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On Representation, Boundedness
and Convergence of

Hankel-K{Mp}′ Generalized Functions

Isabel Marrero

Abstract. Under opportune assumptions on the defining sequence {Mp}∞p=0, Hankel-
K{Mp}′ generalized functions can be represented as

f = x−µ− 1
2 (Dx−1)kF (x),

where k ∈ N and F is a continuous function on I = (0,∞) such that M−1
r F ∈ Lq(I)

(1 ≤ q ≤ ∞) for some r ∈ N. A corresponding characterization of boundedness and
convergence of Hankel-K{Mp}′ generalized functions is given.
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1. Introduction

Let µ ≥ −1
2
, and let {Mp}∞p=0 be a sequence of continuous functions defined on

I = (0,∞), such that

1 = M0(x) ≤ M1(x) ≤ M2(x) ≤ . . . . (1)

We say that Kµ{Mp} is a Hankel-K{Mp} space (of order µ) if it consists of all
those functions ϕ ∈ C∞(I) such that

‖ϕ‖µ,p = max
0≤k≤p

sup
x∈I

∣∣∣Mp(x)(x−1D)kx−µ− 1
2 ϕ(x)

∣∣∣ < ∞ (p ∈ N).

The linear space Kµ{Mp} is endowed with the locally convex topology generated
by the sequence of norms {‖·‖µ,p}∞p=0. We denote by Kµ{Mp}′ the dual of
Kµ{Mp}.

The space Kµ{Mp} was introduced and studied by the author in [5], [3],
[4] as a Hankel transformation related version of the Gelfand–Shilov K{Mp}
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spaces [1]. It encompasses various classes of test functions arising in the theory
of the generalized Hankel transformation, such as the Zemanian spaces Bµ,a

(a > 0) [6] and Hµ [7, Chapter 5], which are obtained for special choices of
the defining sequence {Mp}∞p=0. Additional examples are given in [5]. Thus the
consideration of a general sequence {Mp}∞p=0 of weights allows one to unify the
treatment given to such a variety of spaces.

Let us consider the following conditions on {Mp}∞p=0:

(A) To any r, p ∈ N there correspond s ∈ N and brp > 0 such that

Mr(x)Mp(x) ≤ brpMs(x) (x ∈ I).

(M) Each Mp (p ∈ N) is quasi-monotonic: there exists Cp > 0 such that

Mp(x) ≤ CpMp(y) (x, y ∈ I, x ≤ y).

(N) To every p ∈ N there corresponds r ∈ N, r > p, such that the function

mpr(x) =
Mp(x)

Mr(x)
(x ∈ I)

lies in L1(I) and satisfies limx→∞mpr(x) = 0.

Under the assumptions (A), (M) and (N), the Fréchet space Kµ{Mp} is
Montel and hence reflexive [5]. Therefore the weak and weak* topologies of
Kµ{Mp}′ coincide, and the weak* and strong topologies of Kµ{Mp}′ share the
same class of bounded sets as well as the same class of convergent sequences.

The following characterization of membership, boundedness and conver-
gence in Kµ{Mp}′ was obtained in [5]. From now on, ‖·‖q will stand for the
usual Lq(I)-norm (1 ≤ q ≤ ∞).

Theorem 1.1. Assume that {Mp}∞p=0 satisfies the conditions (A), (M) and (N).
Then:

1. A functional T belongs to Kµ{Mp}′ if and only if, to every q, 1 < q ≤ ∞,
there corresponds p ∈ N such that

T = x−µ− 1
2

p∑
k=0

(Dx−1)k [Mp(x)gk(x)] ,

with gk ∈ Lq(I) (k ∈ N, 0 ≤ k ≤ p).

2. A set B ⊂ Kµ{Mp}′ is (weakly, weakly*, strongly) bounded if and only
if, given 1 < q ≤ ∞, there exist p ∈ N, C > 0 and, for every T ∈ B,
functions gk,T ∈ Lq(I) (k ∈ N, 0 ≤ k ≤ p) such that

T = x−µ− 1
2

p∑
k=0

(Dx−1)k [Mp(x)gk,T (x)]

with
∑p

k=0 ‖gk,T‖q ≤ C.
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3. A sequence {Tj}∞j=0 converges (weakly, weakly*, strongly) to zero in the
space Kµ{Mp}′ if, and only if, to every 1 < q ≤ ∞ there correspond
p ∈ N and functions gk,j ∈ Lq(I) (k ∈ N, 0 ≤ k ≤ p) such that

Tj = x−µ− 1
2

p∑
k=0

(Dx−1)k [Mp(x)gk,j(x)] (j ∈ N)

with limj→∞
∑p

k=0 ‖gk,j‖q = 0.

