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On Some Local Geometric Properties
in Musielak-Orlicz Function Spaces

Henryk Hudzik and Wojciech Kowalewski

Abstract. Criteria for compactly locally uniformly rotund points in Musielak-Orlicz
spaces equipped with the Luxemburg and the Orlicz-Amemiya norms are given. Next,
criteria for compact local uniform rotundity and local uniform rotundity of the spaces
for both norms are deduced. These properties are important because, for any Banach
space X, both of them imply the Kadec-Klee property and this property, together with
reflexivity, is equivalent to approximative compactness of X (see [9]). Approximative
compactness of X gives that any nonempty convex and closed set in X is proximinal
in X and the projection PA(·) from X to A is a continuous operator (see [9], [12]).
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1. Introduction

Denote by N and R the sets of natural and real numbers, respectively. Let
(X, ‖ ‖) be a real Banach space and X∗ be its dual space. Let S(X) and
B(X) denote the unit sphere and the unit ball of X, respectively. We say that
x∗ ∈ S(X∗) is a support functional at x ∈ X \ {0} if ‖x∗‖ = 1 and x∗(x) = ‖x‖.
The set of all support functionals at x ∈ X \{0} is denoted by Grad(x). A point
x ∈ S(X) is said to be an exposed point (of B(X)) if there exists x∗ ∈ Grad(x)
such that x∗ 6∈ Grad(y) whenever y ∈ S(X) and y 6= x.

A point x ∈ S(X) is said to be a point of compact local uniform rotundity
(local uniform rotundity) (CLUR-point, (LUR-point) for short) (of B(X)) if
for any sequence (xn)∞n=1 in S(X) such that ‖xn + x‖ → 2, we have that (xn) is
a relatively compact set in S(X) ( resp. ‖xn − x‖ → 0). If every x ∈ S(X) is a
CLUR-point (LUR-point), then we say that X is a compactly locally uniformly
rotund (locally uniformly rotund) space – X ∈ (CLUR) (X ∈ (LUR)) for short.
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Let (T, Σ, µ) be a nonatomic, complete and σ-finite measure space and Lo

be the space of all σ-measurable real functions defined on T . A Banach space
X is called a Köthe space, if it is a subspace of Lo such that

1o if x ∈ Lo, y ∈ X and |x(t)| ≤ |y(t)| for µ-a.e. t ∈ T , then x ∈ X and
‖x‖ ≤ ‖y‖

2o there exists x ∈ X such that supp(x) = T , where supp(x) := {t ∈ T :
x(t) 6= 0}.

This paper concerns Musielak-Orlicz spaces, which are Köthe spaces. Let
for any Köthe space X, X+ denote the positive cone in X.

A Köthe space X is said to be monotonically complete if for any sequence
(xn) in X+ and any x ∈ X the assumption xn ↑ x implies ‖xn‖ ↑ ‖x‖. The
notation x ↑ x means that xn(t) ≤ xn+1(t) ≤ · · · ≤ x(t) and xn(t) → x(t) as
n → ∞ for µ-a.e t ∈ T . A Köthe space X is said to have the Fatou property
if for any (xn) in X with 0 ≤ xn ↑ x and supn ‖xn‖ < ∞, supn xn exists in X,
supn xn = x and ‖xn‖ ↑ ‖x‖.

A function Φ : T×R → [0,∞] is said to be a Musielak-Orlicz function if Φ
has the following properties:

(1) Φ(·, u) ∈ Lo for any u ∈R ;

(2) Φ(t, ·) is even, convex and left continuous on [0,∞);

(3) Φ(t, 0) = 0, Φ(t, u) → ∞ as u → ∞ and for µ-a.e. t ∈ T there exists
ut > 0 satisfying Φ(t, ut) <∞ .

We write Φ > 0 if the Orlicz function Φ
(
t, ·

)
vanishes only at zero for µ-a.e.

t ∈ T . A function Ψ is called the complementary function of Φ in the sense of
Young, if

Ψ(t, v) = sup
u≥0
{u|v| − Φ(t, u)} (t ∈ T, v ∈ R ).

Here and in the following ”t ∈ T” means that we consider µ-almost all t from T .
It is easy to see that Ψ is also a Musielak-Orlicz function. Let p−(t, u), p+(t, u)
and q−(t, u), q+(t, u) denote the left and right derivatives of Φ(t, u) and Ψ(t, u)
at u ∈ R , respectively.

We have the Young inequality

uv ≤ Φ(t, u) + Ψ(t, v) (t ∈ T, u, v ≥ 0)

and

uv = Φ(t, u) + Ψ(t, v) ⇐⇒

{
p−(t, u) ≤ v ≤ p+(t, u) for fixed u or

q−(t, v) ≤ u ≤ q+(t, v) for fixed v.

Let IΦ : Lo → [0,∞] be the modular defined by

IΦ

(
x
)

=

∫
T

Φ(t, |x(t)|)dµ .



Musielak-Orlicz Function Spaces 685

The linear space {
x ∈ Lo : IΦ

(
λx

)
<∞ for some λ > 0

}
equipped with the Luxemburg norm

‖x‖Φ = inf
{
λ > 0 : IΦ

(
x
λ

)
≤ 1

}
or with the Orlicz-Amemiya norm

‖x‖oΦ = inf
k>0

{1

k

(
1 + IΦ

(
kx

))}
is a Köthe space, denoted by LΦ or Lo

Φ, respectively. We call them Musielak-
Orlicz function spaces. These two norms are equivalent, namely

‖x‖Φ ≤ ‖x‖oΦ ≤ 2‖x‖Φ

for any x ∈ LΦ. Moreover, the linear subspace

{x ∈ Lo : IΦ

(
λx

)
<∞ for all λ > 0}

equipped with the Luxemburg norm or with the Orlicz norm induced from LΦ,
is a Köthe space and we denote it by EΦ or Eo

Φ (according to the norm that is
considered). It is well known that EΦ is the subspace of all order continuous
elements of LΦ.

Let T0 be any infinite subset of T . We say that Φ satisfies condition ∆2(T0)
(Φ ∈ ∆2(T0) for short), if for any h > 1 there exists k > 1 and a nonnegative
function f ∈ Lo with

∫
T0

f(t)dµ <∞ such that

Φ(t, hu) ≤ kΦ(t, u) + f(t) (t ∈ T0, u ∈ R ).

If Φ ∈ ∆2(T ), we write simply Φ2 ∈ ∆2. For any x ∈ Lo
Φ \ {0}, we define

k∗(x) = inf
{
k ≥ 0 : IΨ (p+(k|x|)) ≥ 1

}
k∗∗(x) = sup

{
k ≥ 0 : IΨ (p+(k|x|)) ≤ 1

}
and

K(x) =


∅ if k∗(x) = +∞
[k∗(x), k∗∗(x)] if k∗∗(x) < +∞
[k∗(x),∞) if k∗(x) < +∞ and k∗∗(x) = +∞ .

It is clear that k∗(x) ≤ k∗∗(x) for any x ∈ Lo
Φ \{0}. We will write k∗, k∗∗ instead

of k∗(x), k∗∗(x), if it is clear which x is considered. It is known that for any
x ∈ LΦ \ {0}, we have ‖x‖oΦ = 1

k

(
1 + IΦ

(
kx

))
if and only if k ∈ K(x) (see [17]).
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We define that Φ is upper (lower) affine at z ∈ R+ \ {0} if there is w ∈ R +

such that Φ(w) > Φ(z) (Φ(w) < Φ(z)) and Φ is affine on the interval [z, w]
([w, z]). For z ∈ (−∞, 0), the upper (lower) affinity of Φ at z is defined similarly.
We introduce the following notations:

Au(t) = {z ∈ R : Φ(t, ·) is upper affine at z}
Al(t) = {z ∈ R : Φ(t, ·) is lower affine at z}

ASu(t) = {z ∈ Au(t) : p−(t, z) = p+(t, z)}
ASl(t) = {z ∈ Al(t) : p−(t, z) = p+(t, z)}

Au(x) = {t ∈ T : x(t) ∈ Au(t)} ANSu(t) = Au(t) \ ASu(t)

Al(x) = {t ∈ T : x(t) ∈ Al(t)} ANSl(t) = Al(t) \ ASl(t)

As
u(x) = {t ∈ Au(x) : x(t) ∈ ASu(t)} Ans

u (x) = Au(x) \ As
u(x)

As
l (x) = {t ∈ Al(x) : x(t) ∈ ASl(t)} Ans

l (x) = Al(x) \ As
l (x).

Lemma 1.1 ([8]). Assume that Φ is a Musielak-Orlicz function such that Φ >
0, 1

u
Φ

(
t, u

)
→ 0 as u → 0 for µ-a.e. t ∈ T and Φ ∈ ∆2. Then the following

conditions are equivalent:

(i) Ψ ∈ ∆2.

(ii) For any ε > 0 there exist ξ ∈ (0, 1) and a function f : T → R+ such that
IΦ

(
f
)

< ε and Φ
(
t, u

2

)
≤ 1−ξ

2
Φ

(
t, u

)
for µ-a.e. t ∈ T and any u ≥ f(t).

Remark 1.2 ([1]). Under the assumptions from Lemma 1.1, condition (ii) in
Lemma 1.1 can be reformulated equivalently in the form:

(ii’) There exist ξ ∈ (0, 1) and a function f : T → R+ , IΦ

(
f
)

<∞ such that

Φ
(
t, u

2

)
≤ 1−ξ

2
Φ

(
t, u

)
for µ-a.e. t ∈ T and any u ≥ f(t).

Lemma 1.3 ([14]). Let Φ be a real-valued Musielak-Orlicz function. Then there
exists a sequence (Tn)∞n=1 of pairwise disjoint, measurable sets of a positive and
finite measure such that T =

⋃∞
n=1 Tn and sup{Φ

(
t, u

)
: t ∈ Tn} < ∞ for any

n ∈ N and u ∈ R+ .

It follows from Lemma 1.3 that χTn ∈ EΦ for any n ∈ N . Let us say
that a sequence (xn)∞n=1 ∈ Lo converges to x ∈ Lo locally in measure whenever
xnχA → xχA in measure for any A ∈ Σ with µ(A) <∞.

Lemma 1.4 ([9]). Let x ∈ LΦ, (xn) ⊂ LΦ and Φ ∈ ∆2. If xn → x locally in
measure and IΦ

(
xn

)
→ IΦ

(
x
)

<∞, then ‖xn − x‖Φ → 0.

