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On the Cauchy Problem for Systems
Containing Locally Explicit Equations

Irina N. Pryadko

Abstract. In this paper we consider so-called locally explicit equations involving
nonlinear differentials. Such equations are characterized by certain continuity and
semigroup properties of the corresponding quasiflow and arise typically in the math-
ematical modelling of non-smooth mechanical and physical systems. Under some
natural hypotheses, we prove the local solvability of the corresponding Cauchy prob-
lem by applying Schauder’s fixed point principle to a suitable equivalent integral
equation. Afterwards, we illustrate the abstract existence result by means of an ap-
plication to an automatic regulation system involving a hysteresis element of stop
type.
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1. Locally explicit equations

The purpose of this note is to prove a local existence theorem for solutions of the
Cauchy problem for systems which contain so-called locally explicit equations
with nonlinear differentials. An equation involving nonlinear differentials (or
quasi-differential equation, see e.g. [1,2]) has the form

u(t + dt)− u(t) = D(t, u(t), dt) + o(dt). (1)

In what follows, we suppose throughout that the function (t, u) 7→ D(t, u, dt)
is defined on some set U ⊆ R× Rm, and the function dt 7→ D(t, u, dt) on some
interval [0, α(t, u)]. The range of the function D in (1) lies in Rm, and we assume
in addition that D(t, u, 0) = 0.

A solution of equation (1) is, by definition, a function u = ϕ(t) which is
left-continuous on some interval I and satisfies for all t ∈ Ĩ = I \ {sup I} the
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relation

lim
dt→+0

1

dt
[ϕ(t + dt)− ϕ(t)−D(t, ϕ(t), dt)] = 0.

A solution ϕ is called a strong solution if for any t ∈ Ĩ one can find a δ > 0
such that

ϕ(t + dt)− ϕ(t)−D(t, ϕ(t), dt) = 0 (0 ≤ dt < δ).

Consider the quasiflow [3] generated by equation (1), i.e.,

γt+dt
t u = u + D(t, u, dt).

The equation (1) is called locally explicit [4] if its quasiflow is left-continuous
w.r.t. dt and has the following semigroup property: for all (t, u) ∈ U there exists
δ > 0 such that for all t1 ∈ [t, t + δ) one can find δ1 > 0 such that

γt2
t1 γ

t1
t u = γt2

t u (t1 ≤ t2 < t1 + δ1).

Given (t, u) ∈ U , we fix a corresponding δ and denote it by ∆ = ∆(t, u).

The following assertion on the existence of a strong solution to the locally
explicit equation (1), subject to the initial condition

u(t0) = u0, (2)

was announced in [5]; for the reader’s ease we give a short proof.

Proposition 1. For (t0, u0) ∈ U , the function ϕ(t) = γt
t0
u0 is a strong solution

of the problem (1)/(2) on the interval
[
t0, t0 + ∆(t0, u0)

)
.

Proof. The initial condition (2) is an obvious consequence of the equality
D(t0, u0, 0) = 0. Moreover, for t ∈ [t0, t0 + ∆(t0, u0)) we have

ϕ(t + dt)− ϕ(t)−D(t, ϕ(t), dt) = γt+dt
t0

u0 − γt
t0
u0 −D(t, ϕ(t), dt)

= γt+dt
t0

u0 − γt+dt
t γt

t0
u0.

By the definition of a locally explicit equation, the last term is zero for suffi-
ciently small dt > 0, and so ϕ is a strong solution of equation (1).

2. Closed systems with locally explicit equations

Denoting ∆u = u(t + dt)− u(t), consider the system

ẋ = f(t, u, x) (3)

σ = p(x) (4)

∆u = E(t, u, σt+dt
t , dt) + o(dt) (5)
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subject to the initial conditions (2) for u, and the additional initial condition

x(t0) = x0 (6)

for x. Given any function σ whose domain of definition contains the interval
[t, t + dt], we denote by σt+dt

t its restriction to this interval. Throughout the
following, we make the following assumptions:

(H1) The function f : D1 × D2 × D3 → Rn is continuous, where D1 ⊆ R
is some neighborhood of t0, D3 ⊆ Rn is some neighborhood of x0, and
D2 ⊆ Rm.