Our purpose here is to adapt to Kµ{Mp}′-spaces the technique used by
A. Kaminski [2] for the Gelfand-Shilov K{Mp}′ spaces in order to simplify and
improve the previous result as stated in the next.

Theorem 1.2. Assume that {Mp}∞p=0 satisfies the conditions (A), (M) and (N).
Then:

1. A functional f belongs to Kµ{Mp}′ if and only if there exist k, p ∈ N and
a continuous function F on I such that

f = x−µ− 1
2 (Dx−1)kF (x)

with M−1
p F ∈ Lq(I) (1 ≤ q ≤ ∞).

2. A set B ⊂ Kµ{Mp}′ is (weakly, weakly*, strongly) bounded if and only if
there exist k, p ∈ N, C > 0 and, for every f ∈ B, a function gf continuous
on I, such that

f = x−µ− 1
2 (Dx−1)kgf (x)

with
∥∥M−1

p gf

∥∥
q
≤ C (1 ≤ q ≤ ∞).

3. A sequence {fj}∞j=0 converges (weakly, weakly*, strongly) to zero in the
space Kµ{Mp}′ if and only if there exist k, p ∈ N and functions gj contin-
uous on I such that

fj = x−µ− 1
2 (Dx−1)kgj(x) (j ∈ N)

with limj→∞
∥∥M−1

p gj

∥∥
q

= 0 (1 ≤ q ≤ ∞).

Theorem 1.2 summarizes our main results, to be proved in Section 2 (see
Theorems 2.4, 2.5 and 2.6). An example is exhibited in Section 3. Throughout
the paper we shall assume that the defining sequence {Mp}∞p=0 fulfils conditions
(A), (M) and (N). Moreover, we shall adopt the practice of denoting by the
same letter, usually C, suitable constants whose values need not coincide at
different occurrences.
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2. Main results

Under the conditions (M) and (N), to every p ∈ N there correspond s ∈ N,
s > p, and C > 0, such that x ≤ CMs(x) (x ∈ I). Indeed, associate s ∈ N to a
given p ∈ N as in (N). In view of (1) and (M), we may write

x =

∫ x

0

dξ ≤
∫ x

0

Mp(ξ)dξ =

∫ x

0

Mp(ξ)

Ms(ξ)
Ms(ξ) dξ

and hence

x ≤ CMs(x)

∫ ∞

0

Mp(ξ)

Ms(ξ)
dξ = CMs(x) (x ∈ I).

The preceding observation will be useful in the sequel. We begin by proving
three auxiliary results.

Lemma 2.1. Let F be a continuous function on I such that there exists p ∈ N
for which M−1

p F ∈ Lq(I) (1 ≤ q ≤ ∞). Then, to every k ∈ N there cor-
responds pk ∈ N with pk ≥ p, and a continuous function Fk on I such that
(Dx−1)kFk(x) = F (x) (x ∈ I) and M−1

pk
Fk ∈ Lq(I) (1 ≤ q ≤ ∞).

Proof. The result is obvious for k = 0. Arguing by induction, fix k ∈ N,
k ≥ 1. Choose pk ∈ N, pk ≥ p, and a continuous function Fk on I such that
(Dx−1)kFk(x) = F (x) (x ∈ I) and M−1

pk
Fk ∈ Lq(I) (1 ≤ q ≤ ∞). Using (A),

(M) and (N) we may find n, r, s, t ∈ N, n > r > s > t > pk, such that∫ ∞

0

Mpk
(x)

Mt(x)
dx < ∞ (2)

x ≤ CMs(x) (x ∈ I) (3)

Ms(x)Mt(x) ≤ CMr(x) (x ∈ I) (4)

and ∫ ∞

0

Mr(x)

Mn(x)
dx < ∞. (5)

Our induction hypotheses, jointly with (M) and (2), yields

1

Mt(x)

∣∣∣∣∫ x

0

Fk(ξ) dξ

∣∣∣∣ ≤ C

∫ ∞

0

∣∣∣∣ Fk(ξ)

Mt(ξ)