Lemma 1.5 ([3]). Assume that Φ is a Musielak-Orlicz function such that Φ ∈
∆2 and Φ > 0. Then for any L > 0 and ε > 0 there exists δ = δ(ε) > 0 such
that |IΦ

(
x
)
− IΦ

(
y
)
| < ε for any x, y ∈ LΦ satisfying IΦ

(
x
)
≤ L, IΦ

(
y
)
≤ L

and IΦ

(
x− y

)
< δ.
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Lemma 1.6 ([2]). Let ΣL denote the σ-algebra of Lebesgue measurable sets
in R , E ∈ ΣL, E be closed and bounded. Then there exist two sequences
(En) and (Fn) in ΣL such that En, Fn ∈ ΣL, Fn ∩ En = ∅, E = Fn ∪ En,
µ(En) = µ(Fn) = 1

2
µ(E) for any n ∈ N and

lim
n→∞

∫
E

v(t)(χEn(t)− χFn(t))dt = 0

for any integrable function v.

Lemma 1.7 ([13]). Let x∗ = ξv + φ denote a linear, continuous functional
on Lo

Φ such that ‖x∗‖ = 1, where ξv denotes the regular functional on Lo
Φ,

generating by v ∈ LΨ such that ξv(y) =
∫

T
v(t)y(t) dt (y ∈ Lo

Φ) and φ is a
singular functional. Then x∗ attains its norm at x ∈ S(Lo

Φ), that is, x∗ ∈
Grad(x) if and only if for some k ∈ K(x) the following conditions hold:

1. IΦ

(
v
)

+ ‖φ‖ = 1

2. ‖φ‖ = φ(kx)

3. 〈kx, v〉 = IΦ

(
kx

)
+ IΨ (v), i.e. v(t) ∈ ∂Φ

(
t, kx(t)

)
for µ-a.e. t ∈ T .

2. Results

We start with a lemma that will be important to prove our main results.

Lemma 2.1. Let X denote the space LΦ or Lo
Φ. Assume that Φ > 0, 1

u
Φ

(
t, u

)
→

0 as u → 0 for µ-a.e. t ∈ T , Φ ∈ ∆2 and Ψ ∈ ∆2. Moreover, assume that
(xn), (yn) ⊂ S(X) and ‖xn + yn‖ → 2. Then for any ε > 0 there exist numbers
δ = δ(ε) > 0 and n

′
= n

′
(ε) ∈ N such that, for any n > n

′
and E ∈ Σ, the

condition ‖ynχE‖ < δ implies that ‖xnχE‖ < ε.

Proof. Let us fix ε > 0. Since Φ ∈ ∆2, so there exists σ(ε) > 0 such that
IΦ

(
x
)

< σ(ε) implies ‖x‖Φ < ε (see [3, Lemma 1.4]). Let f and ξ be the

function and the constant in Lemma 1.1 for σ(ε)
3

instead of ε. Define

An = {t ∈ E : |xn(t)| ≤ f(t)}.

Then IΦ

(
xnχAn

)
≤ IΦ

(
fχAn

)
< σ(ε)

3
. Let δ ∈ (0, 1) be such that the conditions

IΦ

(
x
)
≤ 1 and IΦ

(
y
)

< δ imply that∣∣IΦ

(
x + y

)
− IΦ

(
x
)∣∣ <

ξσ(ε)

6
.

Assume that ‖ynχE‖Φ < δ. Then IΦ

(
ynχE

)
< δ. Hence

IΦ

(
xn+yn

2
χE\An

)
≤ IΦ

(
xn

2
χE\An

)
+

ξσ(ε)

6
≤ 1− ξ

2
IΦ

(
xnχE\An

)
+

ξσ(ε)

6
.
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Let n′ ∈ N be such that IΦ

(
xn+yn

2

)
> 1− ξσ(ε)

6
for any n > n′. Such a number

n′ ∈ N exists because ‖xn + yn‖Φ → 1 as n→∞ whence, by Φ ∈ ∆2, we have
IΦ

(
xn+yn

2

)
→ 1 as n → ∞. By convexity of the function Φ

(
t, ·

)
on [0,∞], we

have
Φ

(
t, xn(t)

)
+ Φ

(
t, yn(t)

)
2

− Φ
(
t, xn(t)+yn(t)

2

)
≥ 0.

for µ-a.e. t ∈ T . Therefore, for n > n′, we get

ξσ(ε)

6
> 1− IΦ

(
xn+yn

2

)
=

∫
T

[
Φ

(
t, xn(t)

)
+ Φ

(
t, yn(t)

)
2

− Φ
(
t, xn(t)+yn(t)

2

)]
dt

≥
IΦ

(
xnχE\An

)
+ IΦ

(
ynχE\An

)
2

− IΦ

(
xn+yn

2
χE\An

)
≥

IΦ

(
xnχE\An

)
+ IΦ

(
ynχE\An

)
2

− 1− ξ

2
IΦ

(
xnχE\An

)
− ξσ(ε)

6

≥ ξ

2
IΦ

(
xnχE\An

)
− ξσ(ε)

6
.

Hence ξ
2
IΦ

(
xnχE\An

)
≤ ξσ(ε)

3
which implies IΦ

(
xnχE\An

)
≤ 2σ(ε)

3
. We get

IΦ

(
xnχE

)
< σ(ε) for n > n′ since IΦ

(
xnχAn

)
< σ(ε)

3
. Therefore, ‖xnχE‖Φ < ε

for n > n′.

Remark 2.2. Let us fix yn = x for any n ∈ N in Lemma 2.1. Then any se-
quence (xn), satisfying the assumptions of that Lemma, is norm equi-continuous.

Proof. Let us fix ε > 0 and define Sn =
⋃n

i=1 Ti, where (Ti)
∞
1 is the sequence of

sets from Lemma 1.3. Then, by the Beppo-Levi Theorem, we get IΦ

(
xχSn

)
→

IΦ

(
x
)
, whence IΦ

(
xχT\Sn

)
→ 0 and, by Φ ∈ ∆2,

∥∥xχT\Sn

∥∥
Φ
→ 0. Then there

exists m ∈ N such that
∥∥xχT\Sm

∥∥
Φ

< δ, where δ is from Lemma 2.1. Therefore,

by that Lemma,
∥∥xnχT\Sm

∥∥
Φ

< ε for any n > n′. Let A = Sm. Since,by Φ ∈ ∆2,
LΦ is order continuous, so the element xχA is order continuous. Moreover
µ(A) < ∞. Let B ⊂ A and B ∈ Σ. Then there exists σ = σ(ε) such that, if
µ(B) < σ, then ‖xχB‖Φ < δ, and it follows from Lemma 2.1 that ‖xnχB‖Φ < ε
for any n > n′, which finishes the proof.

Lemma 2.3. Let us fix yn = x for any n ∈ N in Lemma 2.1. Let (xn) be the
sequence from that Lemma such that, in addition, xn → x locally in measure.
Then ‖xn − x‖ → 0 as n→∞.

Proof. It is enough to show this Lemma for the Luxemburg norm. Let us fix
ε > 0. We define Sn as in the proof of Remark 2.2. By Lemma 2.1 we get
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that there exist δ < ε
5

and n′ ∈ N such that for any E ∈ Σ, if ‖xχE‖ < δ,
then ‖xnχE‖ < ε

5
for any n > n′. By the assumption that Φ ∈ ∆2 there exists

m ∈ N such that ‖xχT\Sm‖ < δ. So we have ‖xnχT\Sm‖ < ε
5

for any n′ > n.

Since µ(Sm) <∞, so xn
µ→ x in the set Sm. Without loss of generality we can

assume that xn(t) → x(t) for µ-a.e. t ∈ T . Since (xn) is norm equi-continuous
and µ(Sm) < ∞, so there exist n(ε) and a(ε) > 0 such that for any E ∈ Σ, if
µ(E) < a(ε), then ‖xnχE‖Φ < ε

5
for any n > n(ε). Since LΦ is order continuous,

so there exists b(ε) > 0 such that for any E ∈ Σ, E ⊂ Sm, if µ(E) < b(ε), then
‖xχE‖Φ < ε

5
. It follows from the Yegoroff theorem that there exists A ∈ Σ such

that A ⊂ Sm, µ(A) < min(a(ε), b(ε)) and xn − x → 0 uniformly in Sm \ A,
i.e. there exists n1(ε) ∈ N such that |xn(t)− x(t)| ≤ 1 for any t ∈ Sm \ A and
any n > n1(ε). Hence Φ

(
t, xn(t)− x(t)

)
≤ Φ

(
t, 1

)
for any t ∈ Sm \ A. By the

Lebesgue dominated convergence theorem, we get IΦ

(
(xn − x)χSm\A

)
→ 0 as

n → ∞. Since Φ ∈ ∆2, so we have
∥∥(xn − x)χSm\A

∥∥
Φ
→ 0, which means that

there exists n2(ε) ≥ max(n(ε), n1(ε)) such that
∥∥(xn − x)χSm\A

∥∥
Φ

< ε
5

for any
n > n2(ε). Finally,

‖xn − x‖Φ ≤
∥∥(xn − x)χT\Sm

∥∥
Φ

+
∥∥(xn − x)χSm\A

∥∥
Φ

+ ‖(xn − x)χA‖Φ
<

∥∥xnχT\Sm

∥∥
Φ

+
∥∥xχT\Sm

∥∥
Φ

+
ε

5
+ ‖xnχA‖Φ + ‖xχA‖Φ < ε

for any n > n2(ε).

Lemma 2.4. Let Φ be a Musielak-Orlicz function and x ∈ S(LΦ). If Φ ∈ ∆2,
x(t) ∈ Ext(Φ

(
t, ·

)
) for µ-a.e. t ∈ T and µ(Al(x))µ(Au(x)) > 0, then x is not a

CLUR-point.

Proof. Let ‖x‖Φ = 1. By Φ ∈ ∆2, we get IΦ

(
x
)

= 1. Suppose that
µ(Al(x))µ(Au(x)) > 0. For any n ∈ N we define the sets

An
u(x) =

{
t ∈ T :

x(t) and x(t) + 1
n
sgn

(
x(t)

)
are in the same affinity interval of Φ

(
t, ·

)}

An
l (x) =

{
t ∈ T :

x(t) and x(t)− 1
n
sgn

(
x(t)

)
are in the same affinity interval of Φ

(
t, ·

)}

Then
⋃∞

n=1 An
u(x) = Au(x),

⋃∞
n=1 An

l (x) = Al(x) and An
u(x) ↑, An

l (x) ↑. Hence
there exists m ∈ N such that µ(Am

u (x)) > 0 and µ(Am
l (x)) > 0. Without loss

of generality we can assume that µ(Am
u (x) ∩ Am

l (x)) = 0 (because of the fact
that x(t) ∈ Ext(Φ

(
t, ·

)
) for µ-a.e. t ∈ T ). Since µ is nonatomic, so we can find
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measurable sets Bm
u , Bm

l such that Bm
u ⊂ Am

u (x), Bm
l ⊂ Am

l (x) and∫
Bm

u

[
Φ

(
t, x(t) +

1

m
sgn(x(t)

)
− Φ

(
t, x(t)

)]
dµ

=

∫
Bm

l

[
− Φ

(
t, x(t)− 1

m
sgn(x(t)

)
+ Φ

(
t, x(t)

)]
dµ.

