Banach Frames for Conjugate Banach Spaces

P. K. Jain, S. K. Kaushik and L. K. Vashisht

Abstract. Retro Banach frames for conjugate Banach spaces have been introduced and studied. It has been proved that a Banach space E is separable if and only if E^* has a retro Banach frame. Finally, a necessary and sufficient condition for a sequence in a separable Banach space to be a retro Banach frame has been given.

Keywords: Banach frames, frames

MSC 2000: Primary 42C15, 42A38, secondary 46B15

1. Introduction

In 1952, Duffin and Schaeffer [5] abstracted the fundamental notion of Gabor for studying signal processing. In the process they defined frames for Hilbert spaces. In 1986, Daubechies, Grossmann and Meyer [4] found a new application to Wavelet and Gabor's transforms in which frames continue to play an important role. Gröchenig [8] generalized frames for Banach spaces and called them *atomic decompositions*. He is also credited for the introduction of a more general concept for Banach spaces called a *Banach frame*. Banach frames were further studied in [1, 2, 3, 7, 9, 10, 11].

In the present paper, we introduce *retro Banach frames* for conjugate Banach spaces and observe that if E^* has a retro Banach frame, then E has a Banach frame. The converse need not be true (Example 3.4). Among other results, it has been proved that the conjugate Banach space E^* of a Banach space E has a retro Banach frame if and only if E is separable (see the Theorem 3.1).

P. K. Jain: University of Delhi, Department of Mathematics, Delhi, India; pkjain104@vsnl.com

S. K. Kaushik: University of Delhi, Department of Mathematics, Kirorimal College, Delhi, India; shikk2003@yahoo.co.in

L. K. Vashisht: University of Delhi, Department of Mathematics, Delhi, India; lalitkvashisth@hotmail.com

2. Preliminaries and lemmas

Throughout E will denote a Banach space over the scalar field $\mathbb{K}(\mathbb{R} \text{ or } \mathbb{C})$, E^* and E^{**} , respectively, the first and the second conjugate spaces of E, π the canonical isomorphism of E into E^{**} , $[x_n]$ the closed linear span of $\{x_n\}$ in the norm topology of E, E_d and $(E^*)_d$, respectively, the associated Banach spaces of the scalar-valued sequences indexed by \mathbb{N} .

A sequence $\{x_n\}$ in E is said to be complete if $[x_n] = E$, and a sequence $\{f_n\}$ in E^* is said to be total over E if $\{x \in E : f_n(x) = 0, n \in \mathbb{N}\} = \{0\}.$

Definition. ([8]) Let E be a Banach space and E_d an associated Banach space of scalar-valued sequences, indexed by \mathbb{N} . Let $\{f_n\} \subset E^*$ and $S : E_d \to E$ be given. The pair $(\{f_n\}, S)$ is called a *Banach frame for* E with respect to E_d if

- (i) $\{f_n(x)\} \in E_d$, for each $x \in E$
- (ii) there exist positive constants A and B with $0 < A \le B < \infty$ such that

$$A||x||_{E} \le ||\{f_{n}(x)\}||_{E_{d}} \le B||x||_{E}, \qquad x \in E$$
(2.1)

(iii) S is a bounded linear operator such that $(\{f_n(x)\}) = x$ for $x \in E$.

The positive constants A and B, respectively, are called the *lower* and the *upper frame bounds* of the Banach frame $(\{f_n\}, S)$. The operator $S : E_d \to E$ is called the *reconstruction operator* (or, the *pre-frame operator*). The inequality (2.1) is called the *frame inequality*.

The Banach frame $(\{f_n\}, S)$ is called *tight* if A = B and *normalized tight* if A = B = 1. If removal of one f_n renders the collection $\{f_n\} \subset E^*$ no longer a Banach frame for E, then $(\{f_n\}, S)$ is called an *exact Banach frame*.

The following results, which are referred in this paper are listed in the form of lemmas.

Lemma 2.1. ([12]) If E is a Banach space and $\{f_n\} \subset E^*$ is total over E, then E is linearly isometric to the BK-space $\{\{f_n(x)\} : x \in E\}$, where the norm is defined by $\|\{f_n(x)\}\| = \|x\|_E$, $x \in E$.

