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Boundary Data Smoothness
for Solutions of

Three Point Boundary Value Problems for
Second Order Ordinary Differential Equations

Johnny Henderson and Christopher C. Tisdell

Abstract. Under certain conditions, solutions of the boundary value problem,
y′′ = f(x, y, y′), a < x < b, y(x1) = y1, y(x3)− y(x2) = y2, a < x1 < x2 < x3 < b, are
differentiated with respect to the boundary conditions.
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1. Introduction

In this paper, we will be concerned with differentiating solutions of certain three
point boundary value problems with respect to boundary data for the second
order ordinary differential equation,

y′′ = f(x, y, y′), a < x < b, (1.1)

satisfying
y(x1) = y1, y(x3)− y(x2) = y2, (1.2)

where a < x1 < x2 < x3 < b, and y1, y2 ∈ R, and where we assume:

(i) f(x, u1, u2) : (a, b)× R2 → R is continuous

(ii) ∂f
∂ui

(x, u1, u2) : (a, b)× R2 → R are continuous, i = 1, 2,

(iii) solutions of initial value problems for (1.1) extend to (a, b).

We remark that condition (iii) is not necessary for the spirit of this work’s
results, however, by assuming (iii), we avoid continually making statements in
terms of solutions’ maximal intervals of existence.
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Under uniqueness assumptions on solutions of (1.1) and (1.2), we will es-
tablish analogues of a result that Hartman [8] attributes to Peano concerning
differentiation of solutions of (1.1) with respect to initial conditions. For our
differentiation with respect to boundary conditions results, given a solution y(x)
of (1.1), we will give much attention to the variational equation for (1.1) along
y(x), which is defined by

z′′ =
∂f

∂u1

(
x, y(x), y′(x)

)
z +

∂f

∂u2

(
x, y(x), y′(x)

)
z′. (1.3)

Interest in multipoint boundary value problems for second order ordinary
differential equations has been ongoing for several years, with much attention
given to positive solutions. To see only few of these papers, we refer the reader
to papers by Bai and Fang [1], Gupta and Trofimchuk [7], Ma [14, 15] and Yang
[22].

Likewise, many papers have been devoted to smoothness of solutions of
boundary value problems in regard to smoothness of the differential equation’s
nonlinearity, as well as the smoothness of the boundary conditions. For a view
of how this work has evolved, involving not only boundary value problems for
ordinary differential equations, but also discrete versions, functional differential
equations versions and smoothness versions concerning solutions of dynamic
equations on time scales, we suggest the manifold results in the papers [2] - [6],
[8] - [11], [13], [16] - [20].

One instance in which the three point boundary value problem (1.1), (1.2)
arises would involve the case when f < 0 and y1 = y2 = 0. Such a situation
could describe the path of a projectile fired from ground level at time x1, then
later exiting the atmosphere followed by re-entry of the atmosphere at the same
level at the respective times x2 and x3. The projectile’s path smoothness with
respect to boundary data would be the same smoothness as that of f .

The theorem for which we seek an analogue and attributed to Peano by
Hartman can be stated in the context of (1.1) as follows:

Theorem 1.1 (Peano). Assume that with respect of (1.1), conditions (i)-
(iii) are satisfied. Let x0 ∈ (a, b) and y(x) ≡ y(x, x0, c1, c2) denote the solution
of (1.1) satisfying the initial conditions y(x0) = c1, y

′(x0) = c2. Then,

(a) ∂y
∂c1

and ∂y
∂c2

exist on (a, b), and αi ≡ ∂y
∂ci

, i = 1, 2, are solutions of
the variational equation (1.3) along y(x) satisfying the respective initial
conditions,

α1(x0) = 1, α′1(x0) = 0,

α2(x0) = 0, α′2(x0) = 1.
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(b) ∂y
∂x0

exists on (a, b), and β ≡ ∂y
∂x0

is the solution of the variational
equation (1.3) along y(x) satisfying the initial conditions,

β(x0) = −y′(x0),

β′(x0) = −y′′(x0).

(c) ∂y
∂x0

(x) = −y′(x0)
∂y
∂c1

(x)− y′′(x0)
∂y
∂c2

(x).

In addition, our analogue of Theorem 1.1 depends on uniqueness of solutions of
(1.1), (1.2), a condition we list as an assumption:

(iv) Given a < x1 < x2 < x3 < b, if

y(x1) = z(x1), y(x3)− y(x2) = z(x3)− z(x2),

where y(x) and z(x) are solutions of (1.1), then y(x) ≡ z(x).