(1)

Denote A = Bm
u , B = Bm

l . Then, from (1), we have

IΦ

(
(x + 1

m
sgn(x))χA

)
+ IΦ

(
(x− 1

m
sgn(x))χB

)
= IΦ

(
xχA∪B

)
. (2)

Now denote Ao
1 = A, Bo

1 = B. Since the functions

f(t) = Φ
(
t, x(t) +

1

m
sgn(x(t)

)
− Φ

(
t, x(t)

)
g(t) = −Φ

(
t, x(t)− 1

m
sgn(x(t)

)
+ Φ

(
t, x(t)

)
are nonnegative, measurable and integrable, so they generate on Σ ∩ A and on
Σ ∩B, respectively, the nonatomic measures ν = νf and κ = κg:

ν(D) =

∫
D

[
Φ

(
t, x(t) + 1

m
sgn(x(t))

)
− Φ

(
t, x(t)

)]
dµ (∀D ∈ Σ ∩ A)

κ(D) =

∫
D

[
−Φ

(
t, x(t)− 1

m
sgn(x(t))

)
+ Φ

(
t, x(t)

)]
dµ (∀D ∈ Σ ∩B).

Hence there exist sets A1
1, A

1
2 ∈ Σ ∩ A and B1

1 , B
1
2 ∈ Σ ∩B such that

ν(A1
1) = ν(A1

2), κ(B1
1) = κ(B1

2), A1
0 = A1

1 ∪ A1
2, B1

0 = B1
1 ∪B1

2 .

Then we get

IΦ

(
(x + 1

m
sgn(x))χA1

1

)
+ IΦ

(
xχA1

2

)
= IΦ

(
(x + 1

m
sgn(x))χA1

2

)
+ IΦ

(
xχA1

1

) (3)

IΦ

(
(x− 1

m
sgn(x))χB1

2

)
+ IΦ

(
xχB1

1

)
= IΦ

(
(x− 1

m
sgn(x))χB1

1

)
+ IΦ

(
xχB1

2

) (4)

Let F := B1
2 ∪B1

1 ∪ A1
2 ∪ A1

1 = A ∪B and define

x1 = xχT\F + xχB1
2
+

(
x− 1

m
sgn(x)

)
χB1

1
+ xχA1

1
+

(
x +

1

m
sgn(x)

)
χA1

2
.
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By equalities (2) - (4) and the convexity of the function Φ, we have

IΦ

(
x1

)
= IΦ

(
x1+x

2

)
= IΦ

(
x
)

= 1.

In the same way we decompose the sets An
i , B

n
i , n ≥ 1, i = 1, . . . , 2n, into

subsets An+1
2i−1, An+1

2i , Bn+1
2i−1, Bn+1

2i such that

A =
2n⋃
i=1

An
i , An+1

2i−1 ∪ An+1
2i = An

i

B =
2n⋃
i=1

Bn
i Bn+1

2i−1 ∪Bn+1
2i = Bn

i

ν(An+1
2i−1) = ν(An+1

2i ), ν(An+1
2i−1 ∩ An+1

2i ) = 0

κ(Bn+1
2i−1) = κ(Bn+1

2i ), κ(Bn+1
2i−1 ∩Bn+1

2i ) = 0 .

Defining the sets

Cn
1 =

2n−1⋃
k=1

An
2k−1, Cn

2 =
2n−1⋃
k=1

An
2k, Dn

1 =
2n−1⋃
k=1

Bn
2k−1, Dn

2 =
2n−1⋃
k=1

Dn
2k,

we get ν(Cn
1 ) = ν(Cn

2 ) = 1
2
ν(A) and κ(Dn

1 ) = κ(Dn
2 ) = 1

2
κ(B). Hence

IΦ

(
(x + 1

m
sgn(x))χCn

2

)
+ IΦ

(
xχCn

1

)
= IΦ

(
(x + 1

m
sgn(x))χCn

1

)
+ IΦ

(
xχCn

2

) (5)

IΦ

(
(x− 1

m
sgn(x))χDn

2

)
+ IΦ

(
xχDn

1

)
= IΦ

(
(x− 1

m
sgn(x))χDn

1

)
+ IΦ

(
xχDn

2

) (6)

Define

xn = xχT\F + xχDn
1

+ (x− 1

m
sgn(x))χD1

2
+ xχCn

1
+ (x +

1

m
sgn(x))χCn

2
.

By equalities (5) and (6), we have

IΦ

(
xn

)
= IΦ

(
xn+x

2

)
= 1, whence ‖xn‖Φ =

∥∥xn+x
2

∥∥
Φ

= 1.

Let n < p. Then

Dn
1 = Dn

1 ∩B = Dn
1 ∩ (Dp

1 ∪Dp
2) = (Dn

1 ∩Dp
1) ∪ (Dn

1 ∩Dp
2).

Hence Dn
1 \Dp

1 = Dn
1 \ (Dn

1 ∩Dp
1) = Dn

1 ∩Dp
2. In the same way we can prove

that Dn
2 \Dp

2 = Dn
2 ∩Dp

1. Moreover, (Dn
1 \Dp

1) ∩ (Dn
2 \Dp

2) = ∅. Therefore, by
symmetry of the decomposition, we have

1

4
κ(B) =

1

2
κ(Dn

1 ) = κ(Dn
1 ∩Dp

1) = κ(Dn
1 ∩Dp

2) = κ(Dn
1 \Dp

1),
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whence κ(Dn
1 \Dp

1) = 1
4
κ(B). Similarly we can show that κ(Dn

2 \Dp
2) = 1

4
κ(B),

whence, by the definition of the measure κ, we get

1

4
κ(B) = κ(Dn

1 \Dp
1)

= IΦ

(
xχDn

1 \D
p
1

)
− IΦ

(
(x− 1

m
sgn(x))χDn

1 \D
p
1

)
< IΦ

(
xχDn

1 \D
p
1

)
< IΦ

(
xχDn

1 \D
p
1

)
+ IΦ

(
(x− 1

m
sgn(x))χDn

2 \D
p
2

)
.

(7)

Similarly
1

4
ν(A) < IΦ

(
xχCn

1 \C
p
1

)
+ IΦ

(
(x + 1

m
sgn(x))χCn

2 \C
p
2

)
. (8)

Moreover,

xn − xp = xχDn
1 \D

p
1
+ (x− 1

m
sgn(x))χDn

2 \D
p
2
+ xχCn

1 \C
p
1
+ (x +

1

m
sgn(x))χCn

2 \C
p
2

and
(Dn

1 \Dp
1) ∩ (Dn

2 \Dp
2) ∩ (Cn

1 \ Cp
1 ) ∩ (Cn

2 \ Cp
2 ) = ∅.

Therefore, by (7) and (8), we get for n 6= p

IΦ

(
xn − xp

)
= IΦ

(
xχDn

1 \D
p
1

)
+ IΦ

(
(x− 1

m
sgn(x))χDn

2 \D
p
2

)
+ IΦ

(
xχCn

1 \C
p
1

)
+ IΦ

(
(x + 1

m
sgn(x))χCn

2 \C
p
2

)
>

1

4

[
ν(A) + κ(B)

]
.

This shows that (xn) has no Cauchy subsequence, which contradicts the as-
sumption that x is a CLUR-point.

Theorem 2.5. Let µ(T ) < ∞ and Φ be a Musielak-Orlicz function such that
Φ > 0, Φ <∞, 1

u
Φ

(
t, u

)
→ 0 as u→ 0 for µ-a.e. t ∈ T . Then x ∈ S(LΦ) is a

CLUR-point if and only if the following conditions hold:

(i) Φ ∈ ∆2

(ii) (a) µ(Al(x)) = 0 or

(b) Ψ ∈ δ2 and µ(Au(x)) = 0

(iii) x(t) ∈ Ext(Φ
(
t, ·

)
) for µ-a.e. t ∈ T .

Proof. Necessity.

(i): The necessity of this condition follows by the fact that any CLUR-point
is also an H-point and that Φ ∈ ∆2 is necessary so that a point x would be an
H-point (see [7]).

(iii): The necessity of this condition can be proved in a similar way as
Lemma 2.4.



Musielak-Orlicz Function Spaces 693

(ii): First suppose that µ(Al(x))µ(Au(x)) > 0. Then, by Lemma 2.4, we
get that x is not a CLUR-point.

Now let x ≥ 0, µ(Al(x)) > 0 and Ψ 6∈ ∆2. Let

T̃ =
{

t ∈ T : Φ
(
t, u

2

)
>

(
1− 1

n

)1

2
Φ

(
t, u

)
for some u > 0

}
.

Let N” be the smallest subset of N such that (T \ T̃ ) ⊂
⋃

n∈N” Tn =: Ã, where
(Tn) is the sequence from Lemma 1.3. Fixing n ∈ N , n ≥ 2, we define

fn(t) = sup
{

u > 0 : Φ
(
t, u

2

)
>

(
1− 1

n

)1

2
Φ

(
t, u

)}
,

where sup ∅ := 0, which means that fn(t) = 0 for t ∈ T \ T̃ . We will show
that these functions are Σ-measurable. Let Q+ = (wk)

∞
k=1 be the set of positive

rational numbers. Since the function Φ is continuous, we have

fn(t) = sup
{

uk ∈ Q+ : Φ
(
t, uk

2

)
>

(
1− 1

n

)1

2
Φ

(
t, uk

)}
.

For any fixed k ∈ Q+ define the set

Bk =
{

t ∈ T̃ : Φ
(
t, uk

2

)
>

(
1− 1

n

)1

2
Φ

(
t, uk

)}
.

Next, define gk,l(t) = ukχBk∩Tl
, where (Tl) is the sequence of sets from Lem-

ma 1.3. Then, we have

fn(t) = sup{gk,l(t) : k, l ∈ N }.

Indeed, it is evident fn(t) = 0 for any t ∈ T \ T̃ and that for any t ∈ T̃

sup{gk,l(t) : k, l ∈ N } ≤ fn(t).