Lemma 2.2. ([6]) If g, f_1, f_2, \ldots, f_n are any n+1 linear functionals on a linear space X, and if $f_i(x) = 0$ for $i = 1, 2, \ldots, n$, implies g(x) = 0, then g is a linear combination of the f_i .

3. Main results

Definition. Let E be a Banach space and E^* be its conjugate space. Let $(E^*)_d$ be a Banach space of scalar-valued sequences associated with E^* indexed by \mathbb{N} . Let $\{x_n\} \subset E$ and $T: (E^*)_d \to E^*$ be given. The pair $(\{x_n\}, T)$ is called a *retro* Banach frame for E^* with respect to $(E^*)_d$ if (i) $\{f(x_n)\} \in (E^*)_d$ for each $f \in E^*$

(ii) there exist positive constants A and B with $0 < A \leq B < \infty$ such that

$$A||f||_{E^*} \le ||\{f(x_n)\}||_{(E^*)_d} \le B||f||_{E^*}, \qquad f \in E^*$$
(3.1)

(iii) T is a bounded linear operator such that $T({f(x_n)}) = f, f \in E^*$.

The positive constants A and B, respectively, are called the *lower* and the *upper frame bounds* of the retro Banach frame $(\{x_n\}, T)$. The operator $T : (E^*)_d \to E^*$ is called the *reconstruction operator* (or, the *pre-frame operator*). The inequality (3.1) is called the *retro frame inequality*.

The retro Banach frame $(\{x_n\}, T)$ is called *tight* if A = B and is called *normalized tight* if A = B = 1. If removal of one x_n renders the collection $\{x_n\} \subset E$ no longer a retro Banach frame for E^* , then $(\{x_n\}, T)$ is called an *exact retro Banach frame*.

In the following example, we show that the sequence of unit vectors in $E = \ell^p$ is a retro Banach frame for E^* .

Example 3.1. Let $E = \ell^p$, if $1 \le p < \infty$ and let $\{e_n\}$ be the sequence of unit vectors in E. Let π be the canonical isomorphism of E into E^{**} . Put $\phi_n = \pi(e_n)$, $n \in \mathbb{N}$. Then $\{\phi_n\} \subset E^{**}$ is such that $\{f \in E^* : \phi_n(f) = 0, n \in \mathbb{N}\} = \{0\}$. Therefore, by Lemma 2.1 there exists a Banach space $(E^*)_d = \{\{f(e_n)\} : f \in E^*\}$ with norm given by $\|\{f(e_n)\}\|_{(E^*)_d} = \|f\|_{E^*}$. Define $T : (E^*)_d \to E^*$ by $T(\{f(e_n)\}) = f, f \in E^*$. Then T is bounded linear operator such that $(\{e_n\}, T)$ is a retro Banach frame for E^* with frame bounds A = B = 1.

Next we construct a sequence in E which is not a retro Banach frame for E^* .

Example 3.2. Let $\{x_n\} \subset E$ be a Schauder basis for E. Define $\{y_n\} \subset E$ by $y_1 = x_1, y_2 = 2x_1$ and $y_n = x_n, n \ge 3$. Then there exists no bounded linear operator T such that $(\{y_n\}, T)$ is a retro Banach frame for E^* , since otherwise $[y_n] = E$.

It is easy to observe that if $(\{x_n\}, T)$ $(\{x_n\} \subset E, T : (E^*)_d \to E^*)$ is a retro Banach frame for E^* with respect to $(E^*)_d$, then $(\{\pi(x_n)\}, T)$ is a Banach frame for E^* with respect to $(E^*)_d$. Towards the converse, we see that if $(\{\phi_n\}, S)$ is a Banach frame for E^* , then there exists in general no $\{x_n\} \subset E$ associated with $\{\phi_n\}$ such that $(\{x_n\}, S)$ is a retro Banach frame for E^* (see the following example).