We will also make extensive use of a similar uniqueness condition on (1.3) along
solutions y(x) of (1.1).

(v) Given a < x1 < x2 < x3 < b and a solution y(x) of (1.1), if

u(x1) = 0, u(x3)− u(x2) = 0,

where u(x) is a solution of (1.3) along y(x), then u(x) ≡ 0.

2. An analogue of Peano’s theorem for (1.1), (1.2)

In this section, we derive our analogue of Theorem 1.1 for the boundary value
problem (1.1), (1.2). For such a differentiation result, we need continuous de-
pendence of solutions on boundary conditions. Such continuity was established
recently in [12], which we state here.

Theorem 2.1. Assume conditions (i)-(iv) are satisfied with respect to (1.1).
Let u(x) be a solution of (1.1) on (a, b), and let a < c < x1 < x2 < x3 < d < b
be given. Then, there exists a δ > 0 such that, for |xi − ti| < δ, i = 1, 2, 3, and
|u(x1) − y1| < δ, |u(x3) − u(x2) − y2| < δ, there exists a unique solution uδ(x)

of (1.1) such that uδ(t1) = y1, uδ(t3) − uδ(t2) = y2, and {u(j)
δ (x)} converges

uniformly to u(j)(x), as δ → 0, on [c, d], for i = 0, 1.

We now present the result of the paper.

Theorem 2.2. Assume conditions (i)-(v) are satisfied. Let u(x) be a so-
lution of (1.1) on (a, b). Let a < x1 < x2 < x3 < b be given, so that u(x) =
u(x, x1, x2, x3, u1, u2), where u(x1) = u1 and u(x3)− u(x2) = u2. Then,
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(a) ∂u
∂u1

and ∂u
∂u2

exist on (a, b), and yi ≡ ∂u
∂ui

, i = 1, 2, are solutions of
(1.3) along u(x) and satisfy the respective boundary conditions,

y1(x1) = 1, y1(x3)− y1(x2) = 0

y2(x1) = 0, y2(x3)− y2(x2) = 1.

(b) ∂u
∂x1

, ∂u
∂x2

, ∂u
∂x3

exist on (a, b), and zi ≡ ∂u
∂xi

, i = 1, 2, 3, are solutions of
(1.3) along u(x) and satisfy the respective boundary conditions,

z1(x1) = −u′(x1), z1(x3)− z1(x2) = 0

z2(x1) = 0, z2(x3)− z2(x2) = u′(x2)

z3(x1) = 0, z3(x3)− z3(x2) = −u′(x3).

(c) The partial derivatives satisfy,

∂u

∂x1

(x) = −u′(x1)
∂u

∂u1

(x)

∂u

∂x2

(x) +
∂u

∂x3

(x) = (u′(x2)− u′(x3))
∂u

∂u2

(x).

Proof. For part (a) we will give the argument for ∂u
∂u1

, since the argument

for ∂u
∂u2

is somewhat similar. Let δ > 0 be as in Theorem 2.1. Let 0 < |h| < δ
be given and define

y1h(x) =
1

h
[u(x, x1, x2, x3, u1 + h, u2)− u(x, x1, x2, x3, u1, u2)].

Note that u(x1, x1, x2, x3, u1 + h, u2) = u1 + h, and u(x1, x1, x2, x3, u1, u2) = u1,
so that for every h 6= 0,

y1h(x1) =
1

h
[u1 + h− u1] = 1,

and
y1h(x3)− y1h(x2) = u2 − u2 = 0.

Let

β2 = u′(x1, x1, x2, x3, u1, u2)

ε2 = ε2(h) = u′(x1, x1, x2, x3, u1 + h, u2)− β2.

By Theorem 2.1, ε2 = ε2(h) → 0, as h → 0. Using the notation of Theorem 1.1
for solutions of initial value problems for (1.1) and viewing the solutions u as
solutions of initial value problems, we have

y1h(x) =
1

h
[y(x, x1, u1 + h, β2 + ε2)− y(x, x1, u1, β2)].
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Then, by utilizing a telescoping sum, we have

y1h(x) =
1

h

[
{y(x, x1, u1 + h, β2 + ε2)− y(x, x1, u1, β2 + ε2)}

+{y(x, x1, u1, β2 + ε2)− y(x, x1, u1, β2)}
]
.

