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On Generalized Lipschitz Classes
and Fourier Series

Sergey Tikhonov

Abstract. In 1967 R.P. Boas Jr. found necessary and sufficient conditions of
belonging of a function to a Lipschitz class. Later Boas’s findings were generalized
by many authors (M. and S. Izumi (1969), L.-Y. Chan (1991) and others). Recently,
L. Leindler (2000) and J. Nemeth (2001) have published two papers, in which they
have generalized all the previous results. The authors have considered the case, when
the order of modulus of smoothness equals one (L. Leindler) or two (J. Nemeth). In
this paper, we prove theorems of Boas-type for the modulus of smoothness of any
order. Furthermore, we solve the inverse problem. Also, we discuss some conditions
on a majorant which are equivalent to the well-known conditions of Bari-Stechkin.
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1. Introduction

In 1967, R.P. Boas Jr. [4] proved a series of theorems on the connection between
the behaviour of Fourier coefficients of a function f and its structural properties
described by the modulus of continuity. Namely, he investigated the function
class Lip α (0 < α ≤ 1) from this point of view. In 1969, M. and S. Izumi
[6] generalized his results. They introduced the following function classes. Let
ϕ(t) be a positive and nondecreasing function defined on the interval (0, 1). The
Lipϕ(t) and Λ(ϕ(t)) classes are defined as follows:

Lip ϕ(t) :=

{
f : sup

t,x

(
|f(x+ t)− f(x)|

ϕ(t)

)
<∞

}

Λ (ϕ(t)) :=

{
f : sup

t,x

(
|f(x+ t)− 2f(x) + f(x− t)|

ϕ(t)

)
<∞

}
.
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Theorem 1.1. ([6]) Let λn ≥ 0 be the Fourier sine or cosine coefficients of
ψ(x). Let ϕ(t) be a positive and nondecreasing function on (0, 1), satisfying the
condition

t∫
0

ϕ(u)u−1du ≤ Kϕ(t) as t→ 0,

and

1∫
t

ϕ(u)u−2du ≤ Kϕ(t)t−1

(
or

1∫
t

ϕ(u)u−3du ≤ Kϕ(t)t−2

)
as t→ 0.

Then ψ ∈ Lip ϕ(t)
(

or ψ ∈ Λ(ϕ(t))
)

if and only if

n∑
k=n/2

λk ≤ Kϕ
( 1

n

)
as n→∞,

or, equivalently,
∞∑

k=n

λk ≤ Kϕ
( 1

n

)
as n→∞.

In 1990, Boas’s results were also generalized by J. Nemeth [12] who used the
so-called generalized Lipschitz and Zigmund classes and replaced the function
tα by a more general function ωα(t).

Let1 Ωα (0 ≤ α ≤ 1) denote the set of nonnegative nondecreasing functions
ω(δ) = ωα(δ) on [0, 1], which have the following properties:

(Ω
(1)
α ) for any α′ > α there exists a natural number µ = µ(α′) such that

2µα′
ωα(2−n−µ) > 2ωα(2−n) holds for all n (≥ 1),

(Ω
(2)
α ) for every natural ν there exists a natural number N := N(ν) such that

2ναωα(2−n−ν) ≤ 2ωα(2−n) if n > N.

Theorem 1.2. ([12]) Let 0 < α < 1. Let ωα ∈ Ωα be the modulus of continuity,
and, λn ≥ 0 be the Fourier sine or cosine coefficients of ψ(x). Then ω1(ψ, δ) =
O [ωα(δ)], if and only if

∞∑
k=n

λk = O

[
ωα

( 1

n

)]
,

or, equivalently,
n∑

k=1

kλk = O

[
nωα

( 1

n

)]
.

1Note, that conditions (Ω(1)
α ), (Ω(2)

α ) were introduced in [7].



On Lipschitz Classes 747

In the case of ωα(δ) = δα (0 < α < 1), this theorem is reduced to the results
of Boas [4]. Further, L.-Y. Chan [5] proved the following Boas-type theorem.

Theorem 1.3. ([5]) Let ϕ(·) be the positive function such that there exist cons-
tants 0 < α1 ≤ α2 < 1 with the following conditions: ϕ(t)t−α1 is a nondecreasing
function and ϕ(t)t−α2 is a nonincreasing function. Let λn ≥ 0 be the Fourier
sine or cosine coefficients of ψ(x). Then ω1(ψ, δ) = O [ϕ(δ)], if and only if

∞∑
k=n

λk = O

[
ϕ
( 1

n

)]
,

or, equivalently,
n∑

k=1

kλk = O

[
nϕ

( 1

n

)]
.

Recently, L. Leindler [9] and J. Nemeth [13] have provided the generalization
of all the previous results. The main concept both of them have used is the
concept of quasi power-monotone sequences.

We shall say that the sequence γ := {γn} of positive terms is quasi mono-
tone increasing (decreasing), if there exist a natural number N := N(γ) and a
constant K := K(γ) ≥ 1 such that

Kγn ≥ γm (γn ≤ Kγm) (1)

holds for any n ≥ m ≥ N .

Theorem 1.4. ([9]) Let λn ≥ 0 be the Fourier sine or cosine coefficients of
ψ(x). Let us assume that a given positive sequence {γn} has the following prop-
erty: There exists a positive ε, such that

(P+) the sequence {nεγn} is quasi monotone decreasing

(P−) the sequence {n1−εγn} is quasi monotone increasing .

Then ω1(ψ,
1
n
) = O(γn) if and only if

∞∑
k=n

λk = O (γn) ,

or, equivalently,
n∑

k=1

kλk = O (nγn) .

Theorem 1.5. ([13]) Let λn ≥ 0 be the Fourier sine or cosine coefficients
of ψ(x). Let us assume that a given positive sequence {γn} has the following
property: There exists a positive ε, such that
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(P+) the sequence {nεγn} is quasi monotone decreasing

(P̂) the sequence {n2−εγn} is quasi monotone increasing .