On the other hand, taking t ∈ T̃ and ε > 0, one can find u > 0 such that
fn(t) < u + ε and Φ

(
t, u

2

)
>

(
1− 1

n

)
1
2
Φ

(
t, u

)
. Next, we can find uk ∈ Q+

such that Φ
(
t, uk

2

)
>

(
1− 1

n

)
1
2
Φ

(
t, uk

)
and fn(t) < uk + ε. Let lk ∈ N be

such that t ∈ Tlk . Then we have Φ
(
t,

gk,lk
(t)

2

)
>

(
1− 1

n

)
1
2
Φ

(
t, gk,lk(t)

)
and

fn(t) < gk,lk(t) + ε. Consequently, sup{gk,l(t) : k, l ∈ N } ≥ fn(t). It is obvious
that the functions gk,l are measurable, so fn is measurable as well.

By Lemma 1.1 and Remark 1.2, we get that

IΦ

(
fn

)
=∞ for any n ≥ 2. (9)

Since the necessity of Φ ∈ ∆2 has been already proved, we may assume that this
condition is satisfied, whence it follows that Φ is a real-valued and consequently
continuous function. Define

Ak =
{
t ∈ Al(x) : Φ

(
t, ·

)
is affine in [x(t)− wk, x(t)]

}
.
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Since Al(x) =
⋃

k Ak, so there exists k0 ∈ N such that µ(Ak0) > 0. Let
a := wk0 , A := Ak0 ∩

⋃
n∈N ′ Tn, where (Tn) is the sequence from Lemma 1.3

and N ′ is the biggest subset of N such that Ak0 ⊃
⋃

n∈N ′ Tn. Without loss of
generality, we can assume that 1 ∈ N ′. Then Φ

(
t, ·

)
is affine on [x(t)− a, x(t)]

for any t ∈ A, i.e. Φ
(
t, u

)
= A(t)u + B(t) for any u ∈ [x(t) − a, x(t)], where

A(t) = 1
a
(Φ

(
t, x(t)

)
−Φ

(
t, x(t)− a

)
). Let K :=

∫
A

(Φ
(
t, x(t)

)
−Φ

(
t, x(t)− a

)
)dµ.

Then

IΦ

(
(x− a)χA

)
=

∫
A

(A(t)(x(t)− a) + B(t))dµ

=

∫
A

Φ
(
t, x(t)

)
dµ− a

∫
A

A(t)dµ

= IΦ

(
xχA

)
−K.

(10)

Without loss of generality (decreasing the set A if necessary) we can assume
that

IΦ

(
fnχT\(A∪Ã)

)
=∞ for any n ≥ 2. (11)

For any n ∈ N , n ≥ 2, define

Cn = {t ∈ T̃ : fn(t) = +∞}, Nf = {n ≥ 2 : µ(Cn) > 0}.

Let N = Nf ∪N ′ ∪N”. We consider two cases.

Case I. If N0 = N \N and card(N0) = ∞, then, denoting N0 = (kn)∞n=1,
we have that

IΦ

(
fknχT\(A∪Ã)

)
=∞ for any n ∈ N (12)

and
fkn(t) <∞ for µ− a.e t ∈ T \ (A ∪ Ã) and any n ∈ N . (13)

Define a sequence (xkn)∞n=1 in the following way. Let N1 be the smallest subset
of N0 such that IΦ

(
fk1χ

⋃
n∈N1

Tkn

)
> K. Then there exists a set D1 ⊂

⋃
n∈N1

Tkn

such that IΦ

(
fk1χD1

)
= K. Let

x1 = (x− a)χA + xχ⋃
n∈Nf∪N” Tn + fk1χD1 .

We get IΦ

(
x1

)
= IΦ

(
xχA∪

⋃
n∈Nf

Tn

)
≤ 1, whence ‖x1‖Φ ≤ 1. By (12) and (13),

we have that IΦ

(
fknχT\(A∪

⋃
n∈N1

Tkn∪
⋃

n∈Nf
Tn)

)
= ∞ for any n ∈ N . Let N2 be

the smallest subset of N0 \ N1 such that IΦ

(
fk2χ

⋃
n∈N2

Tkn

)
> K. Then there

exists a set D2 ⊂
⋃

n∈N2
Tkn such that IΦ

(
fk2χD2

)
= K. Let

x2 = (x− a)χA + xχ⋃
n∈Nf∪N” Tn∪

⋃
n∈N1

Tkn
+ fk2χD2 .
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We get IΦ

(
x2

)
= IΦ

(
xχA∪

⋃
n∈Nf

Tn∪
⋃

n∈N1
Tkn

)
≤ 1, whence ‖x2‖Φ ≤ 1. In the

same way we define for any n ≥ 3

xn = (x− a)χA + xχ( ⋃
m∈Nf∪N”

Tn∪
⋃

m∈
⋃n−1

k=1
Nk

Tkm

) + fknχDn ,

obtaining that IΦ

(
xn

)
↑ IΦ

(
x
)
, whence ‖xn‖Φ ↑ ‖x‖Φ = 1. Moreover, denoting

En =
⋃

m∈Nf
Tn ∪

⋃
m∈

⋃n−1
k=1 Nk

Tkm , we have

x + xn

2
= (x− a

2
)χA + xχEn +

fkn + x

2
χDn +

x

2
χT\(En∪Dn).

By the definition of fkn , (10) and x ≥ 0, we get

1 ←
IΦ

(
x
)

+ IΦ

(
xn

)
2

≥ IΦ

(
xn+x

2

)
≥ IΦ

(
xχA∪En

)
− K

2
+ IΦ

(fkn

2
χDn

)
≥ IΦ

(
xχA∪En

)
− K

2
+

1− 1
n+1

2
IΦ

(
fknχDn

)
= IΦ

(
xχA∪En

)
− K

2
+

1− 1
n

2
K → IΦ

(
x
)

= 1.

Therefore IΦ

(
xn+x

2

)
→ 1, whence

∥∥xn+x
2

∥∥
Φ
→ 1. But

IΦ

(
xn − xm

)
≥ IΦ

(
fknχDn

)
+ IΦ

(
fkmχDm

)
= 2K > 0,

whence ‖xn − xm‖Φ ≥ min(2K, 1) for any n 6= m, which means that there exists
no convergent subsequence of (xn), and so x is not a CLUR-point.

Case II. If N \ N < ∞ then, we may assume, without loss of generality
(passing to a subsequence if necessary) that µ(Cn) > for any n ∈ N \N ′. We also
may assume without loss of generality (decreasing the subsets Cn if necessary)
that µ(Cn ∩ Cm) = 0 for any natural n 6= m. Denote N1 := N \ (N ′ ∪ N”) =
(kn)∞n=1 and Gn = Ckn ∩Tm(kn), n ∈ N , where for any n ∈ N , a natural number
m(kn) is chosen in such a way that µ(Ckn ∩Tm(kn)) > 0. Then, by the definition
of Cn, we get that

IΦ

(
fknχGn

)
=∞ for any n ∈ N . (14)

We define a sequence (xn)∞n=1 in the following way. Let

Hi =
{

t ∈ G1 : Φ
(
t, ui

2

)
>

1

2

(
1− 1

k1

)
Φ

(
t, ui

)}
∀i ∈ N .
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Of course each Hi is a Σ-measurable set. Moreover G1 =
⋃

i∈N Hi. Define

Dn =
⋃
i≤n

Hi and pn(t) = max
i≤n

ui χDn .

Then Dn ↑ G1 and pn(t)→ fk1(t) for any t ∈ G1. By the Beppo-Levi Theorem,
we get that IΦ

(
pn

)
→ IΦ

(
fk1χG1

)
. So we can find m1 ∈ N such that IΦ

(
pm1

)
>

K. Taking J1 ⊂ Dm1 , J1 ∈ Σ such that IΦ

(
pm1χJ1

)
= K, we define

x1 = (x− a)χA + xχ⋃
k∈N′∪N” Tk

+ pm1χJ1 .

Then IΦ

(
x1

)
= IΦ

(
xχA∪

⋃
k∈N′∪N” Tk

)
≤ 1, whence ‖x1‖Φ ≤ 1. Using the sets

Gn, n ≥ 2 we define the successive elements xn as

xn = (x− a)χA + xχ⋃
k∈N′∪N”∪{k1,...kn−1}

Tk
+ pmnχJn .

Proceeding as in case I, we finish the proof of the necessity.

Sufficiency. First we will prove the sufficiency of conditions (i), (iii) and
µ(Al(x)) = 0. Let ‖x‖Φ = ‖xn‖Φ = 1 and

∥∥xn+x
2

∥∥
Φ
→ 1. For any n ∈ N and

σ > 0 we define the set

An
σ =

{
t ∈ T : |xn(t)| ≤ |x(t)|, |x(t)− xn(t)| ≥ σ

}
.

Using the same techniques as in [10] (proof of Theorem 5.3 ), we will show that

lim
n→∞

µ(An
σ) = 0 for any σ > 0. (15)

We repeat this justification for clarity of the proof and because of the fact that
we will need it in its next part. In the opposite case, passing to a subsequence
of (xn) if necessary, we may assume that there exist σ0 > 0, ε0 > 0 such that
µ(An

σ0
) > ε0 for any n ∈ N . Since Φ

(
t, u

)
→ ∞ as u → ∞ for any t ∈ T , so

defining for any m ∈ N the sets Tm = {t ∈ T : Φ
(
t,m

)
≥ 10

ε0
}, we get

Tm ↑,
∞⋃

m=1

Tm = T, µ(T \ Tm)→ 0 as m→∞.

Hence there exists m0 ∈ N such that µ(T \Tm0) < ε0

10
. Moreover, Φ

(
t,m0

)
< 10

ε0

for any t ∈ T \ Tm0 . Denote Dn = An
σ0
∩ (T \ Tm0) and define the sets

An = {t ∈ An
σ0

: |xn(t)| > m0}, A
′

n = {t ∈ An
σ0

: |x(t)| > m0}.

Then

1 = IΦ

(
xn

)
≥ IΦ

(
xnχAn\Dn

)
≥ IΦ

(
m0χAn\Dn

)
≥ 10

ε0

µ(An \Dn),
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whence µ(An) ≤ ε0

10
+ µ(Dn) < ε0

5
. Similarly µ(A

′
n) < ε0

5
. Since µ(Al(x)) = 0,

so by the definition of An
σ0

, we get that there exits a measurable function δ :
T → (0, 1) such that

Φ
(
t, xn(t)+x(t)

2

)
≤ 1− δ(t)

2

[
Φ

(
t, xn(t)

)
+ Φ

(
t, x(t)

)]
(16)

for any n ∈ N and any t ∈ An
σ0
\ (An∪A

′
n). Let δ0 > 0 be such that µ(E) < ε0

5
,

where E = {t ∈ T : δ(t) < δ0}. Since Φ
(
t, σ0

2

)
> 0 for any t ∈ An

σ0
, so there

exists a0 > 0 satisfying µ(F ) < ε0

5
, where F = {t ∈ T : Φ

(
t, σ0

2

)
< a0}. Let

Gn = An
σ0
\ (An ∪ A

′

n ∪ E ∪ F ).

