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On Some Local Geometric Properties
in Musielak-Orlicz Function Spaces
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Abstract. Criteria for compactly locally uniformly rotund points in Musielak-Orlicz
spaces equipped with the Luxemburg and the Orlicz-Amemiya norms are given. Next,
criteria for compact local uniform rotundity and local uniform rotundity of the spaces
for both norms are deduced. These properties are important because, for any Banach
space X, both of them imply the Kadec-Klee property and this property, together with
reflexivity, is equivalent to approximative compactness of X (see [9]). Approximative
compactness of X gives that any nonempty convex and closed set in X is proximinal
in X and the projection P4(-) from X to A is a continuous operator (see [9], [12]).
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1. Introduction

Denote by N and R the sets of natural and real numbers, respectively. Let
(X, || ||) be a real Banach space and X* be its dual space. Let S(X) and
B(X) denote the unit sphere and the unit ball of X, respectively. We say that
x* € S(X*) is a support functional at x € X \ {0} if ||z*|| = 1 and z*(z) = ||z||.
The set of all support functionals at z € X'\ {0} is denoted by Grad(z). A point
x € S(X) is said to be an exposed point (of B(X)) if there exists z* € Grad(x)
such that z* € Grad(y) whenever y € S(X) and y # «.

A point z € S(X) is said to be a point of compact local uniform rotundity
(local uniform rotundity) (C'LU R-point, (LU R-point) for short) (of B(X)) if
for any sequence (x,,)5° in S(X) such that ||z, + z|| — 2, we have that (x,) is
a relatively compact set in S(X) ( resp. ||z, — x| — 0). If every x € S(X) is a
C'LU R-point (LU R-point), then we say that X is a compactly locally uniformly
rotund (locally uniformly rotund) space — X € (CLUR) (X € (LUR)) for short.
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Let (7,3, 1) be a nonatomic, complete and o-finite measure space and L°
be the space of all o-measurable real functions defined on 7. A Banach space
X is called a Kothe space, if it is a subspace of L° such that

1°ifz € L°, y € X and |z(t)| < |y(¢t)| for p-a.e. t € T, then x € X and
=] < [lyll

22 there exists x € X such that supp(x) = T, where supp(z) = {t € T :
x(t) # 0}.

This paper concerns Musielak-Orlicz spaces, which are Kothe spaces. Let
for any Kothe space X, X, denote the positive cone in X.

A Kothe space X is said to be monotonically complete if for any sequence
(x,) in X, and any x € X the assumption =, T x implies ||z,| T ||z||. The
notation x 7 z means that x,(t) < z,1(t) < -+ < z(t) and z,(t) — z(t) as
n — oo for p-a.e t € T. A Kothe space X is said to have the Fatou property
if for any (z,) in X with 0 < z,, T « and sup,, ||z,| < oo, sup,, z, exists in X,
sup,, T, = « and ||z, || T ||=||.

A function @ : TxR — [0, 00] is said to be a Musielak-Orlicz function if ®
has the following properties:

(1) ®(-,u) € L° for any u €R ;

(2) ®(t,-) is even, convex and left continuous on [0, c0);

(3) ®(¢,0) = 0, ®(t,u) — 0o as u — oo and for p-a.e. t € T there exists

w; > 0 satisfying @ (¢, u;) < 0o .
We write & > 0 if the Orlicz function @(t, ) vanishes only at zero for p-a.e.
t € T. A function ¥ is called the complementary function of ® in the sense of
Young, if
U(t,v) =sup {ujv| — ®(t,u)} (teT, veR).

u>0
Here and in the following "¢ € T” means that we consider p-almost all ¢ from 7.
It is easy to see that W is also a Musielak-Orlicz function. Let p_(¢,u), po (¢, u)
and q_(t,u), ¢;(t,u) denote the left and right derivatives of ®(¢,u) and W(¢, u)
at u € R | respectively.

We have the Young inequality
wo < O(t,u) + ¥(t,v) (t €T, u,v>0)
and
_(t,iu) <v < t,u) for fixed u or
uww = O(t,u) + ¥Y(t,v) <= p-(hw) Svspiltu)
q—(t,v) <u<qy(t,v) for fixed v.

Let Iy : L° — [0, 00] be the modular defined by

I(z) = /Tcp(z, 2(8))dp
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The linear space
{x e L°: Iq>(/\x) < oo for some A > O}
equipped with the Luzemburg norm
|z|le =inf {A>0:1Is(%) <1}

or with the Orlicz-Amemiya norm

Jollg = int {5 (1+ To(ke) }

is a Kothe space, denoted by Lg or L§, respectively. We call them Musielak-
Orlicz function spaces. These two norms are equivalent, namely

[zlle < [lzfle < 2[lzfle
for any x € Lg. Moreover, the linear subspace
{z € L°: Is(\x) < oo for all A > 0}

equipped with the Luxemburg norm or with the Orlicz norm induced from Lg,
is a Kothe space and we denote it by Eg or E$ (according to the norm that is
considered). It is well known that Eg is the subspace of all order continuous
elements of Lg.

Let Ty be any infinite subset of T'. We say that ® satisfies condition Ay(Th)
(& € Ay(Tp) for short), if for any h > 1 there exists £ > 1 and a nonnegative
function f € L° with [, f(t)du < oo such that

O(t, hu) < k®(t,u) + f(t) (t€Th,uecR).
If & € Ay(T), we write simply @5 € Ay. For any x € L \ {0}, we define

k*(z) = inf {k > 0: Iy (py(k|z])) > 1}
kK (x) =sup {k > 0: Iy (p4(k|z|)) < 1}

and
0 if k*(z) =400
K(z) =<} [k(x), k" (x)] if k*(x) < +o0
[k*(x), 00) if k*(z) < 400 and k*(z) = 400 .

It is clear that k*(z) < k™ (x) for any x € L§ \ {0}. We will write £*, k** instead
of k*(x), k**(x), if it is clear which z is considered. It is known that for any
z € Ly \ {0}, we have ||z||g = 1 (1 + Is(kz)) if and only if k € K (z) (see [17]).



686 H. Hudzik and W. Kowalewski

We define that ® is upper (lower) affine at z € Ry \ {0} if there is w € R 4
such that ®(w) > ®(z) (P(w) < ®(z)) and P is affine on the interval [z, w]
([w, z]). For z € (—00,0), the upper (lower) affinity of ® at z is defined similarly.
We introduce the following notations:

A,(t)={z€R : ®(¢t,-) is upper affine at z}
Aty ={z€R : O(t,-) is lower affine at z}
ASu(1) = {= € Ault) : p(t,2) = p* (1, 2)}
AS(t) ={z€ Ai(t): p(t,z) =pT(t,2)}
Ay(z) ={teT: x(t) € Au(t)} ANS,(t) = Au(t) \ AS,(t)
Az)={teT: x(t) € At} ANS(t) = Ai(t) \ AS)(t)
Ay(x) = {t € Au(x) - x(t) € ASu()} AL () = Au(e) \ A7 ()
Aj(x) = {t € Aix) = =(t) € AS(1)} AP (x) = Ai(x) \ A7 ().

Lemma 1.1 ([8]). Assume that ® is a Musielak-Orlicz function such that ® >
0, %@(t,u) — 0 asu — 0 for p-a.e. t €T and ® € Ay. Then the following
conditions are equivalent:
(i) ¥ e A,
(ii) For any e > 0 there exist £ € (0,1) and a function f:T — R, such that
Lb(f) < ¢ and <I>(t, %) < 12;5<I)(t,u) for p-a.e. t € T and any u > f(t).

Remark 1.2 ([1]). Under the assumptions from Lemma 1.1, condition (ii) in
Lemma 1.1 can be reformulated equivalently in the form:

(ii’) There exist £ € (0,1) and a function f: T — Ry , Is(f) < oo such that
(IJ(t, %) < 1—;£¢(t,u) for p-a.e. t € T and any u > f(t).

