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Banach Frames for Conjugate Banach Spaces

P. K. Jain, S. K. Kaushik and L. K. Vashisht

Abstract. Retro Banach frames for conjugate Banach spaces have been introduced
and studied. It has been proved that a Banach space E is separable if and only if E∗

has a retro Banach frame. Finally, a necessary and sufficient condition for a sequence
in a separable Banach space to be a retro Banach frame has been given.
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1. Introduction

In 1952, Duffin and Schaeffer [5] abstracted the fundamental notion of Gabor
for studying signal processing. In the process they defined frames for Hilbert
spaces. In 1986, Daubechies, Grossmann and Meyer [4] found a new applica-
tion to Wavelet and Gabor’s transforms in which frames continue to play an
important role. Gröchenig [8] generalized frames for Banach spaces and called
them atomic decompositions. He is also credited for the introduction of a more
general concept for Banach spaces called a Banach frame. Banach frames were
further studied in [1, 2, 3, 7, 9, 10, 11].

In the present paper, we introduce retro Banach frames for conjugate Ba-
nach spaces and observe that if E∗ has a retro Banach frame, then E has a
Banach frame. The converse need not be true (Example 3.4). Among other re-
sults, it has been proved that the conjugate Banach space E∗ of a Banach space
E has a retro Banach frame if and only if E is separable (see the Theorem 3.1).
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2. Preliminaries and lemmas

Throughout E will denote a Banach space over the scalar field K(R or C), E∗

and E∗∗, respectively, the first and the second conjugate spaces of E, π the
canonical isomorphism of E into E∗∗, [xn] the closed linear span of {xn} in the
norm topology of E, Ed and (E∗)d, respectively, the associated Banach spaces
of the scalar-valued sequences indexed by N.

A sequence {xn} in E is said to be complete if [xn] = E, and a sequence
{fn} in E∗ is said to be total over E if {x ∈ E : fn(x) = 0, n ∈ N} = {0}.

Definition. ([8]) Let E be a Banach space and Ed an associated Banach space
of scalar-valued sequences, indexed by N. Let {fn} ⊂ E∗ and S : Ed → E be
given. The pair ({fn}, S) is called a Banach frame for E with respect to Ed if

(i) {fn(x)} ∈ Ed, for each x ∈ E
(ii) there exist positive constants A and B with 0 < A ≤ B <∞ such that

A‖x‖E ≤ ‖{fn(x)}‖Ed
≤ B‖x‖E , x ∈ E (2.1)

(iii) S is a bounded linear operator such that ({fn(x)}) = x for x ∈ E.

The positive constants A and B, respectively, are called the lower and the
upper frame bounds of the Banach frame ({fn}, S). The operator S : Ed → E is
called the reconstruction operator (or, the pre-frame operator). The inequality
(2.1) is called the frame inequality.

The Banach frame ({fn}, S) is called tight if A = B and normalized tight if
A = B = 1. If removal of one fn renders the collection {fn} ⊂ E∗ no longer a
Banach frame for E, then ({fn}, S) is called an exact Banach frame.

The following results, which are refered in this paper are listed in the form
of lemmas.

Lemma 2.1. ([12]) If E is a Banach space and {fn} ⊂ E∗ is total over E, then
E is linearly isometric to the BK-space {{fn(x)} : x ∈ E}, where the norm is
defined by ‖{fn(x)}‖ = ‖x‖E, x ∈ E.

Lemma 2.2. ([6]) If g, f1, f2, . . . , fn are any n+1 linear functionals on a linear
space X, and if fi(x) = 0 for i = 1, 2, . . . , n, implies g(x) = 0, then g is a linear
combination of the fi.

3. Main results

Definition. Let E be a Banach space and E∗ be its conjugate space. Let (E∗)d

be a Banach space of scalar-valued sequences associated with E∗ indexed by N.
Let {xn} ⊂ E and T : (E∗)d → E∗ be given. The pair ({xn}, T ) is called a retro
Banach frame for E∗ with respect to (E∗)d if
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(i) {f(xn)} ∈ (E∗)d for each f ∈ E∗

(ii) there exist positive constants A and B with 0 < A ≤ B <∞ such that

A‖f‖E∗ ≤ ‖{f(xn)}‖(E∗)d
≤ B‖f‖E∗ , f ∈ E∗ (3.1)

(iii) T is a bounded linear operator such that T ({f(xn)}) = f , f ∈ E∗ .

The positive constants A and B, respectively, are called the lower and the
upper frame bounds of the retro Banach frame ({xn}, T ). The operator T :
(E∗)d → E∗ is called the reconstruction operator (or, the pre-frame operator).
The inequality (3.1) is called the retro frame inequality.