∣∣∣∣ dξ

= C

∫ ∞

0

∣∣∣∣ Fk(ξ)

Mpk
(ξ)

∣∣∣∣ Mpk
(ξ)

Mt(ξ)
dξ

≤ C sup
ξ∈I

∣∣∣∣ Fk(ξ)

Mpk
(ξ)

∣∣∣∣ ∫ ∞

0

Mpk
(ξ)

Mt(ξ)
dξ
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and hence
1

Mt(x)

∣∣∣∣∫ x

0

Fk(ξ) dξ

∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣ Fk(ξ)

Mpk
(ξ)

∣∣∣∣ (x ∈ I). (6)

The function F̃k(x) = x

∫ x

0

Fk(ξ) dξ (x ∈ I) is continuous with

(Dx−1)k+1F̃k(x) = (Dx−1)kFk(x) = F (x) (x ∈ I).

By (3) and (6),∣∣∣F̃k(x)
∣∣∣

Mt(x)
=

x

Mt(x)

∣∣∣∣∫ x

0

Fk(ξ) dξ

∣∣∣∣ ≤ CMs(x) sup
ξ∈I

∣∣∣∣ Fk(ξ)

Mpk
(ξ)

∣∣∣∣ (x ∈ I).

Using (4) and (1) we get∣∣∣F̃k(x)
∣∣∣ ≤ CMs(x)Mt(x) sup

ξ∈I

∣∣∣∣ Fk(ξ)

Mpk
(ξ)

∣∣∣∣
≤ CMr(x) sup

ξ∈I

∣∣∣∣ Fk(ξ)

Mpk
(ξ)

∣∣∣∣ (7)

≤ CMn(x) sup
ξ∈I

∣∣∣∣ Fk(ξ)

Mpk
(ξ)

∣∣∣∣ (x ∈ I).

Thus we find

sup
x∈I

∣∣∣∣∣ F̃k(x)

Mn(x)

∣∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣ Fk(ξ)

Mpk
(ξ)

∣∣∣∣ < ∞.

Moreover, for every 1 ≤ q < ∞, with the aid of (7), (1) and (5) we obtain∫ ∞

0

∣∣∣∣∣ F̃k(x)

Mn(x)

∣∣∣∣∣
q

dx =

∫ ∞

0

∣∣∣∣∣ F̃k(x)

Mr(x)

∣∣∣∣∣
q (

Mr(x)

Mn(x)

)q

dx

≤ C sup
ξ∈I

∣∣∣∣ Fk(ξ)

Mpk
(ξ)

∣∣∣∣q ∫ ∞

0

Mr(x)

Mn(x)
dx

= C sup
ξ∈I

∣∣∣∣ Fk(ξ)

Mpk
(ξ)

∣∣∣∣q < ∞.

To complete the proof it suffices to take pk+1 = n and Fk+1 = F̃k.

Lemma 2.2. Let M denote a family of continuous functions on I with the
property that supF∈M

∥∥M−1
p F

∥∥
q
≤ A (1 ≤ q ≤ ∞) for some p ∈ N and A > 0.

Then, given k ∈ N, there exist pk ∈ N, pk ≥ p, Ck > 0, and for each F ∈ M a
function gk,F , continuous on I, such that (Dx−1)kgk,F (x) = F (x) (x ∈ I) and
supF∈M

∥∥M−1
pk

gk,F

∥∥
q
≤ Ck (1 ≤ q ≤ ∞).
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Proof. The result holds trivially for k = 0. Proceeding by induction, fix k ∈ N,
k ≥ 1. Let pk ∈ N, pk ≥ p, Ck > 0, and for each F ∈ M let gk,F be
a continuous function on I such that (Dx−1)kgk,F (x) = F (x) (x ∈ I) with
supF∈M

∥∥M−1
pk

gk,F

∥∥
q
≤ Ck (1 ≤ q ≤ ∞). As in the proof of Lemma 2.1, for

each F ∈M we may construct a function g̃k,F , continuous on I, satisfying

(Dx−1)k+1g̃k,F (x) = F (x) (x ∈ I)

sup
x∈I

∣∣∣∣ g̃k,F (x)

Mn(x)

∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣ gk,F (ξ)

Mpk
(ξ)

∣∣∣∣
and ∫ ∞

0

∣∣∣∣ g̃k,F (x)

Mn(x)

∣∣∣∣q dx ≤ C sup
ξ∈I

∣∣∣∣ gk,F (ξ)

Mpk
(ξ)

∣∣∣∣q (1 ≤ q < ∞)

for some n ∈ N, n > pk, where the positive constant C does not depend on F .
To complete the proof it suffices to pick pk+1 = n and gk+1,F = g̃k,F , and to
take into account the induction hypotheses.