Lemma 1.3 ([14]). Let ® be a real-valued Musielak-Orlicz function. Then there
exists a sequence (T,)22, of pairwise disjoint, measurable sets of a positive and
finite measure such that T = J;°, T,, and sup{®(t,u) : t € T,,} < oo for any
neN andu e R, .

It follows from Lemma 1.3 that xp, € Eg for any n € N . Let us say
that a sequence (z,,)5°, € L° converges to x € L° locally in measure whenever
TpXa — TXa in measure for any A € ¥ with pu(A4) < oo.

Lemma 1.4 ([9]). Let x € Lo, (z,) C Lo and ® € Ay. If x, — x locally in
measure and Iy (z,) — Is(x) < 00, then ||z, — x|y — 0.

Lemma 1.5 ([3]). Assume that ® is a Musielak-Orlicz function such that ® €
Ay and @ > 0. Then for any L > 0 and € > 0 there ezists § = 6(¢) > 0 such
that |Iq>(w) — [q>(y)] < e for any x,y € L¢ satisfying Lp(x) <L, Iq>(y) <L
and Iq:.(SU — y) <.
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Lemma 1.6 ([2]). Let ¥, denote the o-algebra of Lebesgue measurable sets
m R, E € X, E be closed and bounded. Then there exist two sequences
(E,) and (F,) in Xy such that E,,F, € ¥, F, NE, =0, E = F,UE,,
w(Ey) = p(F,) = 3u(E) for anyn € N and

lim [ o(t)(xe, () = xp,(1))dt = 0

n—oo

E

for any integrable function v.

Lemma 1.7 ([13]). Let z* = &, + ¢ denote a linear, continuous functional
on L% such that ||z*|| = 1, where {v denotes the regular functional on L,
generating by v € Ly such that &(y) = [,v(t dt (y € L) and ¢ is a
singular functional. Then x* attams its norm at x € S(LY), that is, z* €
Grad(x) if and only if for some k € K(x) the following conditions hold:

1. Ig(v) + ¢l = 1

2. |l¢ll = o(kx)
3. (kz,v) = Ip(kz) + Iy (v), i.e. v(t) € OP(t, kx(t)) for p-a.e. t €T.

2. Results

We start with a lemma that will be important to prove our main results.

Lemma 2.1. Let X denote the space Ly or Ly. Assume that ® > 0, %@(t, u) —
0asu — 0 for p-a.e. t €T, ® € Ay and ¥ € Ay. Moreover, assume that
(n), (Yyn) C S(X) and ||z, + yu|| — 2. Then for any € > 0 there exist numbers
§=206() >0 andn =n'(c) €N such that, for anyn >n' and E € 2, the
condition ||y,Xxg|l < implies that ||z, x| < €.

Proof. Let us fix ¢ > 0. Since ® € Ay, so there exists o(¢) > 0 such that
Is(z) < o(e) implies ||z]s < & (see [3, Lemma 1.4]). Let f and & be the

6)

function and the constant in Lemma 1.1 for =2 instead of €. Define

Ap={te E: |z, ()] < f(H)}.

Then I3 (anAn) < Iy fXAn> ”(E . Let § € (0,1) be such that the conditions
Iy (x) <1 and I3 (y) < 0 imply that

oz +y) — La(2)

Assume that ||y, xgle < 0. Then Iy (ynXE) < 0. Hence

fofe) _1-¢

fole)
6 - 2

6

Io (5" xm\a,) < To(5Xxm\4,) + Ly (@nxma,) +
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Let n’ € N be such that Ip(%25%2) > 1 — gaT(e) for any n > n’. Such a number
n’ € N exists because ||, 4+ yn|lg — 1 as n — oo whence, by ® € Ay, we have
Lp(%) — 1 as n — oo. By convexity of the function <I>(t, ) on [0, 00|, we

have
q)(taxn(t)) —Qi_q)(tayn(t)) o (b(t, xn(t);,—yn(t)) Z 0.
for p-a.e. t € T. Therefore, for n > n', we get
L 1 ()
_ / |:¢(t,$n(t)) + @ (t,ya(t)) (1, 20 | gy
2
T
Io(z, )+ Lo (yn ., N
> cb(x XE\A ) _ <1>(y XE\A ) _[q)( ";y"XE\An)
I I _
> @(anE\An) ;r @(ynXE\An) 1 . €I¢ (%XE\An) B 506(5)
> gLI) (anE\An) - 50—6<€).
Hence ng(a:nXE\An) < 5";5) which implies [cp(.flanE\An) < 2‘73(5). We get
Lp(:van) < o(e) for n > n’ since Lp(:chAn) < @ Therefore, ||z, XE|ls < €
for n > n'. |

Remark 2.2. Let us fix y, = x for any n € N in Lemma 2.1. Then any se-
quence (z,), satisfying the assumptions of that Lemma, is norm equi-continuous.

Proof. Let us fix e > 0 and define S,, = |J;_, T}, where (7;)$° is the sequence of
sets from Lemma 1.3. Then, by the Beppo-Levi Theorem, we get I (SL’XSn) —
Iy (.7)), whence Ig (xXT\Sn) — 0 and, by ® € Ay, ||xXT\Sn s — 0 Then there
exists m € N such that } TXT\Spm H o < 0, where 0 is from Lemma 2.1. Therefore,
by that Lemma, ||z,X71\s,, H@ <eforanyn > n'. Let A= S,,. Since,by & € A,,
Lg is order continuous, so the element zx4 is order continuous. Moreover
u(A) < oo. Let B C A and B € X. Then there exists 0 = o(¢) such that, if
wu(B) < o, then ||xxg|ls < 6, and it follows from Lemma 2.1 that ||z, x5|ls < €
for any n > n’, which finishes the proof. [

Lemma 2.3. Let us fix y, = x for any n € N in Lemma 2.1. Let (x,) be the
sequence from that Lemma such that, in addition, x,, — x locally in measure.
Then ||z, —x|| — 0 as n — oo.

Proof. It is enough to show this Lemma for the Luxemburg norm. Let us fix
e > 0. We define S,, as in the proof of Remark 2.2. By Lemma 2.1 we get
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that there exist < £ and n’ € N such that for any F € 3, if |loxg| < 0,
then ||z, xg|| < § for any n > n’. By the assumption that ® € A, there exists
m € N such that |2xps,,|| < 0. So we have |z,x1\s,.|| < £ for any n' > n.

Since p(Sy,) < 00, 80 T, — x in the set S,,. Without loss of generality we can
assume that z,(t) — z(t) for p-a.e. t € T. Since (z,,) is norm equi-continuous
and p(S,,) < 0o, so there exist n(e) and a(e) > 0 such that for any E € X, if
u(E) < a(e), then ||z, x5l < £ for any n > n(e). Since Lg is order continuous,
so there exists b(¢) > 0 such that for any £ € ¥, E C S,,, if u(F) < b(e), then
|zxElle < £ It follows from the Yegoroff theorem that there exists A € ¥ such
that A C Sy, u(A) < min(a(e),b(e)) and z, — 2z — 0 uniformly in S5, \ 4,
i.e. there exists ni(e) € N such that |z, (t) — z(t)] <1 for any t € S,, \ A and
any n > ni(e). Hence ®(t,z,(t) — z(t)) < ®(¢,1) for any t € Sy, \ A. By the
Lebesgue dominated convergence theorem, we get Lp((.ﬁtn — Z)XSm\ A) — 0 as
n — oo. Since ® € Ay, so we have ||(z, — :U)XSM\AHq) — 0, which means that
there exists no(¢) > max(n(e), ni(e)) such that ||(z, — x)xgm\AHq) < ¢ for any
n > na(e). Finally,

20 — 2]l < || (@0 — 2)X1\80 || + | (0 — T) X504l + [ (@0 — 2)Xallg

< Jlewxrsalls + lloxns,lls + 2 + leaxalls + llexalls <

for any n > nay(e). |

Lemma 2.4. Let ® be a Musielak-Orlicz function and x € S(Lg). If & € Aq,
x(t) € Ext(®(t,-)) for p-a.e. t € T and p(A(x))p(Au(x)) > 0, then x is not a
CLU R-point.