By Theorem 1.1 and the Mean Value Theorem, we obtain

y1h(x) =
1

h
α1

(
x, y(x, x1, u1 + h̄, β2 + ε2)

)
(u1 + h− u1)

+
1

h
α2

(
x, y(x, x1, u1, β2 + ε̄2)

)
(β2 + ε2 − β2),

where αi(x, y(·)), i = 1, 2, is the solution of the variational equation (1.3) along
y(·) and satisfies in each case,

α1(x1) = 1, α′1(x1) = 0,

α2(x1) = 0, α′2(x1) = 1.

Furthermore, u1 + h̄ is between u1 and u1 + h, and β2 + ε̄2 is between β2 and
β2 + ε2. Now simplifying,

y1h(x) = α1

(
x, y(x, x1, u1 + h̄, β2 + ε2)

)
+

ε2

h
α2

(
x, y(x, x1, u1, β2 + ε̄2)

)
.

Thus, to show limh→0 y1h(x), exists, it suffices to show limh→0
ε2
h

exists.

Now α2(x, y(·)) is a nontrivial solution of (1.3) along y(·), and α2(x1, y(·)) =
0. So, by assumption (v),

α2

(
x3, y(·)

)
− α2

(
x2, y(·)

)
6= 0.

However, we observed that y1h(x3)− y1h(x2) = 0, from which we obtain

ε2

h
=
−[α1

(
x3, y(x, x1, u1 + h̄, β2 + ε2)

)
− α1

(
x2, y(x, x1, u1 + h̄, β2 + ε2)

)
]

[α2

(
x3, y(x, x1, u1, β2 + ε̄2)

)
− α2

(
x2, y(x, x1, u1, β2 + ε̄2)

)
]

.

As a consequence of continuous dependence, we can let h → 0, so that

lim
h→0

ε2

h
=

−[α1

(
x3, y(x, x1, u1, β2)

)
− α1

(
x2, y(x, x1, u1, β2)

)
]

[α2

(
x3, y(x, x1, u1, β2)

)
− α2

(
x2, y(x, x1, u1β2)

)
]

=
−[α1

(
x3, u(·)

)
− α1

(
x2, u(·)

)
]

[α2

(
x3, u(·)

)
− α2

(
x2, u(·)

)
]

≡ D.
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Let y1(x) = lim
h→0

y1h(x), and note by construction of y1h(x),

y1(x) =
∂u

∂u1

(x, x1, x2, x3, u1, u2).

Furthermore,

y1(x) = lim
h→0

y1h(x)

= α1(x, y(x, x1, u1, β2)) + Dα2(x, y(x, x1, u1, β2))

= α1(x, u(x, x2, x2, x3, u1, u2)) + Dα2(x, u(x, x1, x2, x3, u1, u2)),

which is a solution of the variational equation (1.3) along u(x). In addition
because of the boundary conditions satisfied by y1h(x), we also have,

y1(x1) = 1, y1(x3)− y1(x2) = 0.

This completes the argument for ∂u
∂u1

.

In part (b) of the theorem, we will produce the details for ∂u
∂x2

, with the

arguments for ∂u
∂x1

and ∂u
∂x3

being somewhat along the same lines. So, let δ > 0
be as in Theorem 2.1, let 0 < |h| < δ be given, and define

z2h(x) =
1

h
[u(x, x1, x2 + h, x3, u1, u2)− u(x, x1, x2, x3, u1, u2)].

Note that z2h(x1) = 1
h
[u1 − u1] = 0, for every h 6= 0. Next, let

β2 = u′(x1, x1, x2, x3, u1, u2),

ε2 = ε2(h) = u′(x1, x1, x2 + h, x3, u1, u2).

By Theorem 2.1, ε2 = ε2(h) → 0, as h → 0. As in part (a), we use the notation
of Theorem 1.1 for solutions of initial value problems for (1.1) and viewing the
solutions u as solutions of initial value problems, we have

z2h(x) =
1

h
[y(x, x1, u1, β2 + ε2)− y(x, x1, u1, β2))].

By the Mean Value Theorem,

z2h(x) =
1

h
α2(x, y(x, x1, u1, β2 + ε̄2))(β2 + ε2 − β2),

where α2(x, y(·)) is the solution of (1.3) along y(·) and satisfies

α2(x1) = 0, α′2(x1) = 1,
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and moreover, β2+ε̄2 lies between β2 and β2+ε2. As before, to show limh→0 z2h(x)
exists, it suffices to show limh→0

ε2
h

exists.