Then ω2(ψ,
1
n
) = O(γn) if and only if

∞∑
k=n

λk = O (γn) .

The aim of the article is to study different ways of defining the generalized
Lipschitz classes. For this purpose we shall consider conditions on a function
ϕ(t) in the classes Lipϕ(t) and Λ(ϕ(t)) introduced by M. and S. Izumi, conditi-
ons on a function ωα ∈ Ωα and conditions on a majorant given by L.-Y. Chan
[5], L. Leindler [9] and J. Nemeth [13]. Further, we shall obtain the criterion of
belonging of a function to the generalized Lipschitz class. Defining this class,
we shall use the modulus of smoothness of positive order β of a function f , and
give the necessary and sufficient condition for this criterion to hold. All the
results mentioned above are the particular cases of our theorems.

The outline of this paper is as follows. Section 2 introduces the basic def-
initions. In Section 3, we consider some useful lemmas. In Section 4, we give
the interrelation between several known conditions on a majorant. Finally, in
Section 5, we write the criterion of belonging of a function to the generalized
Lipschitz class.

2. Definitions

Let f(x) be a continuous function and ‖f(·)‖ = maxx∈[0,2π] |f(x)|. The modulus
of smoothness of order β (β > 0) of a function f ∈ C is given by

ωβ(f, t) = sup
|h|≤t

∥∥∥∥∥
∞∑

ν=0

(−1)ν

(
β

ν

)
f(x+ (β − ν)h)

∥∥∥∥∥ ,
where

(
β
ν

)
= β(β−1)···(β−ν+1)

ν!
for ν ≥ 1 and

(
β
ν

)
= 1 for ν = 0. We shall say that

a function ϕ(δ) (0 < δ ≤ 1) is a majorant (ϕ ∈ Φ), if

a) ϕ(δ) 6= 0, 0 < δ ≤ 1

b) ϕ(δ1) ≤ ϕ(δ2), 0 ≤ δ1 < δ2 ≤ 1

c) ϕ(δ) → 0 as δ → 0.

We shall consider a function ϕ ∈ Φ that satisfies the following conditions2:

(B)
∞∑

k=n+1

1
k
ϕ( 1

k
) = O

[
ϕ( 1

n
)
]

2The conditions (B), (Bβ) were introduced in [2].
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(Bβ)
n∑

k=1

kβ−1ϕ( 1
k
) = O

[
nβϕ( 1

n
)
]
.

A sequence γ := {γn} of positive terms will be called

– almost increasing (almost decreasing), if there exists a constant K :=
K(γ) ≥ 1 such that (1) holds for any n ≥ m,

– local almost increasing (local almost decreasing, if there exists a constant
K := K(γ) ≥ 1 such that

Kγn+1 ≥ γn (γn+1 ≤ Kγn)

holds for any integer n (we shall write γ ∈ LAI or γ ∈ LAD, respectively),

– lacunary starting from some member, if there exist a constant λ > 1 and
a natural number N := N(γ) such that

γn+1

γn

≥ λ > 1 holds for any n ≥ N,

– quasi geometrically increasing (quasi geometrically decreasing), if there
exist a natural number µ := µ(γ), N := N(γ) and a constant K := K(γ) ≥ 1
such that

γn+µ ≥ 2γn and γn ≤ Kγn+1 (γn+µ ≤
1

2
γn and γn+1 ≤ Kγn)

hold for any n ≥ N ,

– bounded by blocks, if the inequalities

α1Γ
(k)
m ≤ γn ≤ α2Γ

(k)
M , 0 < α1 ≤ α2 <∞

hold for any 2k ≤ n ≤ 2k+1, k = 1, 2, · · · , where

Γ(k)
m = min(γ2k , γ2k+1) and Γ

(k)
M = max(γ2k , γ2k+1).

Also, we shall say that a sequence γ := {γn} of positive terms satisfies the
condition (SQ), if there exists ε ∈ (0, 1) such that {nεγn} is almost decreasing.
And γ satisfies the condition (SQβ), if there exists ε ∈ (0, β) such that

{
nβ−εγn

}
is almost increasing.

A sequence c := {cn} of positive numbers tending to zero is of rest bounded
variation, or briefly R+

0 BV S, if it possesses the property

∞∑
n=m

|cn − cn+1| ≤ K(c) cm

for all natural numbers m, where K(c) is a constant depending only on c.3

3This definition was introduced by L. Leindler (see [10]). It is clear that the class of
monotonic sequences M = {γ : γn ↓ 0} ⊂ R+

0 BV S, but the class of quasimonotonic sequences
QM = {γ : ∃ τ ≥ 0 such that γnn−τ ↓ 0} is not comparable to the class R+

0 BV S (see [10]).
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Now, we recall the following definition by Matuszewska (see [3, p. 68]). Let
f(·) be positive on (0, X], X > 0. Its upper Matuszewska index M(f) is the
infimum of those α, for which there exists a constant C = C(α) such that for
any 0 < Λ < 1,

f (λx)

f (x)
≥ Cλα {1 + o(1)} (x→ 0) uniformly in λ ∈ [Λ, 1];

its lower Matuszewska index m(f) is the supremum of those β for which, for
some D = D(β) > 0 and for any 0 < Λ < 1,

f (λx)

f (x)
≤ Dλβ {1 + o(1)} (x→ 0) uniformly in λ ∈ [Λ, 1].

Let En(f) be the best approximation of a function f by trigonometric polynomi-
als of order no more than n, i.e.

En(f) = inf
αk,βk∈R

‖f(x)−
n∑

ν=0

(αk cos kx+ βk sin kx)‖.

