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On the Cauchy Problem for Systems
Containing Locally Explicit Equations

Irina N. Pryadko

Abstract. In this paper we consider so-called locally explicit equations involving
nonlinear differentials. Such equations are characterized by certain continuity and
semigroup properties of the corresponding quasiflow and arise typically in the math-
ematical modelling of non-smooth mechanical and physical systems. Under some
natural hypotheses, we prove the local solvability of the corresponding Cauchy prob-
lem by applying Schauder’s fixed point principle to a suitable equivalent integral
equation. Afterwards, we illustrate the abstract existence result by means of an ap-
plication to an automatic regulation system involving a hysteresis element of stop
type.
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1. Locally explicit equations

The purpose of this note is to prove a local existence theorem for solutions of the
Cauchy problem for systems which contain so-called locally explicit equations
with nonlinear differentials. An equation involving nonlinear differentials (or
quasi-differential equation, see e.g. [1,2]) has the form

u(t 4+ dt) — u(t) = D(t,u(t),dt) + o(dt). (1)

In what follows, we suppose throughout that the function (¢,u) — D(t,u,dt)
is defined on some set U C R x R™, and the function dt — D(t, u,dt) on some
interval [0, a(¢,u)]. The range of the function D in (1) lies in R™, and we assume
in addition that D(t,u,0) = 0.

A solution of equation (1) is, by definition, a function u = ¢(¢) which is
left-continuous on some interval I and satisfies for all t € I = I'\ {sup I} the
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relation

il 4 de) — (1) — Dt (1) df)] = 0

A solution ¢ is called a strong solution if for any ¢ € I one can find a § > 0
such that

o(t +dt) — p(t) — D(t, ¢(t),dt) =0 (0 < dt < 9).
Consider the quasiflow [3] generated by equation (1), i.e.,
Yy = u + D(t, u, dt).

The equation (1) is called locally explicit [4] if its quasiflow is left-continuous
w.r.t. dt and has the following semigroup property: for all (¢t,u) € U there exists
d > 0 such that for all ¢; € [t,t+ ¢) one can find §; > 0 such that

Yelu=APu (b <ty <t +6).

Given (t,u) € U, we fix a corresponding § and denote it by A = A(t, u).
The following assertion on the existence of a strong solution to the locally
explicit equation (1), subject to the initial condition

u(to) = uo, (2)
was announced in [5]; for the reader’s ease we give a short proof.

Proposition 1. For (ty,ug) € U, the function p(t) = v ug is a strong solution
of the problem (1)/(2) on the interval [to,to + A(to, uo)).

Proof. The initial condition (2) is an obvious consequence of the equality
D(ty, ug,0) = 0. Moreover, for ¢ € [ty, to + A(to, up)) we have

p(t +dt) — o(t) — D(t, (1), dt) = v " ug — vi,uo — D(t, (1), dt)
= i ug — Ay uo.

By the definition of a locally explicit equation, the last term is zero for suffi-
ciently small dt > 0, and so ¢ is a strong solution of equation (1). |

2. Closed systems with locally explicit equations

Denoting Au = u(t + dt) — u(t), consider the system
&= f(t,u,x) (3)

o =p(z) (4)
Au = E(t,u, o™ dt) + o(dt) (5)
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subject to the initial conditions (2) for u, and the additional initial condition

z(to) = o (6)

for x. Given any function o whose domain of definition contains the interval
[t,t + dt], we denote by o!™ its restriction to this interval. Throughout the
following, we make the following assumptions:

(H1) The function f : D; x Dy x D3 — R™ is continuous, where D; C R
is some neighborhood of ty5, D3 € R"™ is some neighborhood of xy, and
Dy C R™.

(H2) The function p : D3 — R is continuous.

(H3) The R™-valued function (t,u,o,dt) — E(t,u,oi™™, dt) is defined for
t € Di,u € Dy,0 € Clty, T| (for some T > ty), and dt € [0, +0c0), and
the function (o, dt) — E(t,u, ot dt) is continuous.

(H4) For any continuous function o : [tg, 7] — R, the formula (5) defines a
locally explicit equation with the function D(t, u, dt) = E(t,u, ot dt).

Under these assumptions, we may now prove our main local existence result.

Theorem 1. If the hypostheses (H1) — (H4) are satisfied, the problem (3) — (6)
has a solution on some interval [to,to + h] (h > 0).

Proof. For any continuous function z : [tg, 7] — R" we consider the function u
given by u(t) = uo + E(to, uo, 0f,,t —to), where ¢ is defined through x as in (4).
Then the function u is a solution of equation (5) on some interval [to, to + A),
where A depends on (ty,uy) and on the choice of z, and so utakes its values in
D,. Consequently, one may rewrite equation (3) in the form

T = f(tv xio)v (7)

where

f(t,ah) = f(t,uo + Elto, uo, (p(x(7)) 1 to < 7 < 1)t —to], x(t)).

From our hypotheses (H1) — (H4) we conclude that f is continuous w.r.t. both
t and z.