Proof. Let ||z||, = 1. By ® € Ay, we get Is(z) = 1. Suppose that
(A (z))u(Ay(z)) > 0. For any n € N we define the sets

A () = {t cT. z(t) and z(t) + %sgn(x(t)) }

are in the same affinity interval of <I>(t, )

1

A7) = {t 7 :U(t).and x(t) nsgn.(:v(.t)) }
are in the same affinity interval of <I>(t, )

Then |J,~, All(z) = Au(z), U2, A (z) = Aj(x) and A?(x) T, A7(z) T. Hence

there exists m € N such that u(A'(z)) > 0 and p(A*(x)) > 0. Without loss

of generality we can assume that p(A7(x) N A" (z)) = 0 (because of the fact

that z(t) € Ext(®(t,-)) for p-a.e. t € T'). Since p is nonatomic, so we can find
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measurable sets B)', B/" such that B]" C A" (x), B]" C A*(x) and

/ [CID (t,z(t) + %sgn(x(t)) — ®(t, x(t))} du
B 1)
= / [— ®(t,z(t) — %sgn(x(t)) + ®(t, x(t))]du.

i
Denote A = B)*, B = B;". Then, from (1), we have
Io((z + Lsgn(z))xa) + Ie((x — Lsgn(z))xs) = Is(xXxauB)- (2)

Now denote A} = A, BY = B. Since the functions

f)= @(t,z(t)+ %sgn(m(t)) — ®(t,z(t))
g(t) = —(t, z(t) — %sgn(m(t)) + O (t, z(t))

are nonnegative, measurable and integrable, so they generate on ¥ N A and on
> N B, respectively, the nonatomic measures v = vy and K = Kyt

(D) = / (@t 2(t) + Lsgn(a(t)) — ®(t,2(1))]du (YD € £ A)

k(D) = / [—®(t,2(t) — Lsgn(z(t)) + ®(t,z(t))] du (VD € N B).

Hence there exist sets Aj, A} € XN A and Bj, By € ¥ N B such that

v(A]) =v(Ay), K(By) = k(By), Ay=A1UA;, By =B UB,.

Then we get
Io((z + -sgn(z))xar) + Lo (2xa1) (3)
= Io((z + sgn(z))xay) + Lo (zxa1)
T _ 1 1) + 1
(p((x —~sgn(x XB ) <I>(xXB ) (4)

= Is((z — Zsgn(x )XBl) +I¢(37X31)

Let F := By U B UA} U A} = AU B and define

1 1
r1 = TXT\F + TXB) + (x - Esgn(x))xm + X1 + (x + Esgn(x))xA;-
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By equalities (2) - (4) and the convexity of the function ®, we have
Io(1) = 1n(25) = (o) = 1.

In the same way we decompose the sets A?, B, n > 1, ¢ = 1,...,2", into

7

subsets AT AN Bt B guch that

27L
A=Ay, AR U AT = A7
=1
2'n
B=|JB; Bl uBytt =B
=1
v(A5T) = (A5, v(AR N AL =

0
K(Byith) = k(By™), w(BytynByt) =0.

Defining the sets
2n-1 o= on-1 -
cp=J A, = D= By Di=J Dy
k=1 k1 o1 P
we get v(CT) = v(CH) = %I/(A) and k(D7}) = k(D}) = %,@(B), Hence

To((@ + Lsgn(a)xey) + o (sxcy)
= Io((x + Zsgn(x))xcy) + To (zxcy)
(

Define
1 1
Ty = TXT\F + TXDr + (T — Esgn(x))XD% +xxer + (v + Esgn(ﬁ)))(cg-
By equalities (5) and (6), we have
Tofi) = To(82) = 1, whence [zl = |22, = 1.
Let n < p. Then
D} =D?'nNB=DynNn (DU DS = (DyNDY)U (DY N DY).

Hence D} \ D} = D\ (D} N DY) = DY N D5, In the same way we can prove
that Dy \ D5 = Dy N DY. Moreover, (D} \ DY) N (Dg \ D5) = (). Therefore, by
symmetry of the decomposition, we have

1 1 n n n n
J#(B) = SK(D) = 5(D} 1 D) = (D} 1 D) = 5D} \ DY),
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whence (D7} \ DY) = 1x(B). Similarly we can show that k(D3 \ D}) = 1x(B),
whence, by the definition of the measure x, we get

1 n\ pp
ZK(B) = r(DY\ DY)

=1y (xXD?\D’f) - ]é((x - %Sgn(x))XD?\Df) (7)
< To(zxpp\p3)
< Iy (zxpmpr) + I ((x = 5597(x))Xpp\Dy) -
Similarly
A) < Ia(exeper) + Lo(( + Asgn(e)xepcp). (®)
Moreover,

1 1
Tn — &y = TXpp\pp + (& = —sgn(2))Xpp\pp + PXep\ep + (@ + —sgn(@))Xepey

and
(DY \ DY) N (D3 \ D3) N (CT\ CF) N (Cy\ C3) = 0.

Therefore, by (7) and (8), we get for n # p

Iy (2 — 1) = I (xXD{L\Dzlr) + I ((z — %sgn(x))XDg\Dg)
+ Lo (2xcp\op) + Lo (2 + Tsgn())xep\op)
> }l[y(A) L r(B)].

This shows that (z,) has no Cauchy subsequence, which contradicts the as-
sumption that z is a C LU R-point. |

Theorem 2.5. Let u(T) < oo and @ be a Musielak-Orlicz function such that
P >0, P < oo, %@(t,u) — 0 asu — 0 for p-a.e. t € T. Then x € S(Lg) is a
CLU R-point if and only if the following conditions hold:
(i) ¢ € A,
(i) (a) u(Ai(x)) =0 or
(b) ¥ €y and pu(Au(x)) =0
(iii) z(t) € Ext(®(L,-)) for p-a.e. t €T,

Proof. Necessity.

(i): The necessity of this condition follows by the fact that any C'LU R-point
is also an H-point and that ® € A, is necessary so that a point  would be an
H-point (see [7]).

(iii): The necessity of this condition can be proved in a similar way as
Lemma 2.4.
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(ii): First suppose that p(A;(x))u(Au(z)) > 0. Then, by Lemma 2.4, we
get that = is not a C'LU R-point.

Now let > 0, u(A;(xz)) >0 and U € A,. Let
- 1\ 1
T= {t e’l: <I>(t, %) > (1 — —>§(I>(t,u) for some u > O}.
n

Let N” be the smallest subset of N such that (T'\ T) C Unen- Tn =: A, where
(T,,) is the sequence from Lemma 1.3. Fixing n € N, n > 2, we define

fn(t) = sup {u >0: ©(t,%) > (1 — %)%Cb(t,u)},

where sup () := 0, which means that f,(t) = 0 for t € T'\ T. We will show
that these functions are ¥X-measurable. Let Q4 = (wy)52; be the set of positive
rational numbers. Since the function ® is continuous, we have

1\ 1

fn(t) = sup {uk €Q,: (ID(t, %) > <1 — ﬁ)ﬁq)(t’uk)}

For any fixed k € @, define the set

Bo={teT: o@t%)> (1- %)%@(t,uk)}.

Next, define g ,(t) = wixp,1, where (17) is the sequence of sets from Lem-
ma 1.3. Then, we have

fu(t) =sup{gr(t): k,leN}.
Indeed, it is evident f,, () = 0 for any t € T\ T and that for any t € T

sup{gr(t) : k,l e N} < f.(t).

On the other hand, taking t € T and € > 0, one can find u > 0 such that
fat) < u+ e and @(t, %) > (1 — %) %@(t,u). Next, we can find u, € Q4
such that (b(t,%k) > (1 — %) %@(t,uk) and fn(t) < up +¢e. Let [ € N be
such that t € T;,. Then we have @(t,%%’“(t)) > (1 — %) %@(t,gwk(t)) and
fn(t) < gru, (t) + €. Consequently, sup{gx;(t) : k,l € N} > f,(t). It is obvious
that the functions g;; are measurable, so f,, is measurable as well.