Finally, we shall say that the continuous function f(x) with Fourier series

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) (2)

belongs to the class C+, if the sequences of Fourier coefficients {an} and {bn}
satisfy the following condition: anam ≥ 0 and bnbm ≥ 0 holds for any integers
n and m.

3. Auxiliary results

We shall need the following lemmas.

Lemma 3.1. ([8]). Let γ = {γn} be a positive sequence. Then the inequalities

n∑
k=1

γk ≤ Cγn (n = 1, 2, · · · ;C ≥ 1),

or
∞∑

k=n

γk ≤ Cγn (n = 1, 2, · · · ;C ≥ 1),

hold if and only if the sequence γ is quasi geometrically increasing or decreasing,
respectively.
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Lemma 3.2. Let γ = {γn} be a positive sequence. Then γ is almost decreasing
(or increasing) if and only if γ is quasi decreasing (increasing).

Proof. It is trivial that if γ is almost decreasing (or increasing) then γ is quasi
decreasing (increasing).

On the other hand, let γ be a quasi decreasing sequence, i.e. there exist
N = N(γ) ∈ N and K1 = K1(γ) ≥ 1 such that γn ≤ K1γm holds for all
N ≤ m ≤ n. Then γn ≤ Kγm holds for any n ≥ m with

K = K1 max
1≤ν≤N

γν

(
min

1≤ν≤N
γν

)−1

.

The proof is similar for quasi increasing sequences.

By Lemma 3.2 we can write Proposition 3.3 and Lemma 4.2 from [9] in the
following way (Lemmas 3.3 and 3.4).

Lemma 3.3. Let γ = {γn} be a positive sequence bounded by blocks. Then
the sequence {nεγn} is almost increasing (decreasing) with a certain negative
(positive) number ε if and only if the sequence {γ2n} is quasi geometrically
increasing (decreasing).

Lemma 3.4. Let γ = {γn} be a positive sequence and λ = {λn} be a non-
negative sequence and δ > 0. If there exists ε > 0 such that the sequence
{n−εγn} is almost increasing and the sequence

{
nε−δγn

}
is almost decreasing,

then
∞∑

k=n

λk = O
(
n−δγn

)
(3)

is equivalent to
n∑

k=1

kδλk = O (γn) . (4)

Lemma 3.5. Let γ = {γn} be a positive sequence and ε ∈ R. If we define a
function γ(t), t ∈ (0; 1], in the following way:

γ(t) =

{
γn, if t = 1

n
, n ∈ N

monotonic, if 1
n+1

< t < 1
n
, n ∈ N,

then the sequence {nεγn} is almost decreasing (increasing) if and only if the
function t−εγ(t) is almost increasing (decreasing) on (0, 1), i.e. t−ε

1 γ(t1) ≤
Kt−ε

2 γ(t2) (≥ ) for 0 < t1 ≤ t2 < 1.
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Proof. It is clear that if t−εγ(t) is an almost increasing function, then {nεγn}
is an almost decreasing sequence.

Let {nεγn} be an almost decreasing function, i.e. there exists a constant
A ≥ 1 such that lεγl ≤ Asεγs for any s ≤ l. Let 0 < t1 ≤ t2 ≤ 1, 1

n+1
< t1 ≤ 1

n

and 1
m+1

< t2 ≤ 1
m

(n,m ∈ N). If n = m, then we have t−ε
1 γ(t1) ≤ Lt−ε

2 γ(t2) with

L := A · 4|ε|. Indeed, if γn+1 ≤ γn, then γ(t1) ≤ γ(t2) and t−ε
1 γ(t1) ≤ Lt−ε

2 γ(t2).
If γn ≤ γn+1, then

γ(t1)

tε1
≤ 2|ε|γn+1(n+ 1)ε ≤ A · 2|ε|γnn

ε ≤ A · 4|ε|γ(t2)
tε2

.

In fact, we have for k ∈ N

1

L
γk+1(k + 1)ε ≤ t−εγ(t) ≤ Lγkk

ε for any t ∈
( 1

k + 1
;
1

k

]
,

that implies for any t1, t2 (0 < t1 ≤ t2 ≤ 1)

t−ε
1 γ(t1) ≤ Lnεγn ≤ AL(m+ 1)εγm+1 ≤ AL2t−ε

2 γ(t2),

i.e. t−εγ(t) is an almost increasing function on (0, 1). The proof for an almost
increasing sequence is analogous.

Lemma 3.6. Let γ = {γn} be a positive sequence and µ = {µn} be a nonnega-
tive sequence, and β > 0.

(A ) If γ ∈ SQ and γ ∈ SQβ, then the following conditions are equivalent:

n∑
k=1

kβµk = O
(
γnn

β
)

(5)

∞∑
k=n

µk = O (γn) (6)

(B ) Let γ be a nonincreasing sequence. If for any sequence of nonnegative
terms {µn} conditions (5) and (6) are equivalent, then γ ∈ SQ and γ ∈
SQβ.

Proof. (A). Let γ ∈ SQ and γ ∈ SQβ. Then the sequence
{
nβγn

}
satisfies all

conditions of Lemma 3.4 with δ = β, and we have equivalence of (5) and (6).

(B). Let the conditions (5) and (6) be equivalent for any sequence of non-
negative terms {µn} . We define {µn := 4γn}n∈N where 4γn = γn− γn+1. It is



On Lipschitz Classes 753

clear that {µn} satisfies (6), therefore {µn} satisfies (5). Then

2−nβ

n∑
k=0

2kβγ2k ≤ C2−nβ

2n∑
k=1

kβ−1γk

= 2−nβ

2n∑
k=1

kβ−1

( 2n∑
l=k

4γl + γ2n+1

)

≤ 2−nβ

2n∑
l=1

4γl

( l∑
k=1

kβ−1

)
+O (γ2n+1)

= O

(
2−nβ

2n∑
l=1

lβ4γl + γ2n

)
= O (γ2n) .