The next result can be analogously established.

Lemma 2.3. Let {Fj}∞j=0 be a sequence of continuous functions on I such that

there exists p ∈ N for which limj→∞
∥∥M−1

p Fj

∥∥
q

= 0 (1 ≤ q ≤ ∞). Then,

to every k ∈ N there correspond pk ∈ N, pk ≥ p, and continuous functions
Fk,j on I (j ∈ N) such that (Dx−1)kFk,j(x) = Fj(x) (j ∈ N, x ∈ I) and
limj→∞

∥∥M−1
pk

Fk,j

∥∥
q

= 0 (1 ≤ q ≤ ∞).

At this point we address to the characterization of those elements in the
dual of the space Kµ{Mp}.

Theorem 2.4. The following statements are equivalent:

1. The functional f lies in Kµ{Mp}′.
2. There exist k, p ∈ N and a continuous function F on I such that

f = x−µ− 1
2 (Dx−1)kF (x) (8)

and
M−1

p F ∈ Lq(I) (9)

for any q, 1 ≤ q ≤ ∞.

3. There exist k, p ∈ N and a continuous function F on I satisfying (8), such
that (9) holds for some q, 1 ≤ q ≤ ∞.

4. There exist k, p ∈ N and a continuous function F on I satisfying (8), such
that (9) holds for q = ∞.
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Proof. If f ∈ Kµ{Mp}′ then Theorem 1.1 yields p ∈ N and gi ∈ L∞(I) (i ∈
N, 0 ≤ i ≤ p) satisfying

f = x−µ− 1
2

p∑
i=0

(Dx−1)i[Mp(x)gi(x)].

Hence f = x−µ− 1
2

∑p
i=0(Dx−1)iGi(x), where Gi(x) = Mp(x)gi(x) (i ∈ N, 0 ≤

i ≤ p; x ∈ I) are measurable functions such that M−1
p Gi (i ∈ N, 0 ≤ i ≤ p) are

bounded. Apply (A), (M) and (N) to choose n, r, s, t ∈ N, n > r > s > t > p,
in such a way that ∫ ∞

0

Mp(x)

Mt(x)
dx < ∞ (10)

x ≤ CMs(x) (x ∈ I) (11)

Ms(x)Mt(x) ≤ CMr(x) (x ∈ I) (12)

and ∫ ∞

0

Mr(x)

Mn(x)
dx < ∞. (13)

Fix i ∈ N, 0 ≤ i ≤ p. By (M) and (10),

1

Mt(x)

∣∣∣∣∫ x

0

Gi(ξ) dξ

∣∣∣∣ ≤ C

∫ ∞

0

∣∣∣∣ Gi(ξ)

Mp(ξ)

∣∣∣∣ Mp(ξ)

Mt(ξ)
dξ

≤ C sup
ξ∈I

∣∣∣∣ Gi(ξ)

Mp(ξ)

∣∣∣∣ ∫ ∞

0

Mp(ξ)

Mt(ξ)
dξ (14)

= C sup
ξ∈I

∣∣∣∣ Gi(ξ)

Mp(ξ)

∣∣∣∣ (x ∈ I).

The function

G̃i(x) = x

∫ x

0

Gi(ξ) dξ (x ∈ I)

is continuous and satisfies

(Dx−1)G̃i(x) = Gi(x) (x ∈ I).

By (11), (14), (12) and (1),∣∣∣G̃i(x)
∣∣∣ ≤ CMs(x)Mt(x) sup

ξ∈I

∣∣∣∣ Gi(ξ)

Mp(ξ)

∣∣∣∣
≤ CMr(x) sup

ξ∈I

∣∣∣∣ Gi(ξ)

Mp(ξ)

∣∣∣∣ (15)

≤ CMn(x) sup
ξ∈I

∣∣∣∣ Gi(ξ)

Mp(ξ)

∣∣∣∣ (x ∈ I).
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Consequently,

sup
x∈I

∣∣∣∣∣ G̃i(x)

Mn(x)

∣∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣ Gi(ξ)

Mp(ξ)

∣∣∣∣ < ∞.

