer in the problem (25) and estab-
lish the convergence rate when the compatibility conditions (22) and (23) hold.
For this we consider two cases.

4.1. The case of non-characteristic boundary. In the non-characteristic
boundary case, namely λ 6= 0, we propose the following well-known expansion:{

wε(x, t) = w(x, t) + wBL(y, t) + O(1)ε
zε(x, t) = z(x, t) + zBL(y, t) + O(1)ε

(46)

where wBL(y, t), zBL(y, t) are the boundary layers decaying exponentially fast
in y = x

ε
when y goes to infinity. By plugging (46) into (25) and matching the

expansion, we get the boundary layer equations{
∂yz

BL = 0
a∂yw

BL = λwBL − zBL.

We now specify the initial and boundary data in order to determine the
boundary layer. When λ > 0, we have

a∂yw
BL = λwBL − zBL

∂yz
BL = 0

wBL(0, t) = 0
zBL(0, t) = 0.

It is easy to get wBL = zBL = 0. No boundary layer develops in this case.
Considering the convergence rate, noticing (30), we have the following estimates
for r̃ε(ξ) by integration by parts:

|r̃ε(ξ)|2 =
∣∣∣ ε

µ+(εξ)

∣∣∣2 · ∣∣∣ ∫ ∞

0

e−µ+(εξ) y
ε

(
∂yñ1(y, ξ)− 1

a
g(εξ)∂yñ2(y, ξ)

)
dy

+ ñ1(0, ξ)−
1

a
g(εξ)ñ2(0, ξ)

∣∣∣2
≤ O(1)ε2

(
|Ñ(0, ξ)|2 +

∫ ∞

0

|∂yÑ(y, ξ)|2 dy
)
.
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Therefore, the above estimate yields∫ ∞

0

∫ ∞

0

e−2αt|WIII(x, t)|2 dx dt

=

∫ ∞

0

∫ ∞

−∞
|W̃III(ξ, x)|2 dβ dx

≤ O(1)ε2
(∫ ∞

−∞
|Ñ(0, ξ)|2 dβ +

∫ ∞

0

∫ ∞

−∞
|∂yÑ(y, ξ)|2 dβ dy

)
= O(1)ε2

(∫ ∞

0

e−2αt|N(0, t)|2 dt +

∫ ∞

0

∫ ∞

0

e−2αt|∂yN(y, t)|2 dy dt
)

≤ O(1)ε2‖N(x, t)‖2
1.

(47)

When λ < 0, the problem of the boundary is as follows:
a∂yw

BL = λwBL − zBL

∂yz
BL = 0

Buw
BL(0, t) = −(Bu + λBv)w(0, t)

zBL(0, t) = 0.

Noticing (8), which implies Bu 6= 0 for λ < 0, we give the boundary layers by

w̃BL(x, ξ) =
Bu + λBv

λBu

e
λx
aε

∫ ∞

0

eξ y
λ ñ1(y, ξ) dy

z̃BL = 0.

To consider the convergence rate, we write

w̃ε
II − w̃BL

=
Bu + Bvk(εξ)

Bu + Bvg(εξ)
· g(εξ)eµ−(εξ)x

ε

a(g(εξ)− k(εξ))

∫ ∞

0

e−µ+(εξ) y
ε ñ2(y, ξ) dy

+

(
− 1

g(εξ)− k(εξ)
· Bu + Bvk(εξ)

Bu + Bvg(εξ)
− Bu + λBv

λBu

)
eµ−(εξ)x

ε

×
∫ ∞

0

e−µ+(εξ) y
ε ñ1(y, ξ) dy

+
Bu + λBv

λBu

eµ−(εξ)x
ε

∫ ∞

0

(e−µ+(εξ) y
ε − eξ y

λ )ñ1(y, ξ) dy

+
Bu + λBv

λBu

(
eµ−(εξ)x

ε − e
λx
aε

)∫ ∞

0

eξ y
λ ñ1(y, ξ) dy.



Well-Posedness and Asymptotics for Relaxation Systems 625

Denote the four items on the right hand side of the above inquality by I1, I2, I3,
and I4 respectively. We estimate the four items separately. By using (29) - (32)
and (34), similar to (36), we can prove for I1∫ ∞

0

∫ ∞

−∞
|I1|2dβdx ≤ O(1)ε3‖N‖2

0.

From (30) and (31), we have∣∣∣∣− 1

g(εξ)− k(εξ)
· Bu + Bvk(εξ)

Bu + Bvg(εξ)
− Bu + λBv

λBu

∣∣∣∣ ≤ O(1)ε.

Thus, similar to (39), we have for I2∫ ∞

0

∫ ∞

−∞
|I2|2dβdx ≤ O(1)ε3‖N‖2

0.

To deal with I3, the following estimate works:∣∣∣∣ ε

µ+(εξ)
+

λ

ξ

∣∣∣∣ ≤ O(1)ε .