(7)

Then by Lemmas 3.1 and 3.3 we have that the sequence
{
2nβγ2n

}
is quasi

geometrically increasing, and there exists ε ∈ (0, β) such that the sequence{
nβ−εγn

}
is almost increasing, i.e. γ ∈ SQβ. Therefore,

n∑
k=1

kβ−1γk =
n∑

k=1

kβ−εγkk
ε−1 = O

(
nβ−εγn

n∑
k=1

kε−1

)
= O

(
nβγn

)
,

i.e. the sequence
{
yn = 1

n
γn

}
satisfies (5) as well as (6). Then

∞∑
k=n

γ2k ≤ C
∞∑

k=n

γ2k

2k+1∑
ξ=2k+1

ξ−1

≤ C
∞∑

k=2n+1

γkk
−1

= O (γ2n) ,

and by Lemmas 3.1 and 3.3 we have γ ∈ SQ.

Lemma 3.7. ([3, p. 72]). For positive f(x) on (0, X], X > 0 we have

m(f) = sup
{
α ∈ R : x−αf(x) is almost increasing

}
M(f) = inf

{
β ∈ R : x−βf(x) is almost decreasing

}
.

Lemma 3.8. ([1]). Let f(x) ∈ C+ and f(x) =
∞∑

n=1

an cosnx, an ≥ 0. Then∑∞
k=2n ak ≤ 4En(f).
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Lemma 3.9. ([16]). Let β > 0. If f(x) ∈ C, then En−1(f) ≤ C(β)ωβ(f, 1
n
),

n ∈ N.

Lemma 3.10. ([15]). If f(x) ∈ C such that
∑∞

n=1 n
−1En(f) <∞, then the con-

jugate function f̃(x) is continuous and En(f̃) ≤ C
(
En(f)+

∑∞
k=n+1 k

−1Ek(f)
)
,

n ∈ N.

4. Results on majorants

N.K. Bari and S.B. Stechkin proved4 two following lemmas.

Lemma 4.1. ([2]) Let ϕ(·) ∈ Φ. Then the following conditions are equivalent:

(B)
∞∑

k=n+1

1
k
ϕ( 1

k
) = O

[
ϕ( 1

n
)
]

(S) There exists a constant α (0 < α < 1) such that the function t−αϕ(t) is al-
most increasing in the sense of Bernstein 5, that is t−α

1 ϕ(t1) ≤ Ct−α
2 ϕ(t2)

(t1 ≤ t2).

Lemma 4.2. ([2]) Let ϕ(·) ∈ Φ. Then the following conditions are equivalent:

(Bβ)
n∑

k=1

kβ−1ϕ( 1
k
) = O

[
nβϕ( 1

n
)
]

(Sβ) There exists a constant α (0 < α < β) such that the function tα−βϕ(t) is

almost decreasing in the sense of Bernstein, that is tα−β
2 ϕ(t2) ≤ Ctα−β

1 ϕ(t1)
(t1 ≤ t2).

We shall obtain the conditions that are equivalent to the conditions of the
first and the second group. First, for the sequence γ := {γn} of positive numbers
let us define the following conditions of lacunarity6:

(Λ1) The sequence γ satisfies the condition
∑n

k=1 γk ≤ Cγn (n ∈ N, C ≥ 1).

(Λ2) There exist natural numbers µ := µ(γ) and N := N(γ) such that the
inequality γn+µ ≥ 2γn holds for any natural n ≥ N.

(Λ3) The sequence γ can be presented as a union of finite number of sequences
N which are lacunary starting from some member, i.e., γ ∈

⋃r
s=1 N(s).

(Λ̄1) The sequence γ satisfies the condition
∑∞

k=n γk ≤ Cγn (n ∈ N, C ≥ 1).

(Λ̄2) There exist natural numbers µ := µ(γ) and N := N(γ) such that the
inequality γn+µ ≤ 1

2
γn holds for any natural n ≥ N.

4Here we recall only a part of their results, which we shall use further.
5See [2].
6Note that the similar conditions were considered by L. Leindler [8], S.B. Stechkin [14]

and V. Totik [17].
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(Λ̄3) The sequence κ =
{

1
γn

}
can be presented as a union of finite number

of sequences N which are lacunary starting from some member, i.e., κ ∈⋃r
s=1 N(s).

Lemma 4.3. Let γ = {γn} be the sequence of positive numbers. Then the
following statements are true:

(a). γ ∈ Λ1 =⇒ γ ∈ Λ2 =⇒ γ ∈ Λ3

(b). γ ∈ Λ1 ⇐⇒ γ ∈ Λ2 ∩ LAI ⇐⇒ γ ∈ Λ3 ∩ LAI

(c). γ ∈ Λ̄1 =⇒ γ ∈ Λ̄2 =⇒ γ ∈ Λ̄3

(d). γ ∈ Λ̄1 ⇐⇒ γ ∈ Λ̄2 ∩ LAD ⇐⇒ γ ∈ Λ̄3 ∩ LAD.

Proof. (a). Let γ ∈ Λ1. Then by Lemma 3.1 it is quasi geometrically increas-
ing and so γ ∈ Λ2, i.e. there exist natural numbers µ := µ(γ) and K := K(γ)
such that the inequality

γk+µ

γk
≥ 2 holds for any k ≥ K. Following [14], we define

the following subsequences of γ: γ
(s)
k = γ(k−1)µ+s, s = 1, · · · , µ. Then

γ
(s)
k+1

γ
(s)
k

≥ 2

holds for k starting with some number Ks, s = 1, · · · , µ, i.e., {γ(s)
k } ∈ N(s), s =

1, · · · , µ and γ ∈
⋃µ

s=1 N(s).