(H2) The function p : D3 → R is continuous.

(H3) The Rm-valued function (t, u, σ, dt) 7→ E(t, u, σt+dt
t , dt) is defined for

t ∈ D1, u ∈ D2, σ ∈ C[t0, T ] (for some T > t0), and dt ∈ [0, +∞), and
the function (σ, dt) 7→ E(t, u, σt+dt

t , dt) is continuous.

(H4) For any continuous function σ : [t0, T ] → R, the formula (5) defines a
locally explicit equation with the function D(t, u, dt) = E(t, u, σt+dt

t , dt).

Under these assumptions, we may now prove our main local existence result.

Theorem 1. If the hypostheses (H1) – (H4) are satisfied, the problem (3) – (6)
has a solution on some interval [t0, t0 + h] (h > 0).

Proof. For any continuous function x : [t0, T ] → Rn we consider the function u
given by u(t) = u0 +E(t0, u0, σ

t
t0
, t− t0), where σ is defined through x as in (4).

Then the function u is a solution of equation (5) on some interval [t0, t0 + ∆),
where ∆ depends on (t0, u0) and on the choice of x, and so utakes its values in
D2. Consequently, one may rewrite equation (3) in the form

ẋ = f̃(t, xt
t0
), (7)

where

f̃
(
t, xt

t0
) = f(t, u0 + E[t0, u0, (p(x(τ)) : t0 ≤ τ ≤ t), t− t0], x(t)

)
.

From our hypotheses (H1) – (H4) we conclude that f̃ is continuous w.r.t. both
t and x.

It is not hard to see that the initial problem (7)/(6) is equivalent, as usual,
to the integral equation

x(t) = x0 +

∫ t

t0

f̃(s, xs
t0
) ds. (8)

The right-hand side of (8) defines an integral operator

(Jx)(t) = x0 +

∫ t

t0

f̃(s, xs
t0
) ds
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which obviously maps C[t0, T ] into itself. We claim that this operator is con-
tinuous. In fact, let xn ∈ C[t0, T ] be a sequence with xn → x. The con-

tinuous map (t, x) 7→ f̃(t, xt
t0
) is uniformly continuous on the compact set

[t0, T ] × ({x1, x2, x3, . . .} ∪ {x}). Consequently, the functions f̃(t, (xn)t
t0
) con-

verge uniformly on [t0, T ] to the function f̃(t, xt
t0
). This shows that Jxn → Jx,

as n →∞, and so J is continuous as claimed.

By x0 we denote a function which coincides with x0 on [t0, T ]. Again by the

continuity of the map (t, x) 7→ f̃(t, xt
t0
) we can find a δ > 0 such that

‖f̃(t, xt
t0
)− f̃(t0, (x0)

t
t0
)‖ < 1 (|t− t0| < δ, ‖x− x0‖ < δ).

Consider the closed ball B(x0, δ) = {x ∈ C[t0, T ] : ‖x − x0‖ ≤ δ}, where
T − t0 < δ. For x ∈ B(x0) we get then

‖Jx− x0‖ ≤
∫ T

t0

‖f̃(s, (x0)
s
t0
)‖ ds ≤

(
1 + ‖f̃(t0, (x0)

t0
t0)‖

)
(T − t0).

So if we choose T ≤ δ(1 + ‖f̃(t0, (x0)
t0
t0)‖)−1 + t0, then certainly Jx ∈ B(x0, δ),

and so the ball B(x0, δ) is invariant under J .

We show that the family {Jx : x ∈ B(x0, δ)} is equicontinuous on [t0, T ].
In fact, for x ∈ B(x0, δ) and t0 ≤ t1 ≤ t2 ≤ T we have

‖(Jx)(t1)− (Jx)(t2)‖ ≤
∫ T

t0

‖f̃(s, (x0)
s
t0
)‖ ds ≤ (1 + ‖f̃(t0, (x0)

t0
t0)‖)(t2 − t1),

and so this family is equicontinuous. The classical Arzelà-Ascoli theorem implies
that the set J(B(x0, δ)) is relatively compact. Consequently, from Schauder’s
fixed point theorem we may conclude that the completely continuous operator
J has a fixed point x, which is then a solution of equation (7) and satisfies (6).
Choosing ∆ by means of this solution x, and putting h > min {∆, T − t0}, we
arrive at a pair of functions (u(t), x(t)) which solves the problem (2) – (6) on
the interval [t0, t0 + h].