Example 3.3. Let $E = c_0$ and let $\{\phi_n\}$ be a sequence of unit vectors in E^{**} . Define a sequence $\{g_n\} \subset E^{**}$ by

$$\begin{cases} g_1(f) = \phi_1(f) + \sum_{j=2}^{\infty} (-1)^j \phi_j(f), & f \in E^* \\ g_n = \phi_n & n = 2, 3, \dots \end{cases}$$

By Lemma 2.1, there exists a bounded linear operator $T : \{\{g_n(f)\} : f \in E^*\} \to E^*$ such that $(\{g_n\}, T)$ is a Banach frame for E^* . But $(\{g_n\}, T)$ is not a retro Banach frame for E^* since $g_1 = (1, 1, -1, 1, -1, 1, \ldots) \notin c_0$.

Further, if $(\{\phi_n\}, T)$ $(\{\phi_n\} \subset E^{**}, T : (E^*)_d \to E^*)$ is a Banach frame for E^* with respect to $(E^*)_d$, then E^* has a retro Banach frame with same reconstruction operator T if each ϕ_n is weak*-continuous.

Remark. We may observe that if E^* has a Retro Banach frame, then E has a Banach frame. The converse need not be true (see the following example).

Example 3.4. Let $E = \ell^{\infty}$. Define $\{f_n\} \subset E^*$ by $f_n(x) = \xi_n, x = \{\xi_j\} \in E$. Then, there is a bounded linear operator $U : \{\{f_n(x)\} : x \in E\} \to E$ such that $(\{f_n\}, U)$ is a Banach frame for E with respect to $\{\{f_n(x)\} : x \in E\}$. But E^* has no retro Banach frame (Theorem 3.1).

We now give the following characterization of retro Banach frames.

Theorem 3.1. Let E be a Banach space. Then E^* has a retro Banach frame if and only if E is separable.

Proof. Let $(\{x_n\}, T)(\{x_n\} \subset E, T : (E^*)_d \to E^*)$ be a retro Banach frame for E^* with respect to $(E^*)_d$ and with frame bounds A and B. Then, for each $f \in E^*$,

$$A||f||_{E^*} \le ||\{f(x_n)\}||_{(E^*)_d} \le B||f||_{E^*}.$$
(3.2)

Suppose E is not separable. Then $[x_n] \neq E$. Therefore there exists a non-zero functional $g \in E^*$ such that $g(x_n) = 0$, $n \in \mathbb{N}$. Then, retro frame inequality (3.2) gives g = 0. This is a contradiction.

Conversely, let $\{x_n\} \subset E$ be a sequence such that $[x_n] = E$. Put $\phi_n = \pi(x_n)$, $n \in \mathbb{N}$. Then $\{\phi_n\} \subset E^{**}$ is total over E^* . Therefore, by Lemma 2.1, there exists a bounded linear operator $T : \{\{\phi_n(f)\} : f \in E^*\} \to E^*$ such that $(\{\phi_n\}, T)$ is a Banach frame for E^* . Hence $(\{x_n\}, T)$ is a retro Banach frame for E^* .

Remark. In view of Theorem 3.1, one may observe that if E^* has an atomic decomposition, then E is separable and hence E^* has a retro Banach frame. The converse need not be true. Indeed, if $E = \ell^1$, then E^* has a retro Banach frame but E^* has no atomic decomposition.

The theorem below proves that the linear homeomorphic image of a retro Banach frame is a retro Banach frame.

Theorem 3.2. Let $(\{x_n\}, T)(\{x_n\} \subset E, T : (E^*)_d \to E^*)$ be a retro Banach frame for E^* with respect to $(E^*)_d$ and with best bounds A_1 and B_1 .

Let F be a Banach space and $U : E \to F$ be a linear homeomorphism, then $({U(x_n)}, (U^{-1})^*T)$ is retro Banach frame for F^* with respect to $(E^*)_d$ and with best bounds A_2, B_2 , satisfying

$$A_1 \| (U^{-1})^* \|^{-1} \le A_2 \le A_1 \| U^* \|$$

$$B_1 \| (U^{-1})^* \|^{-1} \le B_2 \le B_1 \| U^* \|.$$

Proof. Since $(\{x_n\}, T)$ is a retro Banach frame with bounds A_1 and B_1 ; for each $f \in E^*$, we have

$$A_1 \|f\|_{E^*} \le \|\{f(x_n)\}\|_{(E^*)_d} \le B_1 \|f\|_{E^*}.$$
(3.3)