(b). By Lemma 3.1, we have γ ∈ Λ1 =⇒ γ ∈ LAI. Then it is sufficient to
prove that if γ ∈ LAI, then γ ∈ Λ3 =⇒ γ ∈ Λ1. Let γ ∈

⋃r
s=1 N(s), i.e., there

exist natural numbers Ks, such that the inequalities

γ
(s)
k+1

γ
(s)
k

≥ λs > 1, s = 1, · · · , r

hold for any k ≥ Ks. Put

K := max {l ∈ N : γl = γ
(s)
Ks
, s = 1, · · · , r}

C∗ := max
s=1,··· ,K

(
γ−1

s

s∑
t=1

γt

)
.

Then for any M ≤ K the following is true
∑M

l=1 γl ≤ C∗γM . Further, let us
consider a fixed integer M > K. It is clear, that each member of the sequence
{γt}M

t=K belongs to some sequence N(s), i.e.

{γK , · · · , γM} ⊂
d⋃

i=1

N(si) 1 ≤ d ≤ r.
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Define

Msi
:= max

{
l ∈ N : γ

(si)
l ∈ {γK , · · · , γM}

}
, i = 1, · · · , d.

Then (i = 1, · · · , d)

Msi∑
l=Ksi

γ
(si)
l = γ

(si)
Msi

Msi∑
l=Ksi

γ
(si)
l

γ
(si)
Msi

≤ γ
(si)
Msi

Msi∑
l=Ksi

λ
l−Msi
si = Cγ

(si)
Msi

, (8)

and therefore

M∑
l=K

γl ≤
d∑

i=1

Msi∑
l=Ksi

γ
(si)
l ≤ C1

d∑
i=1

γ
(si)
Msi

=: C1A .

Without loss of generality, let us denote by s1 the number of the sequence such
that γ

(s1)
Ms1

= γM . If d = 1, then A = γM ; if d = 2, then we shall use the condition

γ ∈ LAI and the inequality (8) to get

A = γM + γ
(s2)
Ms2

≤ C

(
γM +

Ms1∑
l=Ks1

γ
(s1)
l

)
≤ CγM .

Similarly, if d > 2, then

A = γM +
d∑

i=2

γ
(si)
Msi

≤ C
(
γM +

∑′)
,

where
∑′ contains d−2 terms. Repeating the reasoning, we shall get A ≤ CγM .

In such a way, for any M > K we have the inequality

M∑
l=1

γl ≤ (C∗ + 1)
M∑

l=K

γl ≤ CγM ,

i.e.,γ ∈ Λ1.

Statements (c) and (d) follow from (a) and (b). Indeed, if we define the
sequence 1

γ
:=

{
1
γn

}
, we obtain that γ ∈ Λ1 ⇐⇒ 1

γ
∈ Λ̄1 (this follows from

Lemma 3.1), γ ∈ Λ2 ⇐⇒ 1
γ
∈ Λ̄2 (trivial), γ ∈ Λ3 ⇐⇒ 1

γ
∈ Λ̄3 (trivial).

Remark 4.4. There are examples of sequences γ1 and γ2, which are not local
almost increasing and such that γ1 ∈ Λ2 but γ1 /∈ Λ1 and γ2 ∈ Λ3 but γ2 /∈ Λ2.
There exist similar counter examples for the item (c) of sequences γ3 and γ4,
which are not local almost decreasing.



On Lipschitz Classes 757

Proof. Let us consider γ = (γ(1), γ(2)), where γ(1) =
{
γ

(1)
l = 2l

}
and γ(2) =

{γ(2)
l = 22l}. If the members of the sequence γ are placed in the following way:

for n = 2m: γn = γ
(1)
n , and for n = 2m + 1: γn = γ

(2)
n , then it is clear that

γ ∈ Λ2 but γ /∈ Λ1. On the other hand, let the elements of the sequence γ be
placed in the following order: if n = 2s, then {γn = γ

(1)
n }, and if n 6= 2s, then

{γn = γ
(2)
n }. Then γ ∈ Λ3, but γ /∈ Λ2.

Now we provide the interrelation between several conditions on positive
functions. In particular, we study conditions on majorants of moduli of smooth-
ness from Theorems 1.1 - 1.5.

Lemma 4.5. Let ϕ(·) ∈ Φ. Then the following conditions are equivalent:

(B)
∞∑

k=n+1

1
k
ϕ( 1

k
) = O

[
ϕ( 1

n
)
]

(Λ̄) The sequence δ =
{
δν = ϕ

(
1
2ν

)}
ν∈N satisfies any of the conditions (Λ̄i)

for i = 1, 2, 3.

(SQ) There exists a constant α ∈ (0, 1) such that the sequence
{
nαϕ

(
1
n

)}
n∈N

is almost decreasing.

(M) m(ϕ) > 0

(Ω̄(2)) ϕ ∈
⋃

α>0

Ω
(2)
α .

Proof. Step 1: ϕ ∈ B ⇔ δ ∈ Λ̄, where δ :=
{
δν = ϕ

(
1
2ν

)}
ν∈N . Due to

the monotonicity of ϕ we have ϕ ∈ B ⇔
∑∞

ν=n ϕ( 1
2ν ) = O

[
ϕ( 1

2n )
]

and by
Lemma 4.3 we have ϕ ∈ B ⇔ δ ∈ Λ̄i for any i = 1, 2, 3.

Step 2: ϕ ∈ B ⇔ ϕ ∈ SQ. Indeed, if ϕ ∈ Φ, then ϕ ∈ B ⇔ ϕ ∈ S by
Lemma 4.1, and we write ϕ ∈ S ⇔ ϕ ∈ SQ by Lemma 3.5.