By Lemma 1.1 and Remark 1.2, we get that
I (fn) =00 for any n > 2. (9)

Since the necessity of ® € A, has been already proved, we may assume that this
condition is satisfied, whence it follows that ® is a real-valued and consequently
continuous function. Define

Ay ={t € A(z): ®(t,-) is affine in [x(t) — wy, x(t)]}.
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Since Aj(x) = U, Ak, so there exists kg € N such that p(Ay) > 0. Let

a = Wy, A= Agy N U, ey Tn, where (T},) is the sequence from Lemma 1.3

and N’ is the biggest subset of N such that Ay, O U,,cp Tn- Without loss of

generality, we can assume that 1 € N’. Then ®(¢,-) is affine on [z(t) — a, z(t)]

for any t € A, ie. ®(t,u) = A(t)u + B(t) for any u € [z(t) — a,z(t)], where

Alt) = L(@(t, () —®(t,2(t) — a)). Let K := [(®(t,2(t)) =P (¢, z(t) — a))dp.
A

Then

O(t, x(t))dp — a / A(t)dp (10)

Without loss of generality (decreasing the set A if necessary) we can assume
that

Iy (anT\(AuA)) =o0 for any n > 2. (11)
For any n € N | n > 2, define

Co={teT: f(t)=+oc0}, Np={n>2: u(C,) >0}

Let N = Ny UN"UN”. We consider two cases.
Case I.If Ny=N \ N and card(Ny) = oo, then, denoting Ny = (k)% ,
we have that
[cp(fanT\(AUA)) =oo foranyn €N (12)

and
fu, (t) <oo forp—aeteT\(AUA) and any n e N . (13)

Define a sequence (xy, )2 ; in the following way. Let N; be the smallest subset
of Ny such that /g (f;ﬂXUnENl Tkn) > K. Then there exists a set D; C | Tk,

such that I (fk1XD1) = K. Let

neNy

z1=(z —a)xa+ xXUneNfUN” 7, + fta XDy -

We get I (21) = Lo (zxa0y an) <1, whence ||z1|ls < 1. By (12) and (13),
we have that I (fk"XT\(AUUnENl T Wne, Tn)) = oo for any n € N . Let Ny be
the smallest subset of Ny \ Ny such that Ig (fk2XUneN2 Tkn) > K. Then there
exists a set Dy C |J Tk, such that /g (szXDQ) = K. Let

nenN

neNa

Ty = (x — a)XA + $XUn€NfUN,, Tl e ny T + szXDz'
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We get I (.:1:2) = Iy (xXAUUnENf TulU, e n, Tkn) < 1, whence [[z2]ls < 1. In the
same way we define for any n > 3

Ty = (T —a)xa+wx ) + fen XDy

ToU U Tkm
’V?’LGNfUN” -1

meUg=1 Nk
Obt&il’ling that LI) ((L’n) T LI) (.T)7 Whence ||anq> T ||ZE||(1> = 1. Moreover, denoting
En = UmENf Tn U Umeuz;ll Ny, Tkm, we haVe

X

i
XD, + §XT\(EnUDn)-

xr + x,

2

kn

2

a
= (v — §)XA +IXE, +

By the definition of f, , (10) and z > 0, we get

Iy (:v) + Iy (xn)

L« 5 > Io(*5%)
> Ip(zxa0E,) — g + Ip (L2 xp,)
> Io(xa08,) — % - _2%“ Lo (fr,XD,)
— Lo(exae,) — o+ LK a(z) — 1.
Therefore Ip () — 1, whence ||222|| — 1. But

Lo (20 — ) > To(froXDo) + Lo (fenXDy) = 2K >0,

whence ||z, — 2, || > min(2K, 1) for any n # m, which means that there exists
no convergent subsequence of (z,), and so z is not a C'LU R-point.

Case II. If N \ N < oo then, we may assume, without loss of generality
(passing to a subsequence if necessary) that p(C,,) > for any n € N \ N’. We also
may assume without loss of generality (decreasing the subsets C), if necessary)
that u(C, N Cy,) = 0 for any natural n # m. Denote N; :=N \ (N'UN") =
(kn)pey and Gy, = Ck, N Tk, n € N | where for any n € N |, a natural number
m(ky) is chosen in such a way that ;i(Ck, NTink,)) > 0. Then, by the definition
of C),, we get that

Io(fr.xc,) =00 foranyn e€N. (14)

We define a sequence (x,,)5°; in the following way. Let

H={teG: o(ty) > %(1—%)@(@%)} VieN.
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Of course each H; is a ¥-measurable set. Moreover Gy = | J, <N Hi. Define
Dy=|JHi and  p,(t) = max uxp,.
i<n -

Then D,, T G and p,(t) — fx, (t) for any ¢ € G;. By the Beppo-Levi Theorem,
we get that I (pn) — Ip (fklxgl). So we can find m; € N such that I (pml) >
K. Taking J; C D,,,, J1 € ¥ such that Iy (pmlil) = K, we define

T1 = (T — a)Xa + TXUyprone To T Pra X -

Then I (:1:1) = [(I)(xXAUUkeN’uN” Tk) < 1, whence ||z1]|; < 1. Using the sets
G, n > 2 we define the successive elements x,, as

Tn = (x —a)xa+ TXUken'on> ey oen 13 T + P X

Proceeding as in case I, we finish the proof of the necessity.

Sufficiency. First we will prove the sufficiency of conditions (i), (iii) and
1(Ai(z)) = 0. Let [|z]| = [|#nlle = 1 and || Z2]|, — 1. For any n € N and
o > 0 we define the set

la

Ay ={t €T |aa(t)] < 2(t)], |2(t) — 2a(t)| > 7}
Using the same techniques as in [10] (proof of Theorem 5.3 ), we will show that

lim p(A2) =0 for any o > 0. (15)

n—oo

We repeat this justification for clarity of the proof and because of the fact that
we will need it in its next part. In the opposite case, passing to a subsequence
of (z,,) if necessary, we may assume that there exist o9 > 0,9 > 0 such that
(A2 ) > go for any n € N . Since ®(t,u) — oo as u — oo for any ¢t € T, so
defining for any m € N the sets T,, = {t € T": <I>(t,m) > g}, we get

Tnt, JTw=T wT\Tn)—0 asm— oc.
m=1
Hence there exists mg € N such that u(T\T,,,) < 5%. Moreover, ®(t,mg) < i—g
for any ¢t € T'\ T}y, Denote D, = Ay N (T'\ T},,) and define the sets
Ay ={t € A% ¢ |z, ()] > me}, A, ={te A% : |z(t)] > mo}.

Then

10
1=1Ip(zn) > Io(TaXann,) = o (moxanp,) > E—OM(An \ Dy),
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whence p(A,) < 58+ pu(Dy,) < 2. Similarly w(A) < 2. Since p(A)(r)) =0,
so by the definition of A7 , we get that there exits a measurable function ¢ :
T — (0,1) such that

_ 14
2

(@ (t, 2, (1)) + (¢, 2(1))] (16)

for any n € N and any t € A” \ (A, UA,). Let § > 0 be such that p(E) < 2,
where £ = {t € T : 6(t) < do}. Since ®(¢,%2) > 0 for any ¢ € A? , so there

exists ag > 0 satisfying u(F) < %, where F' = {t € T": (IJ(t, "70) < ap}. Let
G,=A" \(A,UA,UEUF).