Since α2(x, y(·)) is a nontrivial solution of (1.3) along y(·) and α2(x1, y(·)) =
0, it follows from assumption (v) that

α2(x3, y(·))− α2(x2, y(·)) 6= 0.

Hence,

ε2

h
=

z2h(x3)− z2h(x2)

α2(x3, y(x, x1, u1, β2 + ε̄2))− α2(x2, y(x, x1, u1, β2 + ε̄2))
.

We look in more detail at the numerator of this quotient. In particular, by the
Mean Value Theorem for integrals,

z2h(x3)− z2h(x2) =
1

h

[
{u(x3, x1, x2 + h, x3, u1, u2)

−u(x2, x1, x2 + h, x3, u1, u2)}

−{u(x3, x1, x2, x3, u1, u2)− u(x2, x1, x2, x3, u1, u2)}
]

=
1

h

[
{u(x3, x1, x2 + h, x3, u1, u2)

−u(x2, x1, x2 + h, x3, u1, u2)}
−{u(x3, x1, x2 + h, x3, u1, u2)

−u(x2 + h, x1, x2 + h, x3, u1, u2)}
]

=
1

h

[
u(x2 + h, x1, x2 + h, x3, u1, u2)

−u(x2, x1, x2 + h, x3, u1, u2)
]

=
1

h

∫ x2+h

x2

u′(s, x1, x2 + h, x3, u1, u2)ds

=
1

h
u′(ch, x1, x2 + h, x3, u1, u2)(x2 + h− x2)

= u′(ch, x1, x2 + h, x3, u1, u2),

for some ch inclusively between x2 and x2 +h. By Theorem 2.1, we can compute
the limit,

lim
h→0

(z2h(x3)− z2h(x2)) = lim
h→0

u′(ch, x1, x2 + h, u1, u2)

= u′(x2).



638 J. Henderson and C. C. Tisdell

As a consequence, when we return to the quotient defining ε2
h
, we can now

compute the limit,

lim
h→0

ε2

h
=

u′(x2)

α2

(
x3, y(x, x1, u1, β2)

)
− α2

(
x2, y(x, x1, u1, β2)

)
=

u′(x2)

α2

(
x3, u(·)

)
− α2

(
x2, u(·)

)
≡ E.

From the above expression,

z2h(x) =
ε2

h
α2

(
x, y(x, x1, u1, β2 + ε̄2)

)
,

we can evaluate the limit as h → 0, and if we let z2(x) = limh→0 z2h(x), we have
z2(x) = ∂u

∂x2
, and we obtain

z2(x) = lim
h→0

z2h(x)

= Eα2

(
x, y(x, x1, u1, β2)

)
= Eα2

(
x, u(x, x1, x2, x3, u1, u2)

)
,

which is a solution of (1.3) along u(x). In addition, from above observations,
z2(x) satisfies the boundary conditions,

z2(x1) = lim
h→0

z2h(x1) = 0

z2(x3)− z2(x2) = lim
h→0

(
z2h(x3)− z2h(x2)

)
= u′(x2).

This completes the proof of part (b).

Part (c) of the theorem is immediate given by verifying that each side
of the respective equations are solutions of (1.3) along u(x) and satisfy the
same three point boundary conditions, and then assumption (v) establishes the
equalities.

Remark. A result broadly extending Theorems 1.1 and 2.1 can be proved
within the context of linear nonresonant multipoint boundary conditions for n-
th order differential equations with smooth right hand sides. It suffices to start
with assumptions on the equation y(n) = 0 along with the multipoint boundary
conditions, and then transform the problem into an integral equation of the
form

u = N(u, α), (2.1)

where α is a vector of parameters involving the boundary conditions. We sup-
pose:
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(A) Equation (2.1) has a unique solution for some fixed parameter α0.

(B) The linear operator E − Nu(u(α0), α0) is invertible (in other words, the
variational equation has a unique solution along u(α0)).

Then by the implicit function theorem, the equation (2.1) can be solved with
respect to u. Thus we will obtain a smooth function u = u(α) defined in some
neighborhood of α0. Finally, additional properties of ∂u(α)/∂α can be deduced
from the given boundary conditions. In fact, Ehme [3] has obtained some very
nice results for n-th order boundary value problems by utilizing assumptions
like (A) and (B) in conjunction with the implicit function theorem.
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