Let $g \in F^*$. Since $U : E \to F$ is a linear homeomorphism, $g = (U^{-1})^* f$, for some $f \in E^*$. Then $g \in F^*$ such that

$$\{f(x_n)\} = \{f(U^{-1}U(x_n))\} = \{(U^{-1})^* f(U(x_n))\} = \{g(U(x_n))\}.$$
 (3.4)

So $\{g(Ux_n)\} \in (E^*)_d, g \in F^*$. Also

$$||g||_{F^*} = ||(U^{-1})^*f||_{F^*} \le ||(U^{-1})^*|| ||f||_{E^*}.$$
(3.5)

Therefore, by (3.3), (3.4) and (3.5), we have

$$A_1 \| (U^{-1})^* \|^{-1} \| g \|_{F^*} \le \| \{ g(U(x_n)) \} \|_{(E^*)_d} \le B_1 \| U^* \| \| g \|_{F^*}, \quad g \in F^*.$$

Further, the operator $(U^{-1})^*T : (E^*)_d \to F^*$ defined by $(U^{-1})^*T(\{g(Ux_n)\}) = g, g \in F^*$, is a bounded linear operator. Hence $(\{U(x_n)\}, (U^{-1})^*T)$ is a retro Banach frame for F^* with respect to $(E^*)_d$ and with frame bounds $A_1 || (U^{-1})^* ||^{-1}$ and $B_1 || U^* ||$.

Since the constants A_2 and B_2 are the best bounds for the retro Banach frame $({U(x_n)}, (U^{-1})^*T)$, we have

$$A_1 \| (U^{-1})^* \|^{-1} \le A_2, \quad B_2 \le B_1 \| U^* \|.$$
 (3.6)

Now

$$||f||_{E^*} = ||U^*g||_{E^*} \le ||U^*|| \, ||g||_{F^*} \, .$$

So,

$$A_{2} \|U^{*}\|^{-1} \|f\|_{E^{*}} \leq A_{2} \|g\|_{F^{*}}$$

$$\leq \|\{g(U(x_{n}))\}\|_{(E^{*})_{d}} \quad (= \|\{f(x_{n})\}\|_{(E^{*})_{d}})$$

$$\leq B_{2} \|g\|_{F^{*}}$$

$$\leq (B_{2} \|(U^{-1})^{*}\|) \|f\|_{E^{*}}.$$

This gives

$$A_1 \ge A_2 \|U^*\|^{-1}$$
 and $B_1 \le B_2 \|(U^{-1})^*\|$. (3.7)

Hence, by (3.6) and (3.7), the result follows.

Next, we show that the coefficient mapping associated with a retro Banach frame for E^* is a topological isomorphism onto a closed subspace of $(E^*)_d$.

Theorem 3.3. Let $(\{x_n\}, T)(\{x_n\} \subset E, T : (E^*)_d \to E^*)$ be a retro Banach frame for E^* with respect to $(E^*)_d$ and with frame bounds A and B. Then, the coefficient mapping $S : E^* \to (E^*)_d$ defined by $S(f) = \{f(x_n)\}, f \in E^*$ is a topological isomorphism onto a closed subspace of $(E^*)_d$ with $||S|| \leq B$ and $||S^{-1}|| \leq \frac{1}{A}$, where S^{-1} is defined on the range R(S).

Proof. Since $(\{x_n\}, T)$ is a retro Banach frame for E^* with respect to $(E^*)_d$ and with frame bounds A and B, $||S|| \leq B$. Let $f \in \ker S$. Then S(f) = 0. This gives $f(x_n) = 0$, $n \in \mathbb{N}$. Then, by retro frame inequality, f = 0. Thus S is an injective bounded linear mapping from E^* onto R(S). Therefore S^{-1} exists on R(S) and $||S^{-1}|| \leq \frac{1}{A}$. In order to show that R(S) is closed, let $\{\alpha_n\} \subset R(S)$ be a sequence converging to say α in $(E^*)_d$. Let $\{g_n\} \subset E^*$ be such that $S(g_n) = \alpha_n$, $n \in \mathbb{N}$. Then $\{S(g_n)\}$ is Cauchy sequence in $(E^*)_d$ and so by continuity of S^{-1} , $\{g_n\}$ is a Cauchy sequence in E^* . Then $\lim_{n\to\infty} g_n = g$ exists in E^* . Therefore, by the continuity of S, $\lim_{n\to\infty} S(g_n) = S(g)$. Hence $\alpha = S(g) \in R(S)$.