3. Example: Hysteresis-type systems with stop

The mathematical modelling of some automatic regulation systems contain-
ing hysteresis elements of stop type lead to the problem (3) – (5). More pre-
cisely, the so-called stop-converter (see [6]) associated to an arbitrary continu-
ous function σ(t) may be described by equation (1) with function D(t, u, dt) =
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E(t, u, σt+dt
t , dt), where (see [4])

E(t, u, σt+dt
t , dt)) =


σ(t + dt)− σ(t) if u ∈ (0, 1)

σ(t + dt)− max
t≤s≤t+dt

σ(s) if u = 1

σ(t + dt)− min
t≤s≤t+dt

σ(s) if u = 0.

(9)

Clearly, the function (t, u, σ, dt) 7→ E(t, u, σt+dt
t , dt) is continuous w.r.t. (σ, dt).

Proposition 2. For any continuous input function σ, the stop equation is lo-
cally explicit.

Proof. Being a composition of continuous functions, the map dt 7→ D(t, u, dt)
is left-continuous on (0, T − t). We distinguish the three cases for u occurring
in (9). First, for u ∈ (0, 1) we have γt+dt

t u = u + σ(t + dt) − σ(t). In this case
we put

∆ =

{
T − t if u + σ(τ)− σ(t) ∈ (0, 1) for τ ∈ [t, T ),

min {τ ∈ [t, T ) : u + σ(τ)− σ(t) ∈ {0, 1}} − t otherwise.

Clearly, ∆ > 0. Now, for t ≤ t1 ≤ t2 < t + ∆ we have u + σ(t1)− σ(t) ∈ (0, 1),
hence

γt2
t1 γ

t1
t u = γt2

t1 [u + σ(t1)− σ(t)] (10)

= u + σ(t1)− σ(t) + σ(t2)− σ(t1) (11)

= γt2
t u. (12)

This is the desired semigroup property, where the term t + ∆ − t1 plays here
the role of the δ1 occurring in the definition of a locally explicit equation.

In case u = 1 we get γt+dt
t u = 1 + σ(t + dt)− max

t≤s≤t+dt
σ(s). In this case we

put

∆ =

T − t if σ(τ)− max
t≤s≤τ

σ(s) > −1 for τ ∈ [t, T )

min {τ ∈ [t, T ) : σ(τ)− max
t≤s≤τ

σ(s) = −1} − t otherwise.

Suppose that t ≤ t1 < t + ∆. Then either

either 1 + σ(t1)− max
t≤s≤t1

σ(s) = 1

or 1 + σ(t1)− max
t≤s≤t1

σ(s) ∈ (0, 1).
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In the first case we obtain σ(t1) = maxt≤s≤t1 σ(s), hence maxt1≤s≤t2 σ(s) =
maxt≤s≤t2 σ(s). This shows that, for t2 ∈ [t1, t1 + δ1) (with δ1 = t + ∆− t1), we
get

γt2
t1 γ

t1
t u = γt2

t1 1 = 1 + σ(t2)− max
t1≤s≤t2

σ(s) = γt2
t u.

On the other hand, in the second case we obtain σ(t1) < maxt≤s≤t1 σ(s). By
continuity we find δ1 > 0 such that σ(τ) < maxt≤s≤t1 σ(s) for τ ∈ [t1, t1 + δ1),
and thus

γt2
t1 γ

t1
t u = γt2

t1 [1 + σ(t1)− max
t≤s≤t1

σ(s)]

= 1 + σ(t1)− max
t≤s≤t1

σ(s) + σ(t2)− σ(t1)

= γt2
t u.

In both cases the desired semigroup property for the quasiflow follows again.
Finally, the remaining case u = 0 is proved similarly. Summarizing, we have
shown that the local solvability result for the Cauchy problem proved in the
preceding section applies to the system (3) – (5), where the function E is given
by (9), and so we are done.
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