Step 3: ϕ ∈ B ⇔ ϕ ∈M. By Lemma 4.1, if ϕ ∈ B, then there exists ε > 0
such that t−εϕ(t) is almost increasing function on (0, 1). Then Lemma 3.7
implies m(ϕ) ≥ ε > 0, i.e., ϕ ∈M. Conversely, if ϕ ∈M , then from Lemma 3.7
we have that for any ε ∈ (0,m(ϕ)) the function t−εϕ(t) is almost increasing
and, by Lemma 4.1, ϕ ∈ B.

Step 4: ϕ ∈ B ⇒ ϕ ∈ Ω̄(2) ≡
⋃

α>0 Ω
(2)
α . Let ϕ ∈ B, then ϕ ∈ SQ, i.e.,

there exists a constant α ∈ (0, 1) such that lαϕ
(

1
l

)
≤ Asαϕ

(
1
s

)
holds for any

s ≤ l. Put s = 2n, l = 2n+µ, then for any n, µ it holds 2µαϕ
(

1
2n+µ

)
≤ Aϕ

(
1
2n

)
.

If A ≤ 2, then ϕ ∈ Ω
(2)
α ⊂

⋃
α>0 Ω

(2)
α .

Let A > 2. Put µ′ = min {µ ∈ N : A ≤ 2µα}. It is clear that µ′α > 1, and
if we define α′ := 1/µ′, then we shall have A ≤ 2µ′α ≤ 21+µ(α−α′) for all integers
µ ≥ µ′ and 2µα′ ≤ 2 for all integer µ ≤ µ′. Then the following two conditions
hold:
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(∗) For any integer µ ≥ µ′ the following inequality is true:

2µα′
ϕ

(
1

2n+µ

)
≤ 2

A
2µ(α−α′)2µα′

ϕ

(
1

2n+µ

)
≤ 2ϕ

(
1

2n

)
, n ∈ N.

(∗∗) For any integer µ ≤ µ′ the following inequality is true:

2µα′
ϕ

(
1

2n+µ

)
≤ 2ϕ

(
1

2n+µ

)
≤ 2ϕ

(
1

2n

)
, n ∈ N.

Then, ϕ ∈ Ω
(2)
α′ ⊂

⋃
α>0 Ω

(2)
α .

Step 5: ϕ ∈ Ω̄(2) ⇒ ϕ ∈ B. Let there exist a κ > 0 such that ϕ ∈ Ω
(2)
κ ,

i.e., for every natural µ there exists a natural number N := N(µ) such that

2µκϕ

(
1

2n+µ

)
≤ 2ϕ

(
1

2n

)
for all n > N.

Then there exists an integer µ = µ(κ) such that the inequality

ϕ

(
1

2n+µ

)
≤ 1

2
ϕ

(
1

2n

)
for all n > N

holds. Therefore, the sequence δ =
{
δν = ϕ

(
1
2ν

)}
ν∈N satisfies the Λ̄2 condition,

that implies ϕ ∈ B (as we have already proved).

Remark 4.6. For any κ > 0 we have Ω
(2)
κ ∩ Φ ⊂ B ∩ Φ ⊂ Ω

(2)
0 ∩ Φ.

Proof. By Lemma 4.5 ϕ ∈ B ⇔ ϕ ∈
⋃

α>0 Ω
(2)
α , and for any κ > 0 we have

Ω
(2)
κ ⊂ B. On the other hand, B ⊂ Ω

(2)
0 since for any integer µ there exists an

integer N = N(µ) such that

ϕ

(
1

2n+µ

)
≤ 2µκϕ

(
1

2n+µ

)
≤ 2ϕ

(
1

2n

)
for any n > N.

We write the examples: ϕ1(δ) = δ
κ
2

(
∈ B but /∈ Ω

(2)
κ

)
and ϕ2(δ) =

(
ln 1

δ

)−1(
∈ Ω

(2)
0 but /∈ B

)
.

Lemma 4.7. Let ϕ(·) ∈ Φ. Then the following conditions are equivalent:

(Bβ)
n∑

k=1

kβ−1ϕ( 1
k
) = O

[
nβϕ( 1

n
)
]

(Λβ) The sequence δ =
{
δν = 2νβϕ

(
1
2ν

)}
ν∈N satisfies any of the conditions

(Λi) for i = 1, 2.

(SQβ) There exists a constant α ∈ (0, β) such that the sequence
{
nβ−αϕ

(
1
n

)}
n∈N

is almost increasing.
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(Mβ) M(ϕ) < β

(Ω̄
(1)
β ) ϕ ∈

⋃
0<β′<β

Ω
(1)
β′ .

Proof. Step 1: ϕ ∈ Bβ ⇔ δ ∈ Λβ, where δ :=
{
δν = 2νβϕ

(
1
2ν

)}
ν∈N. First,

by ϕ(·) ∈ Φ and by Lemma 4.3, we have ϕ ∈ Bβ ⇔
∑n

ν=1 2βνϕ( 1
2ν ) =

O
[
2βnϕ( 1

2n )
]
⇔ δ ∈ Λ1 ⇒ δ ∈ Λ2. Now let δ ∈ Λ2. Then, by monotonicity

of ϕ, δ is local almost increasing and Lemma 4.3 implies ϕ ∈ Bβ.

Step 2: ϕ ∈ Bβ ⇔ ϕ ∈ SQβ. This follows from The Lemmas 4.2 and 3.5.

Step 3: ϕ ∈ Bβ ⇔ ϕ ∈ Mβ. The proof of this fact is similar to the proof
of ϕ ∈ B ⇔ ϕ ∈M in Lemma 4.5.