The following theorem gives a necessary and sufficient condition for a sequence in a separable Banach space to be a retro Banach frame.

Theorem 3.4. Let $(\{x_n\}, T)(\{x_n\} \subset E, T : (E^*)_d \to E^*)$ be a retro Banach frame for E^* with respect to $(E^*)_d$ and with frame bounds A_x and B_x . Let $\{y_n\} \subset E$. Then, there is a reconstruction operator U such that $(\{y_n\}, U)$ is a retro Banach frame for E^* with respect to $(E^*)_d$ if and only if there exists a constant $\lambda > 0$ such that

$$||L(\{f(x_n)\})||_{(E^*)_d} \ge \lambda ||\{f(x_n)\}||_{(E^*)_d}$$

where $L: (E^*)_d \to (E^*)_d$ be a bounded linear operator given by $L(\{f(x_n)\}) = \{f(y_n)\}, f \in E^*$.

Proof. If $(\{y_n\}, U)$ is a retro Banach frame for E^* with respect to $(E^*)_d$ and with frame bounds A_y and B_y , then

$$A_y \|f\|_{E^*} \le \|\{f(y_n)\}\|_{(E^*)_d} \le B_y \|f\|_{E^*}, \qquad f \in E^*.$$

This gives $||L({f(x_n)})||_{(E^*)_d} \ge \lambda ||{f(x_n)}||_{(E^*)_d}$, where $\lambda = \frac{A_y}{B_x}$. Conversely, for each $f \in E^*$,

$$\|\{f(y_n)\}\|_{(E^*)_d} \ge \lambda \|\{f(x_n)\}\|_{(E^*)_d} \ge \lambda A_x \|f\|_{E^*}$$

and

$$\|\{f(y_n)\}\|_{(E^*)_d} = \|L(\{f(x_n)\})\|_{(E^*)_d} \le \|L\| B_x \|f\|_{E^*}.$$

Define $U : (E^*)_d \to E^*$ by $U(\{f(y_n)\}) = f, f \in E^*$. Then U is a bounded linear operator such that $(\{y_n\}, U)$ is a retro Banach frame for E^* with respect to $(E^*)_d$.

In the concluding result of the paper, we prove that the conjugate Banach space of a separable Banach space always have a normalized tight and exact retro Banach frame.

Theorem 3.5. If E^* has a retro Banach frame, then E^* has a normalized tight retro Banach frame as well as a normalized tight and exact retro Banach frame.

To prove the theorem we need the following lemma.

Lemma 3.1. Let $(\{x_n\}, T)$ $(\{x_n\} \subset E, T : (E^*)_d \to E^*)$ be a retro Banach frame for E^* with respect to $(E^*)_d$. Then $(\{x_n\}, T)$ is exact if and only if $x_n \notin [x_i]_{i \neq n}$.

Proof. Suppose that $(\{x_n\}, T)$ is exact. Then for each $n \in \mathbb{N}$, there exists no bounded linear operator T_0 such that $(\{x_n\}_{i \neq n}, T_0)$ is a retro Banach frame for E^* . Therefore, by retro frame inequality $[x_i]_{i \neq n} \neq E$. Hence $x_n \notin [x_i]_{i \neq n}$.

Conversely, let $x_n \notin [x_i]_{i \neq n}$ and let $(\{x_n\}, T)$ be not exact. Then there exists a bounded linear operator T_1 defined by $T_1(\{f(x_i)\}_{i \neq n}) = f, f \in E^*$ such that $(\{x_i\}_{i \neq n}, T_1)$ is a retro Banach frame for E^* . Therefore, by retro Banach frame inequality, $[x_i]_{i \neq n} = E$. This gives $x_n \in [x_i]_{i \neq n}$, a contradiction.