Together with (33) we have∣∣∣∣ ε

µ+(εξ)
e−µ+(εξ) y

ε +
λ

ξ
eξ y

λ

∣∣∣∣ ≤ O(1)ε(1 + y)e−2Reµ+(εξ) y
ε .

Therefore, by integration by parts, we have for I3∫ ∞

0

∫ ∞

−∞
|I3|2 dβ dx ≤ O(1)ε3

(∫ ∞

−∞
|ñ1(0, ξ)|2dβ

+

∫ ∞

−∞

∣∣∣ ∫ ∞

0

(1 + y)e−µ+(εξ) y
ε ∂yñ1(y, ξ) dy

∣∣∣2 dβ

)
≤ O(1)ε3‖N‖2

1

According to the estimate∣∣∣∣µ−(εξ)

ε
− λ

aε

∣∣∣∣ ≤ O(1)εx|ξ|

and by integration by parts, we have for I4
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∫ ∞

0

∫ ∞

−∞
|I4|2 dβ dx

≤ O(1)

∫ ∞

0

∫ ∞

−∞
|ξ|−2

∣∣∣(eµ−(εξ)x
ε − e

λx
aε

)
×
(
ñ1(0, ξ) +

∫ ∞

0

eξ y
λ ∂yñ1(y, ξ) dy

)∣∣∣2 dβ dx

≤ O(1)

∫ ∞

0

e2λx
aε x2 dx

∫ ∞

−∞

∣∣∣ñ1(0, ξ)

+

∫ ∞

0

eξ y
λ ∂yñ1(y, ξ)dy

∣∣∣2dβ

≤ O(1)ε2‖N‖2
1.

Combining all the estimates for Ik, k = 1, 2, 3, 4,we get∫ ∞

0

∫ ∞

0

e−2αt|wε − w − wBL|2(x, t)dxdt ≤ O(1)ε2‖N‖2
1. (48)

The same analysis can be carried out as above on zε, and we obtain∫ ∞

0

∫ ∞

0

e−2αt|zε − z|2(x, t)dxdt ≤ O(1)ε2‖N‖2
1. (49)

4.2. The case of uniform characteristic boundary. In the case of uniform
characteristic boundary, namely λ = 0, the asymptotics is a little different from
the non-characteristic boundary case since the width of the boundary layer is
of O(1)

√
ε order. The asymptotics (46) cannot catch the boundary layer in this

case. Alternatively, we propose the following expansion:{
wε(x, t) = w(x, t) + wBL(y, t) +

√
εwBL

1 (y, t) + O(1)ε

zε(x, t) = z(x, t) + zBL(y, t) +
√

εzBL
1 (y, t) + O(1)ε,

(50)

where wBL(y, t), zBL(y, t), wBL
1 (y, t), and zBL

1 (y, t) are the boundary layers
decaying exponentially fast in y = x/

√
ε when y goes to infinity.

Plugging (46) into (25) and matching the expansion, we have the boundary
layer problem 

∂tw
BL = a∂2

yz
BL

∂yz
BL = 0

wBL(y, 0) = 0

zBL(y, 0) = 0

Buw
BL(0, t) = −Buw(0, t).
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Therefore, the boundary layers are

w̃BL = −1

ξ
e−
√

ξ/(aε)x ñ1(0, ξ)

z̃BL = 0.

In this case, the boundary layer is different from that in the case of non-
characteristic boundary. We can found its effect both in W ε

I + W ε
II and W ε

III .
First we consider W ε

I + W ε
II . By integration by parts, we have

W̃ ε
I + W̃ ε

II − W̃ − 1

2
W̃BL = (I1 −

1

2
W̃BL) + I2 + I3 + I4

where Ik (k = 1, 2, 3, 4) denote the same items as in (45). According to the
results of the asymptotic convergence in Section 3.2, we have∫ ∞

−∞

∫ ∞

0

|I2 + I3 + I4|2 dx dβ ≤ O(1)ε‖N‖2
1.

By using the estimate

|I1 −
1

2
W̃BL| ≤ O(1)(1 + x)ε

1
2 eReµ−(εξ)x

ε |Ñ(0, ξ)|,

we get ∫ ∞

−∞

∫ ∞

0

∣∣∣I1 −
1

2
W̃BL

∣∣∣2 dx dβ ≤ O(1)ε
3
2‖N‖2

1.