It is not hard to see that the initial problem (7)/(6) is equivalent, as usual,
to the integral equation

o) =an+ [ Flsai)ds (8)

The right-hand side of (8) defines an integral operator

(Jz)(t) = o + /t fls a3 ) ds
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which obviously maps C|[ty, T] into itself. We claim that this operator is con-
tinuous. In fact, let z, € Clto,T] be a sequence with x,, — Z. The con-

tinuous map (t,z) +— f(t,z;) is uniformly continuous on the compact set

[to, T) x ({z1,22,x3,...} U{T}). Consequently, the functions f(t, (z,);,) con-
verge uniformly on [t, T] to the function f(¢, 7} ). This shows that Jx, — JT,
as n — 00, and so J is continuous as claimed.

By Zy we denote a function which coincides with xy on [tg, T']. Again by the

continuity of the map (¢,z) — f(t,x} ) we can find a 0 > 0 such that

| f(t, x3,) — f(to, (To)y,)|l < 1 (|t —to] <6, [|lx — x| < 9).

Consider the closed ball B(Zy,0) = {z € Clty,T] : ||z — xo|| < J}, where
T —ty <d. For x € B(T)) we get then

92 =Fall < [ 1. @l s < (1+ (o @I o)

So if we choose T' < §(1 + || f(to, (To)i2)||) ™" + to, then certainly Jz € B(o, 4),
and so the ball B(Zy, d) is invariant under J.

We show that the family {Jz : © € B(Z,0)} is equicontinuous on [to, 7.
In fact, for z € B(%g,0) and ty < t; <ty < T we have

I(J) (1) = (Jz)(t)]| < / 1F (s, @o)i )l ds < (14 [[f(Fo, (@o)i) ) (22 = 1),

to

and so this family is equicontinuous. The classical Arzela-Ascoli theorem implies
that the set J(B(Tg,d)) is relatively compact. Consequently, from Schauder’s
fixed point theorem we may conclude that the completely continuous operator
J has a fixed point x, which is then a solution of equation (7) and satisfies (6).
Choosing A by means of this solution x, and putting A > min {A, T — ty}, we
arrive at a pair of functions (u(t),z(t)) which solves the problem (2) — (6) on
the interval [tg, to + h]. |

3. Example: Hysteresis-type systems with stop

The mathematical modelling of some automatic regulation systems contain-
ing hysteresis elements of stop type lead to the problem (3) — (5). More pre-
cisely, the so-called stop-converter (see [6]) associated to an arbitrary continu-
ous function o(t) may be described by equation (1) with function D(t,u,dt) =
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E(t,u,o™ dt), where (sce [4])

ot +dt) —o(t) if u € (0,1)
E(t,u, ot dt)) = { o(t +dt) — tgrsnge%)idta(s) ifu=1 (9)
o(t+dt)— min o(s) ifu=0.
t<s<t-+dt

Clearly, the function (¢,u,o,dt) — E(t,u,o!™¥ dt) is continuous w.r.t. (o,dt).

Proposition 2. For any continuous input function o, the stop equation is lo-
cally explicit.

Proof. Being a composition of continuous functions, the map dt — D(t,u, dt)
is left-continuous on (0,7 — t). We distinguish the three cases for u occurring
in (9). First, for u € (0,1) we have 7/ "%y = u 4+ o(t + dt) — o(t). In this case
we put

A— T—t if u+o(r)—o(t)€(0,1) for 7 € [t,T),
N\ min{r € [t,T):u+o(r) —o(t) € {0,1}} —t otherwise.

Clearly, A > 0. Now, for t <t; <ty <t+ A we have u+ o(t;) — o(t) € (0,1),
hence

el =2lu+ o(t) — o(t)] (10)
=u+o(ty) —o(t)+o(ts) —o(ty) (11)
=7 u. (12)

—_

This is the desired semigroup property, where the term t + A — t; plays here
the role of the §; occurring in the definition of a locally explicit equation.

In case u = 1 we get 777 %u = 1+ o(t +dt) — max o(s). In this case we
t<s<t+dt
put
T—1 if o(7) — max o(s) > —1 for 7 € [t,T)
A — t<s<rt
min{r € [t,T) : o(7) — max o(s) =—1} —t otherwise.

Suppose that ¢t <t; <t+ A. Then either

either 1+o(ty) — Jmax o(s)=1
st

or 14+ 0(t;) — max o(s) € (0,1).

t<s<t;
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In the first case we obtain o(t;) = maxi<s<s, 0(s), hence maxy, <s<p, 0(s) =
max;<s<t, 0(s). This shows that, for to € [t;,t1 4+ 01) (with &1 =t + A — 1), we
get
V="l =14 0(tz) — max o(s) =, u.
1<s<t2

On the other hand, in the second case we obtain o(t;) < max;<s<t, 0(s). By
continuity we find §; > 0 such that o(7) < max;<s<s, o(s) for 7 € [t1,t1 + 1),
and thus

to  t t
Y vtu =L+ o(t) — max o(s)]

=14+o0(ty) — max o(s) 4+ a(ty) —o(ty)
= Y.

In both cases the desired semigroup property for the quasiflow follows again.
Finally, the remaining case u = 0 is proved similarly. Summarizing, we have
shown that the local solvability result for the Cauchy problem proved in the
preceding section applies to the system (3) — (5), where the function E is given
by (9), and so we are done. |
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