Then u(G,) > 2 and for any ¢t € Gy, we have 0(t) > do, |zn(t) — 2(t)| > 0o,

®(t,2) > ag and |z,(t)| < mo, |2(t)| < mo. Therefore

0 Iq>(:cn)2+1¢(x)  p(z2) Z/5(t)®(t,xn(t));—Cb(t,x(t))dt
Gn,
> 60/(I>(t,w)dt
Gn
> 8o / O (¢, Lzl gy
Gn
Zéo/@(t,%))dt = 50@0630 > 0.
Gn

We have obtained a contradiction. Therefore, for any ¢ > 0 and € > 0 there
exists N(¢) € N such that pu(A?) < e for any n > N(e), and moreover, for any
t € T\ A2, we have |z, (t)| > |x(t)| or |z,(t) —2(t)| < 0. Denote H = T'\ A,(z),
J = A,(x). Proceeding similarly as in the proof of condition (15), we get that
T, — x in measure in the set H. Without loss of generality, we can assume
that x,(t) — x(t) p-a.e. on H. Hence, by the Fatou Lemma and convexity of
the function ®, we have

lim inf Lp(:anH) > Iy (xXH), (17)
whence
lim sup I (:UnXJ) < Lp(xXJ). (18)

Suppose that (x, —x)xs /0. Then there exist J; C J and &9, 09 > 0 such that
wu(J1) > 0 and (without loss of generality) p(E,) > 0 for any n € N | where
E,={te Ji: |z,(t) —x(t)] > oo}. Let us fix ¢ > 0 such that ¢g — e > 0.
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Equation (15) implies that there exists N(e) such that (A} ) < e for any
n > N(e). Moreover, |z,(t)] > |z(t)| for any t € J; \ A} and n > N(e). If
there exist a set Jo C J; and an infinite sequence (ny) C N such that, for any
k € N and any t € Jy, the point z,, is outside of the affinity interval of the
function @(t, -), which has the "bottom endpoint” z(t), then for any & € N

and any t € ((Ep, \ (4, U 4,)) N J5) \ A%, we have

o(t, 220y < L0001 0, (1) + 0(t.(0)]. (19)
where A,, and A/n are defined as in the previous part of the proof (page 696).
Now we proceed in the same way as in the proof of condition (15), obtaining
that (z, — z)xJ, — 0. Hence, without loss of generality, we may assume that
for any ¢ € J; \ A}, all points x,(t) are in the affinity interval of the function
(ID(t, -), with ”"bottom endpoint” z(t). Within this assumption, if there exist a
set Jo C J; and an infinite sequence (n;) C N such that z,, (t)z(t) < 0 for any
k€N andt € Jo, then for any k € N and t € ((Ep, \ (A,UA,))NJo)\ A%, the
point z,, (t) belongs to the different affinity interval of function ® (t, ) than the
point x(t), whence these points satisfy inequality (19), and we proceed again as
in the previous part of the proof, obtaining that (z, — z)x s, — 0. Finally, we
can assume that for any ¢ € J; \ A}, all points x,,(¢) are in the affinity interval
of the function (¢, ), which has "bottom endpoint” z(t). Let

4 = D (t, () + sgn(x(t)Z) — @(t,x(t)).

|3

Then there exist a set ¢ C J; and § > 0 such that pu(C) < ==, where
C={teJi: A <} Hence 4,2 + ®(t,z(t)) = ®(t,2(t) + sgn(z(t))%)
and A; > 6 for any t € B, \ (CU A,n), and p(E, \ (CU A} )) > 5=, because

2
p(En \ AZ) > (g0 — €). Therefore, for any n > N(e), we have

1 1
5-’@ (anEn\(CuA’;O)) + 5](1, (xXEn\(CUAgD))

> Ip(tet xXEn\(CUAI}O))

> / B(t,2(t) + sgn((t)) %) dt

Ea\(CuAz,)

5%#(& \ (CUAL)) + Lo (2XE\cuaz,))

v

oo (g0 — €)
0 2

5 + o (wXxma(Cuay,)
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by using
I@(zn;-xXEn\(CUAgO)) — / (I)(t) zn(t);rx(t))dt
En\(CUAZ,)
[ et smemma = [ o)+ 4% ar

E,\(CUAZ,) En\(CUAZ)

Hence
(g0 —¢)
Iy (iUnXEn\(CUAgO)) > 0oy 5 + Iy (ZUXEn\(CUAgO))- (20)

Consequently

(g0 —€)

lim sup [Lb (InXEn\(CUAgO)) — Iy (xxEn\(CUAgO))} > doyg (21)

n—o0

Then
0> lim sup |:[<I> (anJI) - LI) (xXJl)]

> lim sup [Lp (QJnXEn\(CUAgO)) — Iy ($XE7L\(CUA30))}

n—oo

(€0 —¢€)

> doy 5

This contradiction implies that x,, — x in measure on the set J. Using Lemma
1.4 we finish the proof of sufficiency of conditions (i), (ii)a) and (iii).

Now assume that conditions (i), (ii)b) and (iii) hold. As in the previous
part of the proof we show that

lim p(A2) =0 for any o > 0, (22)

n—oo

where, in this case,
Ag={t €T :|z.(t)] = |x(t)], |x(t) — 2a(t)] = o}

Denoting J = A;(z), H = T\ J and again proceeding similarly as in the
proof of condition (15), we get that (z, — 2)xx — 0. By Lemma 2.3 we have
|(z, — x)xnlle — 0, whence Is((z, — 2)xg) — 0. Then, by Lemma 1.5, we
obtain

7}1_}1{)10 Lp(l‘nXH) = ]q>(a:XH). (23)

Suppose that (z, — z)xs 7 0. Then there exist J, C J, g,00 > 0 such that
w1(J1) > 0 and (without loss of generality) u(E,) > 0 for any n € N | where
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E, ={t € Ji: |x,(t) — z(t)] > oo}. Because of the analogous reasons as
in the previous part of the proof we can assume that all points z,(t) are in
the affinity interval of the function CI>(t, ~), which has the "top endpoint” z(t),
for any ¢t € J; \ A}. By (22) we get that there exists n; € N such that
|zn(t)] < |z(t)] for any n > n; and p-a.e. t € Jy \ A} . Defining C € ¥ and
elements A, in the same way as previously (page 698), we get

0 «— Iy (ij) — Iy (InXJ) > Ip (xxEn\(CUAgO)) — Iy (anEn\(CUAgD))

Z (50’0 (80 — 5).

This contradiction implies that z, — =z in measure on the set J. Using
Lemma 1.4 we finish the proof of sufficiency of conditions (i), (ii)a) and (iii). 0

Remark 2.6. Proposition 5.3 in [2] gives that ® € A, implies ® < co. There-
fore, by condition (i) in Theorem 2.5, we get that ® < oo is necessary for the
existence of a CLU R-point in S(Lg).

Remark 2.7. Let T =R and (7, %, ) denote the Lebesgue measure space.
Then the condition a(®) = 0 is necessary for Ly € (CLUR).

Proof. By Theorem 2.5 and Remark 2.6 we can assume that & < oo an
® € Ay. Let p(supp(a(®))) > 0. Define the sets A, = {t € T : a(®(t,")
and B, = A,NT,, where (T,) is the sequence from Lemma 1.3. Then |J B
whence there exists m € N such that u(B,,) > 0 and u(B,, N supp(a(P))) >
0. Let us take a bounded, closed set A such that A C B,,, u(A) >
(AN supp(a(®))) > 0. Let B € Xy, be such that B # (), AN B =
AU B =T. Define

_ a(®)
2

where ¢ € R, is such that LD(CXB) = Lp(l‘) = 1. We use Lemma 1.6 for
E := A and define

T

XA+ cxa,

a(®)
2

where (E,) and (F),) are the sequences from Lemma 1.6. Then A = E,, U F,,,
F.NE, =79,

Tp =T+ (XE. — XF,]

a(® a(® a(®
T, = (2 )XEnUFn +cxp + %mn - (2 )XFn =a(®)xE, +cxB
T— T, = @[XF,L —xg,| and supp(z — x,) = A. Moreover Ig (x) =TI (xn) =1,
whence ||z||g = ||znlls = 1. Since ® < oo and a(P)xa € Es, so there exists

A > 2 such that

1>d:=Io(Mz —2,)) = le (A2 [xp, — xr]) > 0.