Then µ(Gn) > ε0

5
and for any t ∈ Gn, we have δ(t) ≥ δ0, |xn(t) − x(t)| ≥ σ0,

Φ
(
t, σ0

2

)
≥ a0 and |xn(t)| ≤ m0, |x(t)| ≤ m0. Therefore

0 ←
IΦ

(
xn

)
+ IΦ

(
x
)

2
− IΦ

(
xn+x

2

)
≥

∫
Gn

δ(t)
Φ

(
t, xn(t)

)
+ Φ

(
t, x(t)

)
2

dt

≥ δ0

∫
Gn

Φ
(
t, xn(t)+x(t)

2

)
dt

≥ δ0

∫
Gn

Φ
(
t, xn(t)−x(t)

2

)
dt

≥ δ0

∫
Gn

Φ
(
t, σ0

2

)
dt = δ0a0

ε0

5
> 0.

We have obtained a contradiction. Therefore, for any σ > 0 and ε > 0 there
exists N(ε) ∈ N such that µ(An

σ) < ε for any n > N(ε), and moreover, for any
t ∈ T \An

σ, we have |xn(t)| > |x(t)| or |xn(t)−x(t)| < σ. Denote H = T \Au(x),
J = Au(x). Proceeding similarly as in the proof of condition (15), we get that
xn → x in measure in the set H. Without loss of generality, we can assume
that xn(t) → x(t) µ-a.e. on H. Hence, by the Fatou Lemma and convexity of
the function Φ, we have

lim inf
n→∞

IΦ

(
xnχH

)
≥ IΦ

(
xχH

)
, (17)

whence
lim sup

n→∞
IΦ

(
xnχJ

)
≤ IΦ

(
xχJ

)
. (18)

Suppose that (xn−x)χJ 6
µ→ 0. Then there exist J1 ⊂ J and ε0, σ0 > 0 such that

µ(J1) > 0 and (without loss of generality) µ(En) > 0 for any n ∈ N , where
En = {t ∈ J1 : |xn(t) − x(t)| > σ0}. Let us fix ε > 0 such that ε0 − ε > 0.
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Equation (15) implies that there exists N(ε) such that µ(An
σ0

) < ε for any
n > N(ε). Moreover, |xn(t)| > |x(t)| for any t ∈ J1 \ An

σ0
and n > N(ε). If

there exist a set J2 ⊂ J1 and an infinite sequence (nk) ⊂ N such that, for any
k ∈ N and any t ∈ J2, the point xnk

is outside of the affinity interval of the
function Φ

(
t, ·

)
, which has the ”bottom endpoint” x(t), then for any k ∈ N

and any t ∈ ((Enk
\ (An ∪ A

′
n)) ∩ J2) \ Ank

σ0
, we have

Φ
(
t,

xnk
(t)+x(t)

2

)
≤ 1− δ(t)

2

[
Φ

(
t, xnk

(t)
)

+ Φ
(
t, x(t)

)]
, (19)

where An and A
′
n are defined as in the previous part of the proof (page 696).

Now we proceed in the same way as in the proof of condition (15), obtaining

that (xn − x)χJ2

µ→ 0. Hence, without loss of generality, we may assume that
for any t ∈ J1 \ An

σ0
all points xn(t) are in the affinity interval of the function

Φ
(
t, ·

)
, with ”bottom endpoint” x(t). Within this assumption, if there exist a

set J2 ⊂ J1 and an infinite sequence (nk) ⊂ N such that xnk
(t)x(t) < 0 for any

k ∈ N and t ∈ J2, then for any k ∈ N and t ∈ ((Enk
\(An∪A

′
n))∩J2)\Ank

σ0
, the

point xnk
(t) belongs to the different affinity interval of function Φ

(
t, ·

)
than the

point x(t), whence these points satisfy inequality (19), and we proceed again as

in the previous part of the proof, obtaining that (xn − x)χJ2

µ→ 0. Finally, we
can assume that for any t ∈ J1 \An

σ0
all points xn(t) are in the affinity interval

of the function Φ
(
t, ·

)
, which has ”bottom endpoint” x(t). Let

At =
Φ

(
t, x(t) + sgn(x(t))σ0

2

)
− Φ

(
t, x(t)

)
σ0

2

.

Then there exist a set C ⊂ J1 and δ > 0 such that µ(C) ≤ ε0−ε
2

, where
C = {t ∈ J1 : At < δ}. Hence At

σ0

2
+ Φ

(
t, x(t)

)
= Φ

(
t, x(t) + sgn(x(t))σ0

2

)
and At ≥ δ for any t ∈ En \ (C ∪ Aσn

0
), and µ(En \ (C ∪ An

σ0
)) > ε0−ε

2
, because

µ(En \ An
σ0

) > (ε0 − ε). Therefore, for any n > N(ε), we have

1

2
IΦ

(
xnχEn\(C∪An

σ0
)

)
+

1

2
IΦ

(
xχEn\(C∪An

σ0
)

)
≥ IΦ

(
xn+x

2
χEn\(C∪An

σ0
)

)
≥

∫
En\(C∪An

σ0
)

Φ
(
t, x(t) + sgn(x(t))σ0

2

)
dt

≥ δ
σ0

2
µ
(
En \ (C ∪ An

σ0
)
)

+ IΦ

(
xχEn\(C∪An

σ0
)

)
≥ δ

σ0

2

(ε0 − ε)

2
+ IΦ

(
xχEn\(C∪An

σ0
)

)
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by using

IΦ

(
xn+x

2
χEn\(C∪An

σ0
)

)
=

∫
En\(C∪An

σ0
)

Φ
(
t, xn(t)+x(t)

2

)
dt

∫
En\(C∪An

σ0
)

Φ
(
t, x(t) + sgn(x(t))σ0

2

)
dt =

∫
En\(C∪An

σ0
)

[
Φ

(
t, x(t)

)
+ At

σ0

2

]
dt .

Hence

IΦ

(
xnχEn\(C∪An

σ0
)

)
≥ δσ0

(ε0 − ε)

2
+ IΦ

(
xχEn\(C∪An

σ0
)

)
. (20)

Consequently

lim sup
n→∞

[
IΦ

(
xnχEn\(C∪An

σ0
)

)
− IΦ

(
xχEn\(C∪An

σ0
)

)]
≥ δσ0

(ε0 − ε)

2
. (21)

Then

0 ≥ lim sup
n→∞

[
IΦ

(
xnχJ1

)
− IΦ

(
xχJ1

)]
≥ lim sup

n→∞

[
IΦ

(
xnχEn\(C∪An

σ0
)

)
− IΦ

(
xχEn\(C∪An

σ0
)

)]
≥ δσ0

(ε0 − ε)

2
.

This contradiction implies that xn → x in measure on the set J . Using Lemma
1.4 we finish the proof of sufficiency of conditions (i), (ii)a) and (iii).

Now assume that conditions (i), (ii)b) and (iii) hold. As in the previous
part of the proof we show that

lim
n→∞

µ(An
σ) = 0 for any σ > 0, (22)

where, in this case,

An
σ = {t ∈ T : |xn(t)| ≥ |x(t)|, |x(t)− xn(t)| ≥ σ}.

Denoting J = Al(x), H = T \ J and again proceeding similarly as in the

proof of condition (15), we get that (xn − x)χH
µ→ 0. By Lemma 2.3 we have

‖(xn − x)χH‖Φ → 0, whence IΦ

(
(xn − x)χH

)
→ 0. Then, by Lemma 1.5, we

obtain
lim

n→∞
IΦ

(
xnχH

)
= IΦ

(
xχH

)
. (23)

Suppose that (xn − x)χJ 6
µ→ 0. Then there exist J1 ⊂ J , ε0, σ0 > 0 such that

µ(J1) > 0 and (without loss of generality) µ(En) > 0 for any n ∈ N , where
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En = {t ∈ J1 : |xn(t) − x(t)| > σ0}. Because of the analogous reasons as
in the previous part of the proof we can assume that all points xn(t) are in
the affinity interval of the function Φ

(
t, ·

)
, which has the ”top endpoint” x(t),

for any t ∈ J1 \ An
σ0

. By (22) we get that there exists n1 ∈ N such that
|xn(t)| ≤ |x(t)| for any n > n1 and µ-a.e. t ∈ J1 \ An

σ0
. Defining C ∈ Σ and

elements At in the same way as previously (page 698), we get

0 ← IΦ

(
xχJ

)
− IΦ

(
xnχJ

)
≥ IΦ

(
xχEn\(C∪An

σ0
)

)
− IΦ

(
xnχEn\(C∪An

σ0
)

)
≥ δσ0

(ε0 − ε)

2
.

This contradiction implies that xn → x in measure on the set J . Using
Lemma 1.4 we finish the proof of sufficiency of conditions (i), (ii)a) and (iii).

Remark 2.6. Proposition 5.3 in [2] gives that Φ ∈ ∆2 implies Φ <∞. There-
fore, by condition (i) in Theorem 2.5, we get that Φ < ∞ is necessary for the
existence of a CLUR-point in S(LΦ).

Remark 2.7. Let T = R and (T, ΣL, µ) denote the Lebesgue measure space.
Then the condition a(Φ) = 0 is necessary for LΦ ∈ (CLUR).