The retro Banach frame ({xn}, T ) is called tight if A = B and is called
normalized tight if A = B = 1. If removal of one xn renders the collection
{xn} ⊂ E no longer a retro Banach frame for E∗, then ({xn}, T ) is called an
exact retro Banach frame.

In the following example, we show that the sequence of unit vectors in
E = `p is a retro Banach frame for E∗.

Example 3.1. Let E = `p, if 1 ≤ p <∞ and let {en} be the sequence of unit
vectors in E. Let π be the canonical isomorphism of E into E∗∗. Put φn = π(en),
n ∈ N. Then {φn} ⊂ E∗∗ is such that {f ∈ E∗ : φn(f) = 0, n ∈ N} = {0}.
Therefore, by Lemma 2.1 there exists a Banach space (E∗)d = {{f(en)} : f ∈
E∗} with norm given by ‖{f(en)}‖(E∗)d

= ‖f‖E∗ . Define T : (E∗)d → E∗ by
T ({f(en)}) = f , f ∈ E∗. Then T is bounded linear operator such that ({en}, T )
is a retro Banach frame for E∗ with frame bounds A = B = 1.

Next we construct a sequence in E which is not a retro Banach frame for E∗.

Example 3.2. Let {xn} ⊂ E be a Schauder basis for E. Define {yn} ⊂ E by
y1 = x1, y2 = 2x1 and yn = xn, n ≥ 3. Then there exists no bounded linear
operator T such that ({yn}, T ) is a retro Banach frame for E∗, since otherwise
[yn] = E.

It is easy to observe that if ({xn}, T ) ({xn} ⊂ E, T : (E∗)d → E∗) is a retro
Banach frame for E∗ with respect to (E∗)d, then ({π(xn)}, T ) is a Banach frame
for E∗ with respect to (E∗)d. Towards the converse, we see that if ({φn}, S)
is a Banach frame for E∗, then there exists in general no {xn} ⊂ E associated
with {φn} such that ({xn}, S) is a retro Banach frame for E∗ (see the following
example).

Example 3.3. Let E = c0 and let {φn} be a sequence of unit vectors in E∗∗.
Define a sequence {gn} ⊂ E∗∗ byg1(f) = φ1(f) +

∞∑
j=2

(−1)jφj(f) , f ∈ E∗

gn = φn n = 2, 3, . . . .
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By Lemma 2.1, there exists a bounded linear operator T : {{gn(f)} : f ∈
E∗} → E∗ such that ({gn}, T ) is a Banach frame for E∗. But ({gn}, T ) is not
a retro Banach frame for E∗ since g1 = (1, 1,−1, 1,−1, 1, . . .) /∈ c0.

Further, if ({φn}, T ) ({φn} ⊂ E∗∗, T : (E∗)d → E∗) is a Banach frame
for E∗ with respect to (E∗)d, then E∗ has a retro Banach frame with same
reconstruction operator T if each φn is weak∗-continuous.

Remark. We may observe that if E∗ has a Retro Banach frame, then E has a
Banach frame. The converse need not be true (see the following example).

Example 3.4. Let E = `∞. Define {fn} ⊂ E∗ by fn(x) = ξn, x = {ξj} ∈ E.
Then, there is a bounded linear operator U : {{fn(x)} : x ∈ E} → E such that
({fn}, U) is a Banach frame for E with respect to {{fn(x)} : x ∈ E}. But E∗

has no retro Banach frame (Theorem 3.1).

We now give the following characterization of retro Banach frames.

Theorem 3.1. Let E be a Banach space. Then E∗ has a retro Banach frame
if and only if E is separable.

Proof. Let ({xn}, T )({xn} ⊂ E, T : (E∗)d → E∗) be a retro Banach frame
for E∗ with respect to (E∗)d and with frame bounds A and B. Then, for each
f ∈ E∗,

A‖f‖E∗ ≤ ‖{f(xn)}‖(E∗)d
≤ B‖f‖E∗ . (3.2)

Suppose E is not separable. Then [xn] 6= E. Therefore there exists a non-zero
functional g ∈ E∗ such that g(xn) = 0, n ∈ N. Then, retro frame inequality
(3.2) gives g = 0. This is a contradiction.

Conversely, let {xn} ⊂ E be a sequence such that [xn] = E. Put φn = π(xn),
n ∈ N. Then {φn} ⊂ E∗∗ is total over E∗. Therefore, by Lemma 2.1, there
exists a bounded linear operator T : {{φn(f)} : f ∈ E∗} → E∗ such that
({φn}, T ) is a Banach frame for E∗. Hence ({xn}, T ) is a retro Banach frame
for E∗.

Remark. In view of Theorem 3.1, one may observe that if E∗ has an atomic
decomposition, then E is separable and hence E∗ has a retro Banach frame.
The converse need not be true. Indeed, if E = `1, then E∗ has a retro Banach
frame but E∗ has no atomic decomposition.