Moreover, using (15), (1) and (13), we get∫ ∞

0

∣∣∣∣∣ G̃i(x)

Mn(x)

∣∣∣∣∣
q

dx ≤ C sup
ξ∈I

∣∣∣∣ Gi(ξ)

Mp(ξ)

∣∣∣∣q ∫ ∞

0

Mr(x)

Mn(x)
dx = C sup

ξ∈I

∣∣∣∣ Gi(ξ)

Mp(ξ)

∣∣∣∣q < ∞

whenever 1 ≤ q < ∞. With the aid of Lemma 2.1 we obtain a continuous
function Fi on I and a nonnegative integer si ≥ n for which

(Dx−1)p−iFi(x) = G̃i(x) (x ∈ I) , M−1
si

Fi ∈ Lq(I) (1 ≤ q ≤ ∞).

Set

F =

p∑
i=0

Fi, m = max
0≤i≤p

si.

Then F is continuous on I, f = x−µ− 1
2 (Dx−1)p+1F (x), and M−1

m F ∈ Lq(I)
(1 ≤ q ≤ ∞). Thus we have established that 1. implies 2.

It is apparent that assertion 2 implies assertion 3.

Let us prove that assertion 3 implies assertion 4. Suppose that there exist
k, p ∈ N and a continuous function F on I satisfying f = x−µ− 1

2 (Dx−1)kF (x)
and M−1

p F ∈ Lq(I) for some q, 1 ≤ q ≤ ∞. Using (A), (M) and (N), choose
n > s > t > p such that∫ ∞

0

Mp(x)

Mt(x)
dx < ∞ (16)

x ≤ CMs(x) (x ∈ I) (17)

and
Ms(x)Mt(x) ≤ CMn(x) (x ∈ I). (18)

Then the function

F̃ (x) = x

∫ x

0

F (ξ) d(ξ) (x ∈ I)

is continuous with f = x−µ− 1
2 (Dx−1)k+1F̃ (x). A combination of (17), (18) and

(M) yields

sup
x∈I

∣∣∣∣∣ F̃ (x)

Mn(x)

∣∣∣∣∣ ≤ C sup
x∈I

∣∣∣∣Ms(x)

Mn(x)

∫ x

0

F (ξ) dξ

∣∣∣∣
= C sup

x∈I

Ms(x)Mt(x)

Mn(x)Mt(x)

∣∣∣∣∫ x

0

F (ξ) dξ

∣∣∣∣
≤ C

∫ ∞

0

∣∣∣∣ F (ξ)

Mp(ξ)

∣∣∣∣ Mp(ξ)

Mt(ξ)
dξ. (19)
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In case q = 1, it follows from (19) and (1) that

sup
x∈I

∣∣∣∣∣ F̃ (x)

Mn(x)

∣∣∣∣∣ ≤ C

∫ ∞

0

∣∣∣∣ F (ξ)

Mp(ξ)

∣∣∣∣ dξ < ∞.

If q = ∞, conditions (19) and (16) lead us to

sup
x∈I

∣∣∣∣∣ F̃ (x)

Mn(x)

∣∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣ F (ξ)

Mp(ξ)

∣∣∣∣ ∫ ∞

0

Mp(ξ)

Mt(ξ)
dξ < ∞.

Finally, if 1 < q < ∞ then (19), the Hölder inequality, (1) and (16) give

sup
x∈I

∣∣∣∣∣ F̃ (x)

Mn(x)

∣∣∣∣∣ ≤ C

{∫ ∞

0

∣∣∣∣ F (ξ)

Mp(ξ)

∣∣∣∣q dξ

} 1
q
{ ∫ ∞

0

(
Mp(ξ)

Mt(ξ)

)q′

dξ

} 1
q′

≤ C

{∫ ∞

0

∣∣∣∣ F (ξ)

Mp(ξ)

∣∣∣∣q dξ

} 1
q
{∫ ∞

0

Mp(ξ)

Mt(ξ)
dξ

} 1
q′

< ∞.

Here q′ denotes the exponent conjugate to q. Thus, (8) and (9) hold for k + 1
instead of k, F̃ instead of F , n instead of p, and q = ∞. This establishes 4.