Proof. By Theorem 2.5 and Remark 2.6 we can assume that Φ < ∞ and
Φ ∈ ∆2. Let µ(supp(a(Φ))) > 0. Define the sets An = {t ∈ T : a(Φ

(
t, ·

)
) ≤ n}

and Bn = An∩Tn, where (Tn) is the sequence from Lemma 1.3. Then
⋃

Bn = T ,
whence there exists m ∈ N such that µ(Bm) > 0 and µ(Bm ∩ supp(a(Φ))) >
0. Let us take a bounded, closed set A such that A ⊂ Bm, µ(A) > 0 and
µ(A ∩ supp(a(Φ))) > 0. Let B ∈ ΣL be such that B 6= ∅, A ∩ B = ∅ and
A ∪B = T . Define

x =
a(Φ)

2
χA + cχB,

where c ∈ R+ is such that IΦ

(
cχB

)
= IΦ

(
x
)

= 1. We use Lemma 1.6 for
E := A and define

xn = x +
a(Φ)

2
[χEn − χFn ] ,

where (En) and (Fn) are the sequences from Lemma 1.6. Then A = En ∪ Fn,
Fn ∩ En = ∅,

xn =
a(Φ)

2
χEn∪Fn + cχB +

a(Φ)

2
χEn −

a(Φ)

2
χFn = a(Φ)χEn + cχB ,

x−xn = a(Φ)
2

[χFn−χEn ] and supp(x−xn) = A. Moreover IΦ

(
x
)

= IΦ

(
xn

)
= 1,

whence ‖x‖Φ = ‖xn‖Φ = 1. Since Φ < ∞ and a(Φ)χA ∈ EΦ, so there exists
λ > 2 such that

1 > d := IΦ

(
λ(x− xn)

)
= IΦ

(
λa(Φ)

2
[χEn − χFn ]

)
> 0 .
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Then ‖x− xn‖Φ > d
λ

> 0. Since Φ ∈ ∆2, so for any λ > 1,

IΦ

(
λ(xn − x)

)
=

∫
A

Φ
(
t, λ(xn − x)(t)

)
dµ

≤ KIΦ

(
xn − x

)
+

∫
A

f(t)dµ

=

∫
A

f(t)dµ < ∞.

Hence x−xn ∈ EΦ, which implies that φ(x−xn) = 0 for any singular functional
φ over LΦ. Let y ∈ S(Lo

Ψ). Then there exists λ > 0 such that IΨ (λy) <∞. By
the Young inequality, we have∫

T

a(Φ)

2
ydµ ≤ 1

λ

[
IΨ (λy) + IΦ

(a(Φ)
2

)]
<∞.

Therefore, the function a(Φ)
2

y is integrable. Then by Lemma 1.6,

〈xn − x, y〉 =

∫
supp(xn−x)

y
a(Φ)

2
[χEn − χFn ]dµ→ 0.

This means that xn
w→ x, which shows that the condition a(Φ) = 0 is necessary

for property (H) of LΦ (see. [5]). The observation that (CLUR)⇒ (H) finishes
the proof.

Remark 2.8. Let c : T → R+ be a function such that Φ
(
t, ·

)
is affine on the

interval [0, c(t)] and Φ > 0. Then the following statements hold:

1. If [µ(Au(x)) > 0 or Ψ 6∈ ∆2] and IΦ

(
c
)
≥ 1, then there are no CLUR-

points on the unit sphere S(LΦ).

2. If µ(Au(x)) = 0 and Ψ ∈ ∆2, the following statements hold:

(a) If [µ(Al(x)) = 0 and IΦ

(
c
)
≥ 1] or [µ(Al(x)) > 0 and IΦ

(
c
)

> 1],
then there are no CLUR-points on the unit sphere S(LΦ).

(b) If µ(Al(x)) > 0 and IΦ

(
c
)

= 1, then the element c is the only CLUR-
point on the unit sphere S(LΦ).

3. If IΦ

(
c
)

> 0, then LΦ 6∈ (CLUR).

Proof. Case 1. By the assumptions and Theorem 2.5 we have that, if x ∈
S(LΦ) is a CLUR-point, then IΦ

(
x
)

= 1 and Al(x) = 0, whence |x(t)| > c(t)
for t belonging to some set A, where A ⊂ T , A ∈ Σ and µ(A) > 0. Hence
IΦ

(
x
)

> 1, a contradiction.
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Case 2. In this case the proof is similar as in Case 1.

Case 3. Let us fix sets A, B ∈ Σ, a function b : T → R+ and a number
α ∈ R+ such that A ⊂ supp(c), B ⊂ T \A, µ(A) > 0, µ(B) > 0, 0 < b(t) < c(t)
for any t ∈ A, and let x be defined by

x(t) = b(t)χA + αχB.

Then IΦ

(
x
)

= 1, whence x ∈ S(LΦ) and, by condition (iii) from Theorem 2.5,
we get that x is not a CLUR-point.

Lemma 2.9. If Ψ ∈ ∆2 and 1
u
Φ

(
t, u

)
→ 0 as u→ 0 for µ-a.e. t ∈ T , then

sup
‖x‖oΦ=1

{
k > 0 : ‖x‖oΦ =

1

k

(
1 + IΦ

(
kx

))}
<∞.

Proof. This Lemma can be proved similarly as Lemma 1.6 in [10]. Although
in that result the assumption of strict convexity of the function Φ instead of the
assumption that 1

u
Φ

(
t, u

)
→ 0 as u→ 0 for µ-a.e. t ∈ T has been used, actually

in the proof the important point is that for µ-a.e. t ∈ T , Φ(t, ·) is not affine in
any neighbourhood of zero, but this property follows from the assumption that
1
u
Φ

(
t, u

)
→ 0 as u→ 0 for µ-a.e. t ∈ T .

Theorem 2.10. Let Φ be a Musielak-Orlicz function such that Φ <∞, Φ > 0,
1
u
Φ

(
t, u

)
→ 0 as u → 0 and 1

u
Φ

(
t, u

)
→ ∞ as u → ∞ for µ-a.e. t ∈ T .

Moreover, let x ∈ S(Lo
Φ) and k ∈ K(x). Then x is a CLUR-point if and only

if

(i) Φ ∈ ∆2,

(ii) Ψ ∈ ∆2,

(iii) x(t) ∈ Ext(Φ
(
t, ·

)
) for µ-a.e. t ∈ T ,

(iv) µ(As
l (kx)) = 0 and µ(As

u(kx)) = 0,

(v) if µ(Ans
u (kx)) > 0, then IΨ (p−(k|x|)) = 1,

(vi) if µ(Ans
l (kx)) > 0, then IΨ (p+(k|x|)) = 1.

Proof. Necessity.

(i) Let y ∈ S(Lo
Φ) be a CLUR-point. Suppose that Φ 6∈ ∆2. Then there

exists 0 6= x ∈ S(LΦ) such that IΦ

(
x
)

< ∞, IΦ

(
λx

)
= ∞ for any λ > 1,

and sgn(x(t)) = sgn(y(t)) for any t ∈ supp(y). Let x0 = x/‖x‖oΦ. Then
IΦ

(
λx0

)
=∞ for any λ > 2‖x‖oΦ. Define the sets

An =
{
t ∈ T : |x0(t)| ≤ n, |yn(t)| ≤ n

}
and Bn = An ∩ Sn, with Sn =

⋃n
i=1 Ti, where (Ti)

∞
1 is the sequence from

Lemma 1.3. By the Fatou property of Lo
Φ, we have ‖x0χBn‖

o
Φ → ‖x0‖oΦ. Since
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IΦ

(
λx0χBn

)
<∞ for any n ∈ N and λ ≥ 2‖x‖oΦ, so IΦ

(
λx0χT\Bn

)
=∞ for any

n ∈ N and λ ≥ 2‖x‖oΦ. Hence
∥∥x0χT\B1

∥∥o

Φ
≥ 1/(2‖x0‖oΦ). Let n1 = 1. By the

Fatou property, we get
∥∥x0χ(T\Bn1 )∩Bn

∥∥o

Φ
→

∥∥x0χT\Bn1

∥∥o

Φ
. Hence, there exists

n2 > n1 such that ∥∥x0χ(T\Bn1 )∩Bn2

∥∥o

Φ
≥ 1

4‖x0‖oΦ
.

Moreover, IΦ

(
λx0χT\Bn2

)
= ∞ for any λ ≥ 2‖x‖oΦ. Hence

∥∥x0χT\Bn2

∥∥o

Φ
≥

1/(2‖x0‖oΦ). Using again the Fatou property , we get
∥∥x0χ(T\Bn2 )∩Bn

∥∥o

Φ
→∥∥x0χT\Bn2

∥∥o

Φ
. Hence, there exists n3 > n2 such that

∥∥x0χ(T\Bn2 )∩Bn3

∥∥o

Φ
≥ 1

4‖x0‖oΦ
.

Proceeding (by induction) analogously as above, we get a sequence (nk) ⊂ N
such that ∥∥∥x0χ(T\Bnk

)∩Bnk+1

∥∥∥o

Φ
≥ 1

4‖x0‖oΦ
.

Denote Pk = (T \Bnk
) ∩Bnk+1

. Since Pk ∩ Pl = ∅ for k 6= l, so

∣∣∣ ∞∑
k=1

x0χPk

∣∣∣ =
∞∑

k=1

|x0χPk
| ≤ |x0| .

Moreover, φ(x0χPk
) = 0 for any singular functional φ and any k ∈ N . Let

v ∈ LΨ. By the Hölder inequality, we have |〈|x0|, |v|〉| ≤ ‖x0‖oΦ‖v‖Ψ < ∞.
Therefore,

∑∞
k=1〈|x0χPk

|, |v|〉 <∞, whence 〈|x0χPk
|, |v|〉 → 0 as k →∞. Hence

also 〈x0χPk
, v〉 → 0. Thus we have that

x0χPk

w→ 0 as k →∞. (24)

Similarly we show that yχPk

w→ 0 as k →∞, whence

yχT\Pk

w→ y as k →∞. (25)

Moreover, since IΦ

(
x
)

< ∞ and ‖x‖oΦ > ‖x‖Φ = 1, so ∞ > IΦ

(
x0

)
=∑∞

k=1 IΦ

(
x0χPk

)
. Hence

IΦ

(
x0χPk

)
→ 0 as k →∞. (26)

Let us take t ∈ T such that |y(t)| < ∞. Then t ∈ Pl for some l ∈ N . Since
Pk ∩ Pl = ∅ for k 6= l, so t 6∈ Pk for any k > l, whence yχPk

= 0 for any k > l.
This means that yχPk

(t) ↓ 0 for µ-a.e. t ∈ T . Therefore

αyχT\Pk
(t) ↑ αy(t) for µ-a.e. t ∈ T and any α > 0.
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Thus, by the Beppo-Levi Theorem, we have

IΦ

(
αyχT\Pk

)
→ IΦ

(
αy

)
for any α > 0 as k →∞. (27)

Let m > 0 be such that ‖y‖oΦ = 1
m

(
1 + IΦ

(
my

))
. For any k ∈ N we define

yk = yχT\Pk
+

1

m
x0χPk

.

Then, by (26) and (27), we get

‖yk‖oΦ ≤
1

m

(
1 + IΦ

(
myk

))
=

1

m

(
1 + IΦ

(
myχT\Pk

)
+ IΦ

(
x0χPk

))
→ 1

m

(
1 + IΦ

(
my

))
= 1

for any k ∈ N . Moreover, by the monotone completeness of the Orlicz-Amemiya
norm and by the fact that

∥∥yχT\Pk

∥∥o

Φ
≤ ‖y‖oΦ, we have limk→∞ ‖yk‖oΦ ≥ 1.