Step 4: ϕ ∈ Bβ ⇔ ϕ ∈ Ω̄
(1)
β . We divide the proof into the following parts:

a) If β′ < β, then Ω
(1)
β′ ⊂ Ω

(1)
β .

b) If β′ < β, then Bβ′ ⊂ Bβ.

c) Bβ ⊂ Ω
(1)
β

d)
⋃

0<β′<β

Ω
(1)
β′ ⊂ Bβ

e) Bβ ≡
⋃

0<β′<β

B
(1)
β′

f)
⋃

0<β′<β

B
(1)
β′ ⊂

⋃
0<β′<β

Ω
(1)
β′

g) Bβ ⊂
⋃

0<β′<β

Ω
(1)
β′ .

Now we shall prove a) - g).

a): It is evident from the definition of Ω
(1)
β .

b): It results from SQβ′ ⊂ SQβ for β′ < β.

c): Let ϕ ∈ Bβ. Then there exist 0 < α < 1 and C ≥ 1 such that ϕ
(

1
2n

)
≤

C2ν(β−α)ϕ
(

1
2n+ν

)
(ν, n ∈ N). Let us define ξ := min {ν ∈ N : 2να ≥ 2C} . Then

we have for all β′ > β

2β′ξϕ

(
1

2n+ξ

)
> 2βξϕ

(
1

2n+ξ

)
≥ 2ϕ

(
1

2n

)
holds for all n, i.e., ϕ ∈ Ω

(1)
β .

d): Let ϕ ∈
⋃

0<α<β Ω
(1)
α . It follows from the fact that there exists an

α (0 < α < β) such that ϕ ∈ Ω
(1)
α , i.e., for any α′ > α there exists an integer

µ = µ(α′) such that

2α′µϕ

(
1

2n+µ

)
> 2ϕ

(
1

2µ

)
∀ n ∈ N.
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Then

2α′(µ+n)ϕ

(
1

2n+µ

)
≥ 21+α′nϕ

(
1

2n

)
,

and by definition δ =
{
δν = 2α′νϕ

(
1
2ν

)}
ν∈N ∈ Λ2, and therefore ϕ ∈ Bα′ . So,

there exists α′ (0 < α′ < β) such that ϕ ∈ Bα′ . By part b), ϕ ∈ Bβ.

e): By part b),
⋃

0<β′<β B
(1)
β′ ⊂ Bβ. On the other hand, if ϕ ∈ Bβ, then

ϕ ∈ SQβ, i.e., there exists a constant α (0 < α < β) such that the sequence{
nβ−αϕ

(
1
n

)}
n∈N is almost increasing. Then the following condition is true:

there exists an α (0 < α < β) such that for all α′ (0 < α′ < α) there exists
a κ (0 < κ < β − α′) such that the sequence

{
n(β−α′)−κϕ

(
1
n

)}
n∈N is almost

increasing (as κ we can take α−α′). So, there exists an α (0 < α < β) such that

for all α′ (0 < α′ < α) we write ϕ ∈ Bβ−α′ and, finally, ϕ ∈
⋃

β−α<β′<β B
(1)
β′ ⊂⋃

0<β′<β B
(1)
β′ .

f) - g): It is clear that part c) implies f) and parts e) and f) imply g).

Therefore, we have ϕ ∈ Bβ ⇐⇒ ϕ ∈
⋃

0<α<β Ω
(1)
α from d) and g).

Remark 4.8. For any κ, ε > 0 we have Ω
(1)
0 ∩ Φ ⊂ Ω

(1)
κ ∩ Φ ⊂ Bκ+ε ∩ Φ.

Proof. By definition, we can write Ω
(1)
0 ∩ Φ ⊂ Ω

(1)
κ ∩ Φ. And by Lemma 4.7,

Ω
(1)
κ ∩ Φ ⊂ Bκ+ε ∩ Φ. On the other hand, there are the following examples:

ϕ2(δ) = δκ
(
∈ Ω

(1)
κ but /∈ Ω

(1)
0

)
and ϕ3(δ) = δκ+ ε

2

(
∈ Bκ+ε but /∈ Ω

(1)
κ

)
.

Remark 4.9. There exists ϕ(·) ∈ Φ such that the sequence δ =
{
δν = 2νβϕ

(
1
2ν

)}
satisfies the (Λ3)-condition but ϕ(·) does not satisfy (Bβ). However, for any
ϕ ∈ Φ we have that ϕ ∈ Bβ implies δ ∈ Λ3.

Proof. Fix γ > 0. We can define

ϕ

(
1

2ν

)
=

1

2γ2k for 2k−1 ≤ ν < 2k, k ∈ N and δ =

{
δν = 2βνϕ

(
1

2ν

)}
ν∈N

.

Then one can represent the sequence δ in the following way: δ =
{
δ(1), δ(2), δ(3)

}
,

where

δ(1) =
{
δν , 22l−1 < ν < 22l, l ∈ N

}
δ(2) =

{
δν , ν = 2l, l ∈ N ∪ 0

}
δ(3) =

{
δν , 22l < ν < 22l+1, l ∈ N

}
.

If β > 3γ, it is clear that δ(j) ∈ N, j = 1, 2, 3, i.e., δ ∈
⋃3

s=1 N(s), i.e., δ ∈ Λ3.
On the other hand, we write

δ2k

δ2k−1

=
2β2k

2γ2k

2γ2k+12β(2k−1)
=

2β

2γ2k −→ 0 as k →∞.
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Thus, the sequence δ is not local almost increasing and, by Lemma 4.3, we have
ϕ /∈ Bβ. Finally, we can define the function ϕ(·) to be linear over

(
1

2n+1 ,
1
2n

)
.

Corollary 4.10. If ϕ(·) ∈ Φ, then for any s, β > 0 we have ϕ ∈ B ⇔ ϕs ∈ B,
i.e.,

∞∑
k=n+1

1

k
ϕ
(1

k

)
= O

[
ϕ
( 1

n

)]
⇔

( ∞∑
k=n+1

1

k
ϕs

(1

k

)) 1
s

= O

[
ϕ
( 1

n

)]
,

and ϕ ∈ Bβ ⇔ ϕs ∈ Bsβ, i.e.,

n∑
k=1

kβ−1ϕ
(1

k

)
= O

[
nβϕ

( 1

n

)]
⇔

( n∑
k=1

ksβ−1ϕs
(1

k

)) 1
s

= O

[
nβϕ

( 1

n

)]
.