The theorem below proves that the linear homeomorphic image of a retro
Banach frame is a retro Banach frame.

Theorem 3.2. Let ({xn}, T )({xn} ⊂ E, T : (E∗)d → E∗) be a retro Ba-
nach frame for E∗ with respect to (E∗)d and with best bounds A1 and B1.
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Let F be a Banach space and U : E → F be a linear homeomorphism, then
({U(xn)}, (U−1)∗T ) is retro Banach frame for F ∗ with respect to (E∗)d and
with best bounds A2, B2, satisfying

A1‖(U−1)∗‖−1 ≤ A2 ≤ A1‖U∗‖
B1‖(U−1)∗‖−1 ≤ B2 ≤ B1‖U∗‖ .

Proof. Since ({xn}, T ) is a retro Banach frame with bounds A1 and B1; for
each f ∈ E∗, we have

A1‖f‖E∗ ≤ ‖{f(xn)}‖(E∗)d
≤ B1‖f‖E∗ . (3.3)

Let g ∈ F ∗. Since U : E → F is a linear homeomorphism, g = (U−1)∗f , for
some f ∈ E∗. Then g ∈ F ∗ such that

{f(xn)} = {f(U−1U(xn))} = {(U−1)∗f(U(xn))} = {g(U(xn))} . (3.4)

So {g(Uxn)} ∈ (E∗)d, g ∈ F ∗. Also

‖g‖F ∗ = ‖(U−1)∗f‖F ∗ ≤ ‖(U−1)∗‖ ‖f‖E∗ . (3.5)

Therefore, by (3.3), (3.4) and (3.5), we have

A1‖(U−1)∗‖−1‖g‖F ∗ ≤ ‖{g(U(xn))}‖(E∗)d
≤ B1‖U∗‖ ‖g‖F ∗ , g ∈ F ∗ .

Further, the operator (U−1)∗T : (E∗)d → F ∗ defined by (U−1)∗T ({g(Uxn)}) =
g, g ∈ F ∗, is a bounded linear operator. Hence ({U(xn)}, (U−1)∗T ) is a retro
Banach frame for F ∗ with respect to (E∗)d and with frame bounds A1‖(U−1)∗‖−1

and B1‖U∗‖ .

Since the constants A2 and B2 are the best bounds for the retro Banach
frame ({U(xn)}, (U−1)∗T ), we have

A1‖(U−1)∗‖−1 ≤ A2, B2 ≤ B1‖U∗‖ . (3.6)

Now
‖f‖E∗ = ‖U∗g‖E∗ ≤ ‖U∗‖ ‖g‖F ∗ .

So,

A2‖U∗‖−1‖f‖E∗ ≤ A2‖g‖F ∗

≤ ‖{g(U(xn))}‖(E∗)d
(= ‖{f(xn)}‖(E∗)d

)

≤ B2‖g‖F ∗

≤
(
B2‖(U−1)∗‖

)
‖f‖E∗ .

This gives

A1 ≥ A2‖U∗‖−1 and B1 ≤ B2‖(U−1)∗‖ . (3.7)

Hence, by (3.6) and (3.7), the result follows.
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Next, we show that the coefficient mapping associated with a retro Banach
frame for E∗ is a topological isomorphism onto a closed subspace of (E∗)d.

Theorem 3.3. Let ({xn}, T )({xn} ⊂ E, T : (E∗)d → E∗) be a retro Banach
frame for E∗ with respect to (E∗)d and with frame bounds A and B. Then,
the coefficient mapping S : E∗ → (E∗)d defined by S(f) = {f(xn)}, f ∈ E∗ is
a topological isomorphism onto a closed subspace of (E∗)d with ‖S‖ ≤ B and
‖S−1‖ ≤ 1

A
, where S−1 is defined on the range R(S).

Proof. Since ({xn}, T ) is a retro Banach frame for E∗ with respect to (E∗)d

and with frame bounds A and B, ‖S‖ ≤ B. Let f ∈ kerS. Then S(f) = 0.
This gives f(xn) = 0, n ∈ N. Then, by retro frame inequality, f = 0. Thus
S is an injective bounded linear mapping from E∗ onto R(S). Therefore S−1

exists on R(S) and ‖S−1‖ ≤ 1
A
. In order to show that R(S) is closed, let

{αn} ⊂ R(S) be a sequence converging to say α in (E∗)d. Let {gn} ⊂ E∗ be
such that S(gn) = αn, n ∈ N. Then {S(gn)} is Cauchy sequence in (E∗)d and
so by continuity of S−1, {gn} is a Cauchy sequence in E∗. Then lim

n→∞
gn = g

exists in E∗. Therefore, by the continuity of S, lim
n→∞

S(gn) = S(g). Hence

α = S(g) ∈ R(S).