Finally ‖yk‖oΦ → 1 = ‖y‖oΦ. By (24) and (25), we get

yk
w→ y as k →∞.

Since sgn(x(t)) = sgn(y(t)) for any t ∈ supp(y), so

‖yk − y‖oΦ =
∥∥yχPk

+ 1
m

x0χPk

∥∥o

Φ
≥ 1

m
‖x0χPk

‖oΦ >
1

4m‖x‖oΦ
.

For this reason, y is not an H-point, whence it is not a CLUR-point as well.

(ii) Let ‖x‖oΦ = 1. Since Φ ∈ ∆2, so (Lo
Φ)∗ = LΨ, whence there exists y ∈

S(LΨ) such that 〈x, y〉 = ‖x‖oΦ = 1. Suppose that Ψ 6∈ ∆2. Then there exists
x0 ∈ S(LΨ) such that sgn(x0(t)) = sgn(x(t)) for any t ∈ supp(x), IΨ (x0) <∞
and IΨ (λx0) = ∞ for any λ > 1. Let (Tn) be the sequence from Lemma 1.3
used for the function Ψ instead of Φ. We fix ε ∈ (0, 1) and define the sets

Bn = {t ∈ T : |x0(t)| ≤ n, |x(t)| ≤ n, |y(t)| ≤ n}, Cn = Bn ∩ Tn.

Then Cn ↑,
⋃

n Cn = T , and since χTn ∈ EΨ for any n ∈ N , so |x0|χCn ≤
nχCn ≤ nχTn ∈ EΨ. By the Beppo-Levi Theorem,

IΨ (x0χCn) ↑ IΨ (x0), IΨ (yχCn) ↑ IΨ (y), IΨ (xχCn) ↑ IΨ (x).

Hence there exists m ∈ N such that

IΨ

(
x0χT\Cm

)
<

ε

2
, IΨ

(
yχT\Cm

)
<

ε

2
, IΨ

(
xχT\Cm

)
<

ε

2
. (28)

Denoting Sn =
⋃n

i=1 Ti, we have χSn =
∑n

i=1 χTi
∈ EΨ. Moreover,

IΨ

(
λx0χT\Sn

)
= IΨ (λx0)−IΨ (λx0χSn) =∞ for any λ > 1 and n ∈ N . (29)
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In particular, IΨ

(
λx0χT\Sm

)
= ∞ for any λ > 1. Denote T0 = T \ Sm. Then

Cm ⊂ T \ T0. Let

n1 := min
{

n > m : IΨ

(
(1 + 1

2
)x0χSn\Sm

)
> 1− ε

}
.

Since the measure is nonatomic, there exists A1 ⊂ Sn1 \ Sm such that
IΨ

((
1 + 1

2

)
x0χA1

)
= 1− ε. Moreover, A1 ⊂ Sn1 \ Sm, whence χA1 ≤ χSn1\Sm ∈

EΨ, which means that χA1 ∈ EΨ. Using (29) we can extend this construction,
namely for any k > 1 we choose the number

nk := min
{

n > nk−1 : IΨ

((
1 + 1

2k

)
x0χSn\Snk−1

)
> 1− ε

}
and a set Ak ⊂ Snk

\Snk−1
such that IΨ

((
1 + 1

2k

)
x0χAk

)
= 1−ε. Then χAk

∈ EΨ.
Moreover, Ak ⊂ T \ Sm ⊂ T \ Cm for any k ∈ N . This implies, by (28), that
IΨ (x0χAk

) < ε
2

for any k ∈ N . Then IΨ (x0χAn) < ε for any n ∈ N and
zn := x0χAn ∈ EΨ, because An ⊂ Ck for some k ∈ N . Hence there exists
xn ∈ S(Lo

Φ) such that 〈xn, zn〉 = ‖zn‖Ψ. Define the sequence

yn =
( 1− ε

1 + 1
2n

)(
zn + yχT\An

)
.

Then

IΨ (yn) ≤
( 1− ε

1 + 1
2n

)
(IΨ (zn) + IΨ (y)) ≤

( 1− ε2

1 + 1
2n

)
< 1 (30)

and

〈xn, yn〉 ≥
( 1− ε

1 + 1
2n

) ∫
An

xn(t)yn(t)dt =
( 1− ε

1 + 1
2n

)
〈xn, zn〉 ≥

(1− ε)2

(1 + 1
2n )2

, (31)

because
∥∥(

1 + 1
2n

)
zn

∥∥
Ψ
≥ IΨ

((
1 + 1

2n

)
zn

)
= 1− ε. Moreover,

〈x, yn〉 =

∫
An

x(t)yn(t)dt

=
( 1− ε

1 + 1
2n

)[∫
An

x(t)zn(t)dt +

∫
T\An

x(t)y(t)dt

]

=
( 1− ε

1 + 1
2n

)[∫
T

x(t)y(t)dt +

∫
An

x(t)zn(t)dt−
∫
An

x(t)y(t)dt

]

≥
( 1− ε

1 + 1
2n

)[
〈x, y〉 −

∫
An

x(t)y(t)dt

]
,
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because sgn(x(t)) = sgn(zn(t)) for any t ∈ supp(y) and any n ∈ N . By the
Young inequality and condition (29), we get∫

An

x(t)y(t)dt ≤ IΦ

(
xχAn

)
+ IΨ (yχAn) < ε, (32)

whence 〈x, yn〉 ≥ (1−ε)2

1+ 1
2n

. Since IΨ (yn) < 1, so by the definition of the Orlicz-

Amemiya norm, we get

2 ≥ ‖xn + x‖oΦ ≥ 〈x + xn, yn〉 ≥
(1− ε)2

1 + 1
2n

+
(1− ε)2

(1 + 1
2n )2

.

Therefore, ‖xn + x‖oΦ → 2. Moreover, ‖xn − xm‖oΦ ≥ ‖x‖
o
Φ = 1 for any m 6= n,

because supports of the elements xn are disjoint. This means that there is no
Cauchy subsequence of (xn), so x is not a CLUR-point.

(iii) Proof of this part follows in the same way as the proof of Lemma 2.4,
so it is omitted.

(iv) Suppose that µ(As
l (kx)) > 0, µ(As

u(kx)) > 0 and ‖x‖oΦ = 1. Let (wn)
denote the set of all rational, positive numbers. Define the sets

An =

{
t ∈ As

l (kx) : Φ
(
t, ·

)
is affine on

{
[kx(t)− wn, kx(t)] if k(t) > 0

[kx(t), kx(t) + wn] if k(t) < 0

}
.

Since As
l (kx) =

⋃
n An, there exists l ∈ N such that µ(Al) > 0. Denote

a := |wn|, A := Al and define the new nonatomic measure on Σ ∩ A:

ν(B) =

∫
B

[
Φ

(
t, kx(t)

)
− Φ

(
t, kx(t)− a

)]
dµ.

Now we proceed in the way similar as in the proof of Lemma 2.4, defining the
elements

xn = xχT\A + xχBn
1

+ (x− b · sgn(x))χBn
2
,

where b = a
k
, and the sets Bn

1 , Bn
2 are constructed in the same way as the sets

Cn
1 , Cn

2 in part (ii) of the proof of Theorem 2.5. Since ν(Bn
1 ) = ν(Bn

2 ) = 1
2
ν(A),

so

IΦ

(
kxχBn

1

)
+ IΦ

(
(kx− a · sgn(x))χBn

2

)
= IΦ

(
kxχBn

2

)
+ IΦ

(
(kx− a · sgn(x))χBn

1

)
.

(33)

Then

IΦ

(
kxn

)
= IΦ

(
kxχT\A

)
+ IΦ

(
kxχBn

1

)
+ IΦ

(
(kx− a · sgn(x))χBn

2

)
= IΦ

(
kxχT\A

)
+

1

2
(IΦ

(
kxχA

)
+ IΦ

(
(kx− a · sgn(x))χA

)
).

(34)
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By the definition of xn, we get for t ∈ T

p−(t, kxn(t)) = p−(t, kx(t)), p+(t, kxn(t)) = p+(t, kx(t)). (35)

Therefore IΨ (p+(kxn)) = IΨ (p+(kx)), whence k ∈ K(xn) for any n ∈ N . Then
(34) implies that all norms ‖xn‖oΦ are equal. Since Φ ∈ ∆2, so Lo

Φ = Eo
Φ and

(Lo
Φ)∗ = LΨ. By (35) and Lemma 1.7, there exists y ∈ LΨ such that 〈x, y〉 = 1,

IΨ (y) = 1 and
p−(t, kxn(t)) ≤ y(t) ≤ p+(t, kxn(t)).

Then 〈xn, y〉 = ‖x‖oΦ for any n ∈ N and

2 ≥
∥∥∥∥x +

xn

‖xn‖oΦ

∥∥∥∥o

Φ

≥
∫
T

(
x(t) +

xn(t)

‖xn‖oΦ

)
y(t)dt = 2.

Hence, the above norm is equal to 2. Since all norms ‖xn‖oΦ are equal, so
denoting L := ‖xn‖oΦ, we get for m > n

k

(
xn

‖xn‖oΦ
− xm

‖xm‖oΦ

)
=

1

L
k(xn − xm)

=
1

L

(
kxχBn

1 \Bm
1

+ (kx− a · sgn(x))χBn
2 \Bm

2

)
.

Proceeding as in the proof of part (ii) in Lemma 2.4, we get∥∥∥∥ xn

‖xn‖oΦ
− xm

‖xm‖oΦ

∥∥∥∥o

Φ

>
1

k

(
1 +

1

4L
ν(A)

)
.

This means that x is not a CLUR-point.

(v) By the definition of K(x), we have IΨ (p−(kx)) ≤ 1. Suppose that
µ(Ans

u (kx)) > 0 and IΨ (p−(kx)) < 1. Similarly as in Case (iv), we get a
set A ⊂ Ans

u (kx) and a number a ∈ R+ such that Φ
(
t, ·

)
is affine in the

interval [kx(t), kx(t) + a] for any t ∈ A. By the definition of K(x), we have
IΨ (p+(kx)) ≥ 1. Then there exists B ⊂ A, B ∈ Σ such that

IΨ (p+(kx)χB) + IΨ

(
p−(kx)χT\B

)
≤ 1. (36)

We decompose the set B into Bn
1 , Bn

2 (see the proof of Lemma 2.4) and define

xn = xχT\B + xχBn
1

+ (x + a)χBn
1
.

Constructing an adequate measure and proceeding as in the proof of neccesity
of condition (iv), we get that the values of all modulars IΦ

(
kxn

)
are equal.