2
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Then ||z — 2, > % > 0. Since ® € Ay, so for any A > 1,

Io(Ma, — 1)) = /(ID(t, ANz, — 2)(t))dp

A

< Kly(n,—2)+ [ f0)au

A

:A/f(t)du < 00.

Hence x —x,, € Fg, which implies that ¢(x —z,) = 0 for any singular functional
¢ over Lg. Let y € S(LY). Then there exists A > 0 such that Iy (A\y) < co. By
the Young inequality, we have

/a@)yd,u <2 [LI, (\y) + Iq,(“(f’)} < co.

2 —A
T
Therefore, the function @y is integrable. Then by Lemma 1.6,
a(P
(0 — 2, y) = / Y <2 )[XEn — XF,Jdp — 0.

supp(zn—2)

This means that z,, — , which shows that the condition a(®) = 0 is necessary
for property (H) of Lg (see. [5]). The observation that (CLUR) = (H) finishes
the proof. ]

Remark 2.8. Let c: T'— R, be a function such that (IJ(t, ) is affine on the
interval [0, ¢(¢)] and ® > 0. Then the following statements hold:
1. If [u(Au(z)) > 0 or ¥ ¢ Ay] and Is(c) > 1, then there are no CLUR-
points on the unit sphere S(Lg).
2. If u(Au(x)) =0 and ¥ € Ay, the following statements hold:

(a) If [w(A(z)) = 0 and Is(c) > 1] or [u(A(z)) > 0 and Is(c) > 1],
then there are no C'LU R-points on the unit sphere S(Lg).

(b) If i(Ay(x)) > 0 and I (c) = 1, then the element c is the only CLU R-
point on the unit sphere S(Lg).

3. If Ip(c) > 0, then Lg & (CLUR).

Proof. Case 1. By the assumptions and Theorem 2.5 we have that, if z €
S(Le) is a CLU R-point, then Iy (z) = 1 and A;(z) = 0, whence |z(t)] > ¢(t)
for t belonging to some set A, where A C T, A € ¥ and u(A) > 0. Hence
Iy (x) > 1, a contradiction.
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Case 2. In this case the proof is similar as in Case 1.

Case 3. Let us fix sets A, B € ¥, a function b : T — R, and a number
a € Ry such that A C supp(c), B C T\ A, u(A) >0, u(B) > 0,0 < b(t) < c(t)
for any t € A, and let x be defined by

z(t) = b(t)xa + axs.

Then Iy(x) = 1, whence z € S(Lg) and, by condition (iii) from Theorem 2.5,
we get that z is not a C'LU R-point. |

Lemma 2.9. If ¥ € A, and %@(t,u) — 0 asu — 0 for p-a.e. t €T, then

1
sup {k’>0: ||$||;:E(1+I¢(km))}<oo.

l][g=1

Proof. This Lemma can be proved similarly as Lemma 1.6 in [10]. Although
in that result the assumption of strict convexity of the function ® instead of the
assumption that %@(t, u) — 0 asu — 0 for p-a.e. t € T has been used, actually
in the proof the important point is that for p-a.e. t € T, ®(¢,-) is not affine in
any neighbourhood of zero, but this property follows from the assumption that
%@(t,u) — 0asu— 0 for p-ae teT. |

Theorem 2.10. Let ® be a Musielak-Orlicz function such that ® < co, > 0,
%(I)(t,u) — 0 asu — 0 and %(I)(t,u) — o0 as u — oo for p-a.e. t € T.
Moreover, let x € S(L}) and k € K(x). Then x is a CLUR-point if and only
if
(i) ¢ € A,

(ii) \If € Ao,

(iii) z(t) € Eat(®(t,-)) for p-a.e. t €T,

(iv) M(As(kx)) =0 and p(A;(kx)) =0,

(v) if p(Ay (kx)) > 0, then Iy (p-(k|x]))

(vi) if p(Ayp°(kx)) > 0, then Iy (p+(k|z])) =

Proof. Necessity.

(i) Let y € S(L%) be a CLUR-point. Suppose that ® ¢ A,. Then there
exists 0 # x € S(Lg) such that Iq>(:c) < o0, I¢(Ax) = oo for any A > 1,
and sgn(z(t)) = sgn(y(t)) for any ¢ € supp(y). Let zy = z/|z||z. Then
I (Azo) = oo for any A > 2||z||3. Define the sets

x)
)

Ay ={teT: Jao(d)] < n. lga0)] < n)

and B, = A, NS, with S, = (U;_, T;, where (T;)° is the sequence from
Lemma 1.3. By the Fatou property of L§, we have ||zoxs, ||s — ||zolls- Since
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Iy (AonBn) < oo for any n € N and A > 2||z||3, so Lp()\ajoxT\Bn) = oo for any

ne€N and A > 2||z|/3. Hence ||zoxms |5 > 1/(2]7oll3). Let ny = 1. By the
o o .

Fatou property, we get HI'OX(T\Bnl)mBan) — HxOXT\Bnl qu Hence, there exists

ny > ny such that 1
Ha:oX(T\Bnl)ﬂan H<I> < m'

Moreover, Ig(Azox\5,,) = 00 for any A > 2|jz||3. Hence HxOXT\BnQH; >
1/(2||zolg). Using again the Fatou property , we get H$0X(T\Bn2)mBn”; —
HazoxT\BnQ H; Hence, there exists n3 > ny such that

0 1
HxOX(T\an)ﬁBn3 Hq) > m.

Proceeding (by induction) analogously as above, we get a sequence (nj;) C N
such that 1

> T
@ 4f|zoll

Since P, N P, = () for k # 1, so

HxOX(T\Bnk)ﬁBnk_H

Denote P, = (T'\ B,,) N B

Nk+1°

xD
‘ E ZToXp,
k=1

Moreover, ¢(xoxp,) = 0 for any singular functional ¢ and any k£ € N . Let
v € Ly. By the Holder inequality, we have |(|zol, [v])| < [|xollgllv]ly < oo
Therefore, Y2 (|zoxp, |, [v]) < oo, whence (Jzoxp,|, [v]) — 0 as k — co. Hence
also (zoxp,,v) — 0. Thus we have that

o0
=D lzoxr < |zl -
k=1

zoXp, — 0 as k — oo. (24)

Similarly we show that yxp, = 0 as k — oo, whence

yXT\p, — Y as k — oo. (25)

Moreover, since I(z) < oo and |z|g > |z[s = 1, so 0o > Ig(z) =
Y orey ]cp(l'()ka). Hence

Iy (l’oXPk) —0 ask— oo. (26)

Let us take t € T such that |y(t)| < oco. Then t € P, for some | € N . Since
P.NnP =0fork#1 s0ot¢ Py for any k > [, whence yxp, = 0 for any k > .
This means that yxp, (t) | 0 for p-a.e. t € T'. Therefore

ayxmp,(t) T ay(t) for prae. t €T and any o > 0.
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Thus, by the Beppo-Levi Theorem, we have
Ip (ayXT\pk) — Ip (ay) forany a >0 as k — oo. (27)
Let m > 0 be such that |y|| = L (1 + Is(my)). For any k € N we define

1
Yk = YX1\P, T+ E$OXPk~

Then, by (26) and (27), we get

.1
Iolly < (14 Ta(my)

= (1+ o (my)) = 1

1
= E(lJﬁf@(myXT\Pk) + Is(z0xp,)) — o

for any k € N . Moreover, by the monotone completeness of the Orlicz-Amemiya
norm and by the fact that HyXT\pkH; < |lyllg, we have limy_. |lyxlle > 1.
Finally |yl — 1 = [lgll}- By (24) and (25), we get

yr — 1y ask — oo.

Since sgn(x(t)) = sgn(y(t)) for any t € supp(y), so

i o 1 o
Hyk _ qu) — HyXPk + #‘TOXPkch > EH$0XP;€H¢> > W
P

For this reason, y is not an H-point, whence it is not a C'LU R-point as well.