To complete the proof, assume there exist k, p ∈ N and a continuous func-
tion F on I such that f = x−µ− 1

2 (Dx−1)kF (x) and M−1
p F ∈ L∞(I). Such a

representation of f ensures that f ∈ Kµ{Mp}′. This follows from the estimate

|〈f, ϕ〉| =
∣∣∣∣(−1)k

∫ ∞

0

F (x)(x−1D)kx−µ− 1
2 ϕ(x) dx

∣∣∣∣
≤ sup

x∈I

∣∣∣∣ F (x)

Mp(x)

∣∣∣∣ sup
x∈I

∣∣∣Mr(x)(x−1D)kx−µ− 1
2 ϕ(x)

∣∣∣ ∫ ∞

0

Mp(x)

Mr(x)
dx

(20)

valid for all ϕ ∈ Kµ{Mp}, where r > p has been chosen according to (N). Thus
assertion 4 implies assertion 1 and we are done.

Next we characterize boundedness in Kµ{Mp}′.

Theorem 2.5. The following four statements are equivalent:

1. The set B ⊂ Kµ{Mp}′ is (weakly, weakly*, strongly) bounded.

2. There exist k, p ∈ N, C > 0, and for every f ∈ B a function gf continuous
on I such that

f = x−µ− 1
2 (Dx−1)kgf (x) (21)

and ∥∥M−1
p gf

∥∥
q
≤ C (22)

for any q, 1 ≤ q ≤ ∞.
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3. There exist k, p ∈ N, C > 0, and for every f ∈ B a function gf continuous
on I such that (21) holds and (22) is satisfied for some q, 1 ≤ q ≤ ∞.

4. There exist k, p ∈ N, C > 0, and for every f ∈ B a function gf continuous
on I such that (21) holds and (22) is satisfied for q = ∞.

Proof. If B is a bounded subset of Kµ{Mp}′, then Theorem 1.1 yields p ∈ N,
A > 0, and for every f ∈ B functions gi,f ∈ L∞(I) (i ∈ N, 0 ≤ i ≤ p) such that

f = x−µ− 1
2

p∑
i=0

(Dx−1)i[Mp(x)gi,f (x)]

with
∑p

i=0 ‖gi,f‖∞ ≤ A. Hence f = x−µ− 1
2

∑p
i=0(Dx−1)iGi,f (x), where Gi,f (x) =

Mp(x)gi,f (x) (i ∈ N, 0 ≤ i ≤ p; x ∈ I) are measurable functions satisfying

p∑
i=0

∥∥M−1
p Gi,f

∥∥
∞ ≤ A.

Fix i ∈ N, 0 ≤ i ≤ p. Arguing as in the proof that 1. implies 2. in Theorem 2.4,
we may find n ∈ N, n > p, Ã > 0, and continuous functions G̃i,f on I such that
(Dx−1)G̃i,f (x) = Gi,f (x) (x ∈ I),

sup
x∈I

∣∣∣∣∣G̃i,f (x)

Mn(x)

∣∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣Gi,f (ξ)

Mp(ξ)

∣∣∣∣ ≤ Ã,

and ∫ ∞

0

∣∣∣∣∣G̃i,f (x)

Mn(x)

∣∣∣∣∣
q

dx ≤ C sup
ξ∈I

∣∣∣∣Gi,f (ξ)

Mp(ξ)

∣∣∣∣q ≤ Ã,

where Ã does not depend upon f ∈ B. By virtue of Lemma 2.2, there exist
si ∈ N, si ≥ n, Ci > 0, and for every f ∈ B a continuous function Fi,f on I
such that

(Dx−1)p−iFi,f (x) = G̃i,f (x) (x ∈ I)

and ∥∥M−1
si

Fi,f

∥∥
q
≤ Ci (1 ≤ q ≤ ∞).

Setting

gf =

p∑
i=0

Fi,f , m = max
0≤i≤p

si, C =

p∑
i=0

Ci

we encounter that gf is continuous on I, f = x−µ− 1
2 (Dx−1)p+1gf (x) and that

‖M−1
m gf‖q ≤ C (1 ≤ q ≤ ∞) where neither m ∈ N nor C > 0 depend on f ∈ B.

Thus we have established that 1. implies 2.