Then for any t ∈ T ,

p−(t, kxn(t)) ≥ p−(t, kx(t)), p+(t, kxn(t)) = p+(t, kx(t)). (37)
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Therefore IΨ (p+(kxn)) = IΨ (p+(kx)) ≥ 1, whence k ∈ K(xn) for any n ∈ N .
Moreover, then we have that also all norms ‖xn‖oΦ are equal. Since it follows
from (36) that IΨ (p−(kxn)) ≤ 1, so there exists a function y : T → R such
that p−(t, kxn(t)) ≤ y(t) ≤ p+(t, kxn(t)) and IΨ (y) = 1. Moreover, by (37)

p−(t, kx(t)) ≤ p−(t, kxn(t)) ≤ y(t) ≤ p+(t, kx(t)) = p+(t, kxn(t)),

whence, by Lemma 1.7, we get that all elements xn and the element x have
the same support functional. Now we proceed as in the proof of necessity of
condition (iv).

(vi) The necessity of condtion (vi) can be proved in the same way as the
necessity of condition (v).

Sufficiency. Let Φ ∈ ∆2, Ψ ∈ ∆2, ‖xn − x‖oΦ → 2 and let k, kn (n =
1, 2, . . . ) be positive numbers such that

1 = ‖xn‖oΦ =
1

kn

(
1 + IΦ

(
knxn

))
= ‖x‖oΦ =

1

k

(
1 + IΦ

(
kx

))
.

Fix ε > 0 and let Sn =
⋃n

i=1 Ti, where (Ti)
∞
1 is the sequence of sets from

Lemma 1.3. Then, by the fact that Φ ∈ ∆2, there exists m ∈ N such that∥∥xχT\Sm

∥∥
Φ

< δ(σ), where δ(σ) is such that
∥∥xnχT\Sm

∥∥
Φ

< σ for any n > n′

(n′ is from Lemma 2.1). We may choose δ, σ in such a way that max(δ, σ) < ε
2
.

Define
D =

{
t ∈ Sm : kx(t) ∈ Ext(Φ

(
t, ·

)
)
}
.

Then, in the same way as it was done in the proof of condition (15), we show
that

(knxn − kx)χD
µ→ 0. (38)

Now assume that µ(Ans
u (kx)) > 0. Then it follows from conditions (v) and

(vi) that µ(Ans
l (kx)) = 0. Let A = Ans

u ∩ Sm. So, Sm \ D = A. By (38) we

have (knxn − kx)χSm\A
µ→ 0 and,without loss of generality, we get knxn(t) →

kx(t) → 0 for µ-a.e. t ∈ Sm \ A. Moreover, kx(t) are points of smoothness for
the functions Φ

(
t, ·

)
for µ-a.e. t ∈ Sm \A, whence p−(t, knxn(t))→ p−(t, kx(t))

for µ-a.e. t ∈ Sm \ A. By the Fatou Lemma, we have then

lim inf
n→∞

IΨ

(
p−(knxn)χSm\A

)
≥ IΨ

(
p−(kx)χSm\A

)
. (39)

It follows from the definition of K(x) and from condition (v) that

IΨ (p−(knxn)) ≤ 1 = IΨ (p−(kx)). (40)

Then, by (39) and (40), we get

lim sup
n→∞

IΨ (p−(knxn)χA) ≤ IΨ (p−(kx)χA). (41)
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For any n ∈ N we define the set

An
σ =

{
t ∈ T : |knxn(t)| ≤ |kx(t)|, |kx(t)− knxn(t)| ≥ σ

}
.

Since for any n ∈ N and t ∈ An
σ, kx(t) and knxn(t) are points of strict convexity

of the function Φ
(
t, ·

)
, so proceeding as within (38), we get

lim
n→∞

µ(An
σ) = 0 for any σ > 0. (42)

We will show that

(knxn − kx)χA
µ→ 0. (43)

Suppose that (xn−x)χA 6
µ→ 0. Then there exist A1 ⊂ J and ε0, σ0 > 0 such that

µ(A1) > 0 and (without loss of generality) µ(En) > 0 for any n ∈ N , where
En = {t ∈ A1 : |xn(t) − x(t)| > σ0}. Let us fix ε > 0 such that ε0 − ε > 0.
Equation (42) implies that there exists N(ε) such that µ(An

σ0
) < ε for any

n ∈ N . Moreover, |knxn(t)| > |kx(t)| for any t ∈ A1 \ An
σ0

and n > N(ε).
Similarly as in the proof of the sufficiency part of Theorem 2.5 (page 698), we
can assume that for any t ∈ A1 \ An

σ0
, all points |knxn(t)| are in the affinity

interval of the function Φ
(
t, ·

)
, which has the ”bottom endpoint” |kx(t)|. Then

p−(t, knxn(t)) = p−(t, kx(t) + sgn(x(t))σ)

for any n ∈ N and t ∈ A1 \ An
σ0

. Therefore

p−(t, knxn(t))− p−(t, kx(t)) = p−(t, kx(t) + sgn(x(t))σ)− p−(t, kx(t)) (44)

for any n ∈ N and t ∈ A1 \ An
σ0

. Hence there exists a0 > 0 such that µ(C) <
ε0−ε

4
, where

C =
{
t ∈ A1 : p−(t, kxn(t) + sgn(x(t))σ)− p−(t, kx(t)) < a0

}
.

Then µ(En \ (An
σ0
∪ C)) > 3

4
(ε0 − ε) for any n ∈ N and, by (44),

p−(t, knxn(t))− p−(t, kx(t)) ≥ a0 (45)

for any t ∈ En \ (An
σ0
∪ C) and n ∈ N . Since Ψ(t, a0) > 0 for any t ∈ T , so

there exist b0 > 0 and D ∈ Σ defined by

D = {t ∈ Sm : Ψ(t, a0) < b0}

and such that µ(D) < ε0−ε
4

. Then µ(En \ (An
σ0
∪C ∪D)) > ε0−ε

2
for any n ∈ N

and, by (45),

Ψ(t, p−(t, knxn(t))− p−(t, kx(t))) ≥ b0
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for any t ∈ En \ (An
σ0
∪ C ∪D) and n ∈ N . By superadditivity of the function

Ψ(t, ·), we get

Ψ(t, p−(t, knxn(t)))−Ψ(t, p−(t, kx(t))) ≥ b0 (46)

for any t ∈ En \ (An
σ0
∪ C ∪D). Denote Fn = En \ (An

σ0
∪ C ∪D). Then

IΨ (p−(knxn)χFn)− IΨ (p−(t, kxn)χFn) ≥ b0µ(χFn) ≥ b0(ε0 − ε)

2
. (47)

This contradicts inequality (41) because

0 ≥ lim sup
n→∞

[IΨ (p−(knxn)χA)− IΨ (p−(kx)χA)]

≥ lim sup
n→∞

[IΨ (p−(knxn)χFn)− IΨ (p−(kx)χFn)]

≥ b0(ε0 − ε)

2
.

Therefore (43) is true, and together with (38), it gives

(knxn − kx)χSm

µ→ 0. (48)

By Remark 2.2, the sequence (xn) is norm equi-continuous and, by Lemma 2.9,
we have k = max(supn kn, k) < ∞. Since ‖knxnχE‖oΦ ≤ k‖xnχE‖oΦ for any
E ∈ Σ, so norm equi-continuity of (xn) implies norm equi-continuity of (knxn).
Moreover, µ(Sm) < ∞, so proceeding as in the proof of Lemma 2.3, we get
‖(knxn − kx)χSm‖

o
Φ → 0 as n→∞. Therefore

|kn − k| = |kn‖xn‖oΦ − k‖x‖oΦ|

≤ ‖knxn − kx‖oΦ

≤ ‖(knxn − kx)χSm‖
o
Φ +

∥∥(knxn − kx)χT\Sm

∥∥o

Φ

≤ ‖(knxn − kx)χSm‖
o
Φ +

∥∥knxnχT\Sm

∥∥o

Φ
+

∥∥kxχT\Sm

∥∥o

Φ

< ‖(knxn − kx)χSm‖
o
Φ + kε

for any n > n′. This means that kn → k, whence, by (48), we get (xn−x)χSm

µ→
0. Then, by Lemma 2.3, we have ‖(xn − x)χSm‖

o
Φ → 0 as n → ∞. Moreover,∥∥(xn − x)χT\Sm

∥∥o

Φ
< ε, which gives that

∥∥(xn − x)χT\Sm

∥∥o

Φ
→ 0 as n→∞.

From Theorems 2.5 and 2.10, we can easily get criteria for the CLUR-
property and the LUR-property of LΦ and Lo

Φ. We should note here that criteria
for the LUR-property of LΦ have been originally given by Kamińska in [14].
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Theorem 2.11. The following conditions are equivalent:

(i) LΦ ∈ (LUR)

(ii) LΦ ∈ (CLUR)

(iii) (a) Φ ∈ ∆2,

(b) Φ
(
t, ·

)
is strictly convex on R for µ-a.e. t ∈ T .

Proof. (iii)⇒(i). Let ‖x‖Φ = ‖xn‖Φ = 1 and
∥∥xn+x

2

∥∥
Φ
→ 1. Assume that

conditions (a) and (b) in (iii) hold. Similarly as in the proof of the sufficiency
of Theorem 2.5 we show that xn → x in measure. By (a) in condition (iii), we
get IΦ

(
xn

)
= IΦ

(
x
)

= 1. Using Lemma 1.4 we finish the proof of this part.

(i)⇒(ii). This is true by the definitions of the properties LUR and CLUR.

(ii)⇒(iii). Since the Kadec-Klee property of LΦ implies conditions (a) and
(b) in (iii) (see [5]), so using the fact that CLUR implies the Kadec-Klee prop-
erty, we get the necessity of these conditions for the property CLUR of LΦ.

Theorem 2.12. The following conditions are equivalent:

(i) Lo
Φ ∈ (LUR),

(ii) Lo
Φ ∈ (CLUR),

(iii) (a) Φ ∈ ∆2,

(b) Ψ ∈ ∆2,

(c) Φ
(
t, ·

)
is strictly convex on R for µ-a.e. t ∈ T .

Proof. (i)⇒(ii). This is true by the definitons of the properties LUR and
CLUR.

(ii)⇒(iii). Since the Kadec-Klee property of Lo
Φ implies conditions (a) and

(c) in (iii) (see [9], proof of Theorem 3.4) so, using the fact that CLUR implies
the Kadec-Klee property, we get the necessity of these conditions for property
CLUR of LΦ. Condition (b) in (iii) is necessary by Theorem 2.10.

(iii)⇒(i). We can proceed as in the proof of the sufficiency of Theorem 2.10,
which completes the proof.
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