Proof. The proof follows from ϕ ∈ B ⇔ δ ∈ Λ̄3 ⇔ δs ∈ Λ̄3 ⇔ ϕs ∈
B

(
for δν = ϕ

(
1
2ν

))
and ϕ ∈ Bβ ⇔ δ ∈ Λ2 ⇔ δs ∈ Λ2 ⇔ ϕs ∈ Bsβ(

for δν = 2νβϕ
(

1
2ν

))
.

5. Results on a Boas-type problem

Now we prove the theorem on belonging of a function to the generalized Lips-
chitz class.

Theorem 5.1. Let γ = {γn} be the positive sequence and β > 0. Then:

(A). If γ ∈ SQ and γ ∈ SQβ, then for any function f ∈ C+ with Fourier
series (2) the conditions

∞∑
k=n

(
|ak|+ |bk|

)
= O (γn) (9)

n∑
k=1

kβ
(
|ak|+ |bk|

)
= O

(
nβγn

)
(10)

ωβ

(
f,

1

n

)
= O(γn) (11)

are equivalent.

(B). Let γ be a non-increasing sequence. If for any function f ∈ C+ with
Fourier series (2) the conditions (9), (10) and (11) are equivalent, then
γ ∈ SQ and γ ∈ SQβ.

Proof. (A). Let γ ∈ SQ and γ ∈ SQβ. Then, by Lemma 3.6, the conditions
(9) and (10) are equivalent. Now we shall prove that the conditions (9) and
(11) are equivalent.
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Let function f ∈ C+ satisfy (9), and so, (10). Note, that if the 2π-
periodic function f(x) has a Fourier series

∑∞
n=−∞ cne

inx, then 4β
hf(x− βh

2
) ∼∑

k∈Z
(
2i sin kh

2

)β
cke

ikx. For given h one chooses n according to 1
n+1

< h ≤ 1
n
.

Then∣∣∣∣ ∑
k∈Z

(
2i sin

kh

2

)β

cke
ikx

∣∣∣∣ ≤ 2
n∑

k=1

∣∣∣∣2 sin
kh

2

∣∣∣∣β |ck|+ 2
∞∑

k=n+1

∣∣∣∣2 sin
kh

2

∣∣∣∣β |ck|
= J1 + J2.

Then, (10) and | sin kh
2
| ≤ kh

2
imply J1 ≤ Chβ

∑n
k=1 k

β (|ak|+ |bk|) ≤ Cγn; and
(9) implies J2 ≤ C

∑∞
k=n+1 (|ak|+ |bk|) ≤ Cγn. Therefore, for any f ∈ C+ we

have
∣∣4β

hf(x − βh
2

)
∣∣ ≤ Cγn with 1

n+1
< h ≤ 1

n
, and so ωβ(f, 1

n
) = O(γn). We

have proved that (9) implies (11).

Further, we shall prove that (11) implies (9). Let ξ ∈ C+ have a Fourier
series

∑∞
n=1(a

′
n cosnx + b′n sinnx) and ξ satisfy (11). Define the functions

ξ±(x) = ξ(x)±ξ(−x)
2

. Note, that ωβ(ξ±,
1
n
) ≤ ωβ(ξ, 1

n
) = O(γn). Using Lemma 3.8,

Jackson’s inequality (Lemma 3.9) and property of modulus of smoothness, we
write

∞∑
k=n

|a′k| ≤ CE[n
2 ]

(ξ+) ≤ C(β)ωβ

(
ξ+,

1

n

)
= O (γn) . (12)

Consider ξ−(x) ∼
∑∞

n=1 b
′
n sinnx and the conjugate function ξ̃−. The Fourier

series of ξ̃− is −
∑∞

n=1 b
′
n cosnx, and in a similar manner as for (12) we shall use

the Lemmas 3.8, 3.9, 3.10 and the condition γ ∈ SQ. Then

∞∑
k=n

|b′k| ≤ CE[n
2 ]

(ξ̃−)

≤ C

{
E[n

2 ]
(ξ−) +

∞∑
k=[n

2 ]+1

1

k
Ek(ξ−)

}

≤ C(β)

{
ωβ

(
ξ−,

1

n

)
+

n∑
k=[n

2 ]+1

1

k
ωβ

(
ξ−,

1

k

)
+

∞∑
k=n

1

k
ωβ

(
ξ−,

1

k

)}

≤ C(β)

{
ωβ

(
ξ−,

1

n

)
+

∞∑
k=n

1

k
ωβ

(
ξ−,

1

k

)}
= O

(
γn + nεγn

∞∑
k=n

k−ε−1

)
= O(γn).
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Thus,
∞∑

k=n

(
|a′k|+ |b′k|

)
= O(γn),

and (9) and part A of the theorem are true. The proof of part (B) follows from
the equivalence of (9) and (10) by Lemma 3.6.

Remark 5.2. We see from the Lemmas 4.5 and 4.7 that part (A) of Theorem 5.1
for β = 1 and β = 2 implies all the theorems 1.1 - 1.5.

Remark 5.3. In part (B) of Theorem 5.1, the condition that γ is a non-
increasing sequence can be replaced by the condition γ ∈ R+

0 BV S.

Proof. It is enough to show part (B) of Lemma 3.6. Indeed, we consider the
sequence {µn = |4γn|} and repeat the reasoning of Lemma 3.6. To prove the
inequality (7) we shall use the following fact: if the sequence γ is R+BV S, then
γ is almost decreasing.
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