(ii) Let [|z||g = 1. Since ® € Ay, so (L$)* = Ly, whence there exists y €
S(Ly) such that (z,y) = ||z||g = 1. Suppose that U ¢ A,. Then there exists
xg € S(Ly) such that sgn(xy(t)) = sgn(x(t)) for any t € supp(x), Iy (xy) < 00
and Iy (Azg) = oo for any A > 1. Let (7},) be the sequence from Lemma 1.3
used for the function VU instead of ®. We fix € € (0,1) and define the sets

B,={teT: |zot)| <n,|z@t)] <n,|yt) <n}, C,=B,NT,.

Then C,, T, U, C, = T, and since xp, € Ey for any n € N | so |zg|xc, <
nxec, < nxr, € Ey. By the Beppo-Levi Theorem,

Iy (zoxc,) T 1w (z0),  Tw (yxe,) T1le(y), Tw(zxe,) T lv(2).

Hence there exists m € N such that

(28)

N ™

5 5
Iy (zoxmc,n) < 3 Iy (yxr\c,.) < 3 Iy (zx1\¢,) <
Denoting S,, = U;_, T3, we have xs, = > ., x1, € Ewy. Moreover,

Iy (Azoxms,) = Ty (Azo)— Iy (Azoxs,) = oo for any A>1 and n € N. (29)
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In particular, Iy (AonT\Sm) = oo for any A > 1. Denote Ty = T\ S,,. Then
Cy, CT\Ty. Let

ny 1= min {n >m: Iy ((1 + %)xgxgn\sm) >1- 6}.

Since the measure is nonatomic, there exists A; C S,, \ S, such that
Iy ((1 + %) 5UOXA1) = 1—¢e. Moreover, Ay C Sp, \ S, whence x4, < XS, \Sm €
Ey, which means that x4, € Ey. Using (29) we can extend this construction,
namely for any £ > 1 we choose the number

Ny = min {n >Np_1: Iy ((1 + 2%)$0X5n\snk_l> >1-— 5}

and a set Ay C Sy, \Sn,_, such that Iy ((1 + 2%) onAk): 1—e. Then x4, € Ey.
Moreover, Ay C T'\ S,, C T\ C,, for any k € N . This implies, by (28), that
Iy (voxa,) < § for any & € N. Then Iy (zoxa,) < € for any n € N and
Zn = ToXa, € Py, because A, C C} for some k € N . Hence there exists
x, € S(L3) such that (z,, 2z,) = ||z,]|y. Define the sequence

1_
Yp = ( o )(zn + YXT\A,)-

1+ 50
Then
L)< ()G n) < (7)<t @)
and
o) > (7575) [l = (F55 )tz = s @

n

= (11;;> :A/q:(t)zn(t)dt +T\[ x(t)y(t)dt]
= (11;;) :/x(t)y(t)dt—l—/x(t)zn(t)dt— /x(t)y(t)dt}
> (155) (e = [ sty

An
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because sgn(x(t)) = sgn(z,(t)) for any t € supp(y) and any n € N . By the
Young inequality and condition (29), we get

/ ()t < To(wxa,) + To (yxa,) < &, (32)
An

whence (z,y,) > (11;22. Since Iy (yn) < 1, so by the definition of the Orlicz-
27L

Amemiya norm, we get
(1-¢)? (1-¢)p?

2> lzn +2llg > (T + 20, yn) > .
> || s > ¢ Yn) 1+2Ln (1+2Ln)2

Therefore, ||z, + x| — 2. Moreover, ||z, — zn|lg > ||z]lg = 1 for any m # n,
because supports of the elements x,, are disjoint. This means that there is no
Cauchy subsequence of (z,), so z is not a C'LU R-point.

(iii) Proof of this part follows in the same way as the proof of Lemma 2.4,
so it is omitted.

(iv) Suppose that u(Aj(kx)) > 0, u(As(kx)) > 0 and [|z]g = 1. Let (w,,)
denote the set of all rational, positive numbers. Define the sets

[kx(t) — wy, ka(t)] if k(t) > 0 }

A, = {t € Aj(kz) : ®(t,-) is affine on{ [k (t), ka(t) + wy] if k(t) <0

Since Aj(kx) = |J,, An, there exists [ € N such that p(A4;) > 0. Denote
a = |wy|, A := A; and define the new nonatomic measure on ¥ N A:

v(B) = / (@ (t, ke(t)) — ®(t, ka(t) — a)]dp.

Now we proceed in the way similar as in the proof of Lemma 2.4, defining the
elements
Ty = rXT\A + TXBr + (T — b - sgn(x))xBy,

where b = ¢, and the sets B, By are constructed in the same way as the sets
Cp, Cy in part (ii) of the proof of Theorem 2.5. Since v(B}) = v(BY) = tv(A),
Slo)

Ip(kxxpy) + lo((kx —a - sgn(z))xs;) (33)
= Iy (kaxpy) + Lo ((kx — a - sgn(z))xpr)-

Then

Iy (k’xn) = Iy (k:xxT\A) + Iy (kxXB?) —+ Iq,((k’x —a- sgn(x))XBg)
34
= Ip(kzxr\a) + %(Lb(kxXA) + Ip((kx — a - sgn(x))xa))- )
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By the definition of x,,, we get for t € T

p-(t, kan(t)) = p-(t, kx(t)), pi(t, ken(t)) = py(t, ka(t)). (35)

Therefore Iy (py(kx,)) = Iy (py(kz)), whence k € K(z,,) for any n € N . Then
(34) implies that all norms ||z, || are equal. Since ® € A,, so L = E$ and
(L$)* = Ly. By (35) and Lemma 1.7, there exists y € Ly such that (x,y) = 1,
Iy (y) =1 and

p-(t, ka(t)) < y(t) < pi(t, kan(t)).

Then (x,,y) = ||z||g for any n € N and

o o

Hence, the above norm is equal to 2. Since all norms ||z,||5 are equal, so
denoting L := ||z, ||q, we get for m > n

T T 1

k( no_ mo):_k($n_$m)
|zalls  Nzmlls /) L
1

= z(k‘ﬂ?XBil\B{n + (kx —a- sgn(:v))XBg\Bg@).

Tn

2> —
Hmanb

T+

Proceeding as in the proof of part (i7) in Lemma 2.4, we get

| 1
This means that x is not a CLUR-point.

(v) By the definition of K(z), we have Iy (p_(kz)) < 1. Suppose that
(A (kx)) > 0 and Iy (p_(kx)) < 1. Similarly as in Case (iv), we get a
set A C AP(kz) and a number @ € Ry such that ®(¢,-) is affine in the
interval [kz(t), kx(t) + a] for any t € A. By the definition of K(z), we have
Iy (pi(kx)) > 1. Then there exists B C A, B € ¥ such that

Iy (p+(kz)xp) + Lv (p-(kz)xr\5) < 1. (36)

We decompose the set B into B}, BY (see the proof of Lemma 2.4) and define

Tn Tm

[zalle [lomlls

T, = xX1\B + TXBr + (T + a)xpn.

Constructing an adequate measure and proceeding as in the proof of neccesity
of condition (iv), we get that the values of all modulars I (kxn) are equal.
Then for any t € T',

p-(t, kan(t)) = p-(t, kx(t)), pi(t, ken(t)) = py(t, k(t)). (37)
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Therefore Iy (p4(kz,)) = Iy (p+(kz)) > 1, whence k € K(x,) for any n € N .
Moreover, then we have that also all norms ||z,|| are equal. Since it follows
from (36) that Iy (p—(kx,)) < 1, so there exists a function y : T — R such
that p_(t, kz,(t)) < y(t) < py(t, kx,(t)) and Iy (y) = 1. Moreover, by (37)

p-(t, kx(t)) < p_(t,kxa(t)) < y(t) < py(t, ka(t)) = pi(t, kwa(t)),

whence, by Lemma 1.7, we get that all elements x,, and the element x have
the same support functional. Now we proceed as in the proof of necessity of
condition (iv).