It is apparent that assertion 2 implies assertion 3.
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To prove that assertion 3 implies assertion 4, assume there exist k, p ∈ N,
A > 0, and for each f ∈ B a continuous function gf on I satisfying f =

x−µ− 1
2 (Dx−1)kgf (x) with

∥∥M−1
p gf

∥∥
q
≤ A for some q, 1 ≤ q ≤ ∞. The argument

in the proof that 3. implies 4. in Theorem 2.4 allows one to find n ∈ N, n > p,
Ã > 0, and for any f ∈ B a function g̃f continuous on I such that

f = x−µ− 1
2 (Dx−1)k+1g̃f (x)

with

sup
x∈I

∣∣∣∣ g̃f (x)

Mn(x)

∣∣∣∣ ≤ C sup
ξ∈I

∣∣∣∣ gf (ξ)

Mp(ξ)

∣∣∣∣ ≤ Ã

if q = ∞, or

sup
x∈I

∣∣∣∣ g̃f (x)

Mn(x)

∣∣∣∣ ≤ C

{∫ ∞

0

∣∣∣∣ gf (ξ)

Mp(ξ)

∣∣∣∣q dξ

} 1
q

≤ Ã

if 1 ≤ q < ∞. This establishes 4.

Finally, assertion 4 and (20) with gf instead of F (f ∈ B) yield 1.

Convergence in Kµ{Mp}′ is described next.

Theorem 2.6. The following statements are equivalent:

1. The sequence {fj}∞j=0 converges (weakly, weakly*, strongly) to zero in
Kµ{Mp}′.

2. There exist k, p ∈ N and continuous functions Fj on I (j ∈ N) such that

fj = x−µ− 1
2 (Dx−1)kFj(x) (j ∈ N) (23)

and

lim
j→∞

∥∥M−1
p Fj

∥∥
q

= 0 (24)

for any q, 1 ≤ q ≤ ∞.

3. There exist k, p ∈ N and continuous functions Fj on I (j ∈ N) such that
(23) holds and (24) is satisfied for some q, 1 ≤ q ≤ ∞.

4. There exist k, p ∈ N and continuous functions Fj on I (j ∈ N) such that
(23) holds and (24) is satisfied for q = ∞.

5. There exist k, p ∈ N, C > 0, and continuous functions Fj on I (j ∈ N),
such that (23) holds, ∥∥M−1

p Fj

∥∥
∞ ≤ C (j ∈ N),

and limj→∞ Fj(x) = 0 for almost all x ∈ I.
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Proof. Parts 3. and 5. follow trivially from 2. and 4., respectively. It follows
essentially by the arguments in the proof of the corresponding results in Theo-
rem 2.5 with the aid of Lemma 2.3 in place of Lemma 2.2 that 1. implies 2. and
3. implies 4. (we omit the details). Finally, (N) and the Lebesgue dominated
convergence theorem applied to the integrals

〈fj, ϕ〉 = (−1)k

∫ ∞

0

Fj(x)(x−1D)kx−µ− 1
2 ϕ(x) dx (j ∈ N, ϕ ∈ Kµ{Mp})

show that 5. implies 1.

3. An example

Theorems 2.4, 2.5 and 2.6 characterize membership, boundedness and conver-
gence in the dual of a wide range of spaces arising in connection with the
generalized Hankel transformation (see [5]). Let us record the following spe-
cial case of Theorem 1.2 for the Zemanian space Hµ = Kµ{(1 + x2)p} (see [7,
Chapter 5]).

Corollary 3.1. Let H′µ denote the dual of Hµ. Then:

1. A functional f belongs to H′µ if, and only if, there exist k, p ∈ N and a
continuous function F on I such that

f = x−µ− 1
2 (Dx−1)kF (x)

with (1 + x2)−pF (x) ∈ Lq(I) (1 ≤ q ≤ ∞).

2. A set B ⊂ H′µ is (weakly, weakly*, strongly) bounded if, and only if, there
exist k, p ∈ N, C > 0 and, for every f ∈ B, a function gf continuous on
I, such that

f = x−µ− 1
2 (Dx−1)kgf (x)

with ‖(1 + x2)−pgf (x)‖q ≤ C (1 ≤ q ≤ ∞).

3. A sequence {fj}∞j=0 converges (weakly, weakly*, strongly) to zero in H′µ if,
and only if, there exist k, p ∈ N and functions gj continuous on I such
that

fj = x−µ− 1
2 (Dx−1)kgj(x) (j ∈ N)

with limj→∞ ‖(1 + x2)−pgj(x)‖q = 0 (1 ≤ q ≤ ∞).
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