Proof of Theorem 3.5. Let $(\{x_n\}, T)$ $(\{x_n\} \subset E, T : (E^*)_d \to E^*)$ be a retro Banach frame for E^* with respect to $(E^*)_d$. Put $\phi_n = \pi(x_n), n \in \mathbb{N}$. Then $\{\phi_n\} \subset E^{**}$ is total over E^* . Therefore, by Lemma 2.1 there is a bounded linear operator $U : \{\{f(x_n)\} : f \in E^*\} \to E^*$ given by $U(\{f(x_n)\}) = f, f \in E^*$ and $\|\{f(x_n)\}\| = \|f\|_{E^*}$. Thus $(\{x_n\}, U)$ is a normalized tight retro Banach frame for E^* with respect to $\{\{f(x_n)\} : f \in E^*\}$.

Further, we may assume, without loss of generality, that $\{\phi_n\}$ is finitely linearly independent. Then, by Lemma 2.2, for each $n \in \mathbb{N}$, there exists an $f_n \in E^*$ such that $\phi_i(f_n) = 0$, i = 1, 2, ..., n-1 and $\phi_n(f_n) = 1$. This gives $f_n(x_i) = 0$, i = 1, 2, ..., n-1 and $f_n(x_n) = 1$. Define $\{y_n\} \subset E$ by

$$y_1 = x_1,$$
 $y_n = x_n - \sum_{i=1}^{n-1} f_i(x_n)y_i,$ $n = 2, 3, \dots$

Put $\psi_n = \pi(y_n), n \in \mathbb{N}$. Then $\{\psi_n\}$ is total over E^* . Therefore, by Lemma 2.1 again, there exists a bounded linear operator $V : \{\{f(y_n)\} : f \in E^*\} \to E^*$ such

that $(\{y_n\}, V)$ is a normalized tight retro Banach frame for E^* with respect to $\{\{f(y_n)\}: f \in E^*\}$. Further since $y_n \notin [y_i]_{i \neq n}$, by Lemma 3.1 $(\{y_n\}, V)$ is an exact retro Banach frame for E^* .

Acknowledgements. The second author is partially supported by UGC India (Letter No. F.13-3/2002 (SR-I). The third author is supported by UGC India (Ref. No. Sch/JRF/AA/41/2002-03/). We thank the referees for their useful comments and suggestions towards the improvement of the paper.

References

- Casazza, P. G., Han, D. and D. R. Larson: Frames for Banach spaces. Contemporary Mathematics 247 (1999), 149 – 182.
- [2] Casazza, P. G. and O. Christensen: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl. 3 (1997), 543 – 557.
- [3] Christensen, O. and C. Heil: Perturbation of Banach frames and Atomic decompositions. Math. Nachr. 185 (1997), 33 – 47.
- [4] Daubechies, I., Grossmann, A. and Y. Meyer: Painless non-orthogonal expansions. J. Math. Phys. 27 (1986), 1271 – 1283.
- [5] Duffin, R. J. and A. C. Schaeffer: A class of non-harmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341 – 366.
- [6] Dunford, N. and J. T. Schwartz: *Linear Operators*. Part I. New York: Interscience Publishers Inc. 1958.
- [7] Favier, S. J. and R. A. Zalik: On the stability of frames and Riesz bases. Appl. Comp. Harm. Anal. 2 (1995), 160 – 173.
- [8] Gröchenig, K.: Describing functions : Atomic decompositions versus frames. Monatsh. Math. 112 (1991), 1 – 41.
- [9] Jain, P. K., Kaushik, S. K. and L. K. Vashisht: On Banach frames (communicated).
- [10] Jain, P. K., Kaushik, S. K. and L. K. Vashisht: On perturbations of Banach frames (communicted).
- [11] Jain, P. K., Kaushik, S. K. and L. K. Vashisht: On stability of Banach frames (communicated).
- [12] Singer, I.: Bases in Banach Spaces-II. New York-Heidelberg: Springer-Verlag 1981.

Received 16.12.2003