So far, we have established the result∫ ∞

−∞

∫ ∞

0

∣∣W̃ ε
I + W ε

II − W̃ − 1

2
W̃BL

∣∣2 dx dβ ≤ O(1)ε‖N‖2
1. (51)

Next we consider W ε
III . By integration by parts, we write

W̃ ε
III −

1

2
W̃BL = −

(
1

g(εξ)

)
eµ−(εξ)x

ε (Bu + Bvk(εξ))

2ξ(Bu + Bvg(εξ))
ñ1(0, ξ)

+

(
1
0

)
1

2ξ
e−
√

ξ/(aε)xñ1(0, ξ)

+

(
1

g(εξ)

)
eµ−(εξ)x

ε (Bu + Bvk(εξ))

2aξ(Bu + Bvg(εξ))
g(εξ)ñ2(0, ξ)

−
(

1
g(εξ)

)
eµ−(εξ)x

ε (Bu + Bvk(εξ))

2ξ(Bu + Bvg(εξ))
s̃ε(ξ).
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We denote the two items on the right hand side of the above equality by I1, I2

and I3, respectively. Noticing

|I1 + I2| ≤ O(1)ε
1
2 (1 + x)eReµ−(εξ)x

ε |Ñ(0, ξ)|,

we get ∫ ∞

−∞

∫ ∞

0

|I1 + I2|2 dx dβ ≤ O(1)ε
3
2‖N‖2

1.

Similar to (37), we can prove that the following inequality holds for I3:∫ ∞

−∞

∫ ∞

0

|I3|2 dx dβ ≤ O(1)ε‖N‖2
1

Therefore, we have∫ ∞

0

∫ ∞

0

e−2αt
∣∣W ε

III −
1

2
WBL

∣∣2(x, t) dx dt ≤ O(1)ε‖N‖2
1. (52)

Combining (51) and (52), we can establish the result∫ ∞

0

∫ ∞

0

e−2αt
∣∣W ε −W −WBL

∣∣2(x, t) dx dt ≤ O(1)ε‖N‖2
1. (53)

Remark. If N(x, t) ∈ H2(R+ × R+), we can achieve a higher convergence
rate by two times of integration by parts as follows.∫ ∞

0

∫ ∞

0

e−2αt|W ε −W −WBL|2(x, t)dxdt ≤ O(1)ε
3
2‖N‖2

2. (54)

It is easy to verify the following relation between U ε of the solution of (15)
and W ε of the solution of (21):

U ε − U = W ε −W, U IL = W IL, UBL = WBL.

Therefore, combining the results in [7] and the above arguments, we have the
estimate∫ ∞

0

∫ ∞

0

|U ε − U − U IL − UBL|2(x, t)e−2αt dx dt

≤ O(1)ε2‖W0‖2
2 +

{
O(1)ε2(‖c‖2

2 + ‖N‖2
1) if λ 6= 0

O(1)ε3/2‖c‖2
2 + ε‖N‖2

1 if λ = 0
.

(55)

Together with (26), we have proved that (10) is true.
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5. Initial Boundary value problem: n > 1

In this section we briefly give the idea of the proof of Theorem 1.2. For the case
n > 1, first we take the change of variables according to (16) and (17) - (20).
Thanks to [7], we only have to deal with the following system:

∂tW
ε + A∂xW

ε = 1
ε
SW ε + N

W (x, 0) = 0

BW (0, t) = 0.

(56)

By using the Laplace transform in (56), we get

W̃ ε =
( I

K(εξ)

)(
G(εξ)−K(εξ)

)−1

×
∫ ∞

x

eµ+(εξ)
(x−y)

ε

(
LN1(y, ξ)− 1

a
G(εξ)LN2(y, ξ)

)
dy

+
( I

G(εξ)

)(
G(εξ)−K(εξ)

)−1

×
∫ x

0

eµ−(εξ)
(x−y)

ε

(
LN1(y, ξ)− 1

a
K(εξ)LN2(y, ξ)

)
dy

−
( In

G(εξ)

)
eµ−(εξ)x

ε

(
Bu + BvG(εξ)

)−1(
Bu + BvK(εξ)

)
×
(
G(εξ)−K(εξ)

)−1
W̃ ε(ξ)

where

µ±(ξ) = diag{µ±1 (ξ), µ±2 (ξ), · · · , µ±n (ξ)},
G(ξ) = diag{g1(ξ), g2(ξ), · · · , gn(ξ)}
K(ξ) = diag{k1(ξ), k2(ξ), · · · , kn(ξ)}

R̃ε(ξ) =

∫ ∞

0

e−µ+(εξ) y
ε

(
LN1(y, ξ)− 1

a
G(εξ)LN1(y, ξ)

)
dy

with

µ±j (ξ) =
1

2a

(
λj ±

√
λ2

j + 4aξ(1 + ξ)
)

, gj(ξ) =
µ+

j (ξ)

1 + ξ
, kj(ξ) =

µ−j (ξ)

1 + ξ
.

Since all the components of W̃ ε can be treated seperately, similar to the scalar
case, we can prove that (13) and (14) are true. Here we omit the details.

Remark. As we can see that the convergence rate in this case is lower
than that in the scalar case. It is because that the non-characteristic boundary
layers and the uniform characteristic boundary layers are mixed up, therefore
the best convergence rate we can achieve is the rate of the uniform characteristic
boundary case.
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