The following theorem gives a necessary and sufficient condition for a se-
quence in a separable Banach space to be a retro Banach frame.

Theorem 3.4. Let ({xn}, T )({xn} ⊂ E, T : (E∗)d → E∗) be a retro Banach
frame for E∗ with respect to (E∗)d and with frame bounds Ax and Bx. Let
{yn} ⊂ E. Then, there is a reconstruction operator U such that ({yn}, U) is
a retro Banach frame for E∗ with respect to (E∗)d if and only if there exists a
constant λ > 0 such that

‖L({f(xn)})‖(E∗)d
≥ λ‖{f(xn)}‖(E∗)d

,

where L : (E∗)d → (E∗)d be a bounded linear operator given by L({f(xn)}) =
{f(yn)}, f ∈ E∗ .

Proof. If ({yn}, U) is a retro Banach frame for E∗ with respect to (E∗)d and
with frame bounds Ay and By, then

Ay‖f‖E∗ ≤ ‖{f(yn)}‖(E∗)d
≤ By‖f‖E∗ , f ∈ E∗ .

This gives ‖L({f(xn)})‖(E∗)d
≥ λ‖{f(xn)}‖(E∗)d

, where λ = Ay

Bx
.

Conversely, for each f ∈ E∗ ,

‖{f(yn)}‖(E∗)d
≥ λ‖{f(xn)}‖(E∗)d

≥ λAx‖f‖E∗
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and

‖{f(yn)}‖(E∗)d
= ‖L({f(xn)})‖(E∗)d

≤ ‖L‖Bx ‖f‖E∗ .

Define U : (E∗)d → E∗ by U({f(yn)}) = f , f ∈ E∗. Then U is a bounded
linear operator such that ({yn}, U) is a retro Banach frame for E∗ with respect
to (E∗)d.

In the concluding result of the paper, we prove that the conjugate Banach
space of a separable Banach space always have a normalized tight and exact
retro Banach frame.

Theorem 3.5. If E∗ has a retro Banach frame, then E∗ has a normalized
tight retro Banach frame as well as a normalized tight and exact retro Banach
frame.

To prove the theorem we need the following lemma.

Lemma 3.1. Let ({xn}, T ) ({xn} ⊂ E, T : (E∗)d → E∗) be a retro Banach
frame for E∗ with respect to (E∗)d. Then ({xn}, T )is exact if and only if xn /∈
[xi]i6=n.

Proof. Suppose that ({xn}, T ) is exact. Then for each n ∈ N, there exists no
bounded linear operator T0 such that ({xn}i6=n, T0) is a retro Banach frame for
E∗. Therefore, by retro frame inequality [xi]i6=n 6= E. Hence xn /∈ [xi]i6=n.

Conversely, let xn /∈ [xi]i6=n and let ({xn}, T ) be not exact. Then there
exists a bounded linear operator T1 defined by T1({f(xi)}i6=n) = f , f ∈ E∗ such
that ({xi}i6=n, T1) is a retro Banach frame for E∗. Therefore, by retro Banach
frame inequality, [xi]i6=n = E. This gives xn ∈ [xi]i6=n, a contradiction.

Proof of Theorem 3.5. Let ({xn}, T ) ({xn} ⊂ E, T : (E∗)d → E∗) be a
retro Banach frame for E∗ with respect to (E∗)d. Put φn = π(xn), n ∈ N. Then
{φn} ⊂ E∗∗ is total over E∗. Therefore, by Lemma 2.1 there is a bounded linear
operator U : {{f(xn)} : f ∈ E∗} → E∗ given by U({f(xn)}) = f , f ∈ E∗ and
‖{f(xn)}‖ = ‖f‖E∗ . Thus ({xn}, U) is a normalized tight retro Banach frame
for E∗ with respect to {{f(xn)} : f ∈ E∗}.

Further, we may assume, without loss of generality, that {φn} is finitely
linearly independent. Then, by Lemma 2.2, for each n ∈ N, there exists an
fn ∈ E∗ such that φi(fn) = 0, i = 1, 2, . . . , n − 1 and φn(fn) = 1. This gives
fn(xi) = 0, i = 1, 2, . . . , n− 1 and fn(xn) = 1. Define {yn} ⊂ E by

y1 = x1, yn = xn −
n−1∑
i=1

fi(xn)yi, n = 2, 3, . . . .

Put ψn = π(yn), n ∈ N. Then {ψn} is total over E∗. Therefore, by Lemma 2.1
again, there exists a bounded linear operator V : {{f(yn)} : f ∈ E∗} → E∗ such
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that ({yn}, V ) is a normalized tight retro Banach frame for E∗ with respect to
{{f(yn)} : f ∈ E∗}. Further since yn /∈ [yi]i6=n, by Lemma 3.1 ({yn}, V ) is an
exact retro Banach frame for E∗.
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