(vi) The necessity of condtion (vi) can be proved in the same way as the
necessity of condition (v).

Sufficiency. Let ® € Ay, ¥ € Ay, ||z, — 2|3 — 2 and let k, k, (n =

1,2,...) be positive numbers such that

1= |lznlly =

(1 -+ Ta (o)) = ol = 7 (1 + T (k).

1
K
Fix ¢ > 0 and let S, = U, T;, where (T;);° is the sequence of sets from
Lemma 1.3. Then, by the fact that ® € Ay, there exists m € N such that
|2x7\s, o < 0(0), where §(o) is such that ||l’nXT\Squ, < o for any n > n/
(n' is from Lemma 2.1). We may choose 0, ¢ in such a way that max(d,o) < 5.
Define

D ={teS,: ka(t) e Ext(D(t,-))}.

Then, in the same way as it was done in the proof of condition (15), we show
that

(kpzn — kz)xp £ 0. (38)
Now assume that pu(AZ*(kx)) > 0. Then it follows from conditions (v) and
(vi) that p(Ap*(kz)) = 0. Let A = A NS,,. So, S, \ D = A. By (38) we
have (k,z, — kx)Xs,\a £ 0 and,without loss of generality, we get k,z,(t) —
kx(t) — 0 for p-a.e. t € S,, \ A. Moreover, kxz(t) are points of smoothness for
the functions ®(¢, ) for p-a.e. t € Sy, \ A, whence p_(t, k,x,(t)) — p_(t, kx(t))
for p-a.e. t € S, \ A. By the Fatou Lemma, we have then

liminf Iy (p— (knn)Xsma) = Lo (p—(kz)Xs,04)- (39)

n—oo

It follows from the definition of K (z) and from condition (v) that
Ly (p—(knwn)) < 1= Iy (p-(kx)). (40)
Then, by (39) and (40), we get

limsup Iy (p-(knn)xa) < Ly (p-(kz)X4a). (41)

n—oo
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For any n € N we define the set
Ay = {t € T [knwn(t)] < [k (t)], [k (t) = knza(t)] = 0 }.

Since for any n € N and t € A?, ka(t) and k,xz,(t) are points of strict convexity
of the function CD(t, ~), so proceeding as within (38), we get

lim u(A)) =0 for any o > 0. (42)
We will show that
(kpan — kx)xa = 0. (43)

Suppose that (z, —z)xa /0. Then there exist A; C J and &y, 0y > 0 such that
1(Ay) > 0 and (without loss of generality) u(E,) > 0 for any n € N | where
E,={t e Ay : |z,(t) — x(t)| > oo}. Let us fix ¢ > 0 such that ¢y —e > 0.
Equation (42) implies that there exists N(e) such that pu(Aj ) < e for any
n € N . Moreover, |k,z,(t)] > |kz(t)| for any t € A; \ A} and n > N(e).
Similarly as in the proof of the sufficiency part of Theorem 2.5 (page 698), we
can assume that for any t € A; \ A7, all points |k,x,(t)| are in the affinity
interval of the function ®(t,-), which has the "bottom endpoint” |kz(t)|. Then

p—(t, knn(t)) = p-(t, ka(t) + sgn(x(t))o)
for any n € N and t € A; \ A7 . Therefore
p—(t, knn(t)) — p-(t, kx(t)) = p-(t, ka(t) + sgn(x(t))o) —p-(t, kx(t))  (44)

for any n € N and t € A; \ A} . Hence there exists ag > 0 such that p(C) <
20— where

C={teA: p_(t kx,(t) + sgn(z(t))o) — p_(t,kz(t)) < ao}.
Then pu(E, \ (A2, UC)) > 3(gg —¢) for any n € N and, by (44),
p—(t, knwn(t)) — p- (L, k() = ao (45)

for any t € £, \ (Ay, UC) and n € N. Since ¥(t,a9) > 0 for any t € T', so
there exist by > 0 and D € ¥ defined by

D= {t €Sy : \If(t,ao) < bo}

and such that p(D) < ==, Then pu(E, \ (A;, UCUD)) > === for any n € N
and, by (45),
U(t, p_(t, knxn(t)) — p_(t, kx(t))) > by
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for any t € E, \ (A}, UC U D) and n € N . By superadditivity of the function
U(t,-), we get

W (t, p-(t, knxn(t))) = W(t, p-(t, kx(t))) = bo (46)

for any t € £, \ (A}, UCUD). Denote I, = E, \ (A UCUD). Then

bo(eo — €
B (0 (ki )i,) — T (0, K )x) = boce,) > 2509 (an)
This contradicts inequality (41) because
0 > limsup [Iy (p— (knzn)xa) — Lo (p— (kx)xa)]
> limsup [ly (p-(kn®n)xF,) — Lo (p-(kx)XF,)]
< bo(eo — 5).
- 2
Therefore (43) is true, and together with (38), it gives
(Knty — k)X, = 0. (48)

By Remark 2.2, the sequence (x,,) is norm equi-continuous and, by Lemma 2.9,
we have k = max(supn kn,k) < oo. Since ||k,xnxEly < kHﬂanEHq> for any
E € ¥, so norm equi-continuity of (x,) implies norm equi-continuity of (k,z,).
Moreover, u(S,,) < oo, so proceeding as in the proof of Lemma 2.3, we get

knxn — k) x5 ||e — 0 as n — oo. Therefore
m || P
b — k] = Kl — Kol
< Hknwn - k’:L‘H:)I)
< || (knn — kx)XSmH% + ”(knxn - ka:)XT\SmH;
< N[ (knttn — k2)X5, 15 + || knnxmisn||g + || kX180 ||
< || (knzn — kx)XSmHZ) + ke

for any n > n’. This means that k, — k, whence, by (48), we get (z, —z)xs, —
0. Then, by Lemma 2.3, we have ||(z, — )xs,.|l — 0 as n — oo. Moreover,
H n = T)XT\Spm H@ < ¢, which gives that H xn_-T)XT\Squ, —0asn—o00. 1

From Theorems 2.5 and 2.10, we can easily get criteria for the CLUR-
property and the LUR-property of Ly and Lg. We should note here that criteria
for the LUR-property of Lg have been originally given by Kaminska in [14].
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Theorem 2.11. The following conditions are equivalent:
(i) Le € (LUR)
(ii) Lo € (CLUR)
(iii) (a) ® € Ay,
(b) (ID(t, ) is strictly convexr on R for p-a.e. t € T.

Proof. (iii)=(i). Let ||z|| = ||znlls = 1 and H%H@ — 1. Assume that
conditions (a) and (b) in (iii) hold. Similarly as in the proof of the sufficiency
of Theorem 2.5 we show that z,, — x in measure. By (a) in condition (iii), we
get Ip (xn) =Ip (x) = 1. Using Lemma 1.4 we finish the proof of this part.

(i)=-(ii). This is true by the definitions of the properties LUR and CLUR.

(ii)=-(iii). Since the Kadec-Klee property of L¢ implies conditions (a) and
(b) in (iii) (see [5]), so using the fact that C' LU R implies the Kadec-Klee prop-
erty, we get the necessity of these conditions for the property CLUR of Lg. 1

Theorem 2.12. The following conditions are equivalent:
(i) Lg € (LUR),
(ii) Lg € (CLUR),
(iii) (a) ® € Ay,
(b) ¥ e Ay,
(c) ®(t,-) is strictly conver on R for pi-a.e. t € T.

Proof. (i)=-(ii). This is true by the definitons of the properties LUR and
CLUR.

(ii)=-(iii). Since the Kadec-Klee property of L implies conditions (a) and
(c) in (iii) (see [9], proof of Theorem 3.4) so, using the fact that C LU R implies

the Kadec-Klee property, we get the necessity of these conditions for property
CLUR of Lg. Condition (b) in (iii) is necessary by Theorem 2.10.

(iii)=-(i). We can proceed as in the proof of the sufficiency of Theorem 2.10,
which completes the proof. [ |
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