On the Cauchy Problem for Systems Containing Locally Explicit Equations

Irina N. Pryadko

Abstract. In this paper we consider so-called locally explicit equations involving nonlinear differentials. Such equations are characterized by certain continuity and semigroup properties of the corresponding quasiflow and arise typically in the mathematical modelling of non-smooth mechanical and physical systems. Under some natural hypotheses, we prove the local solvability of the corresponding Cauchy problem by applying Schauder's fixed point principle to a suitable equivalent integral equation. Afterwards, we illustrate the abstract existence result by means of an application to an automatic regulation system involving a hysteresis element of stop type.

Keywords: Locally explicit equation, Cauchy problem, quasiflow, semigroup property, local solvability, hysteresis nonlinearity, non-smooth mechanical system

MSC 2000: Primary 34A36, secondary 34C55, 47H10, 93A30

1. Locally explicit equations

The purpose of this note is to prove a local existence theorem for solutions of the Cauchy problem for systems which contain so-called locally explicit equations with nonlinear differentials. An equation involving *nonlinear differentials* (or quasi-differential equation, see e.g. $[1,2]$ has the form

$$
u(t + dt) - u(t) = D(t, u(t), dt) + o(dt).
$$
 (1)

In what follows, we suppose throughout that the function $(t, u) \mapsto D(t, u, dt)$ is defined on some set $U \subseteq \mathbb{R} \times \mathbb{R}^m$, and the function $dt \mapsto D(t, u, dt)$ on some interval $[0, \alpha(t, u)]$. The range of the function D in (1) lies in \mathbb{R}^m , and we assume in addition that $D(t, u, 0) = 0$.

A *solution* of equation (1) is, by definition, a function $u = \varphi(t)$ which is left-continuous on some interval I and satisfies for all $t \in \tilde{I} = I \setminus {\text{sup } I}$ the

ISSN 0232-2064 / \$ 2.50 c Heldermann Verlag Berlin

Irina N. Pryadko: Voronezh State University, Department of Mathematics, Universitetskaya pl. 1, R-394006 Voronezh, Russian Federation; pryadko irina@mail.ru

relation

$$
\lim_{dt \to +0} \frac{1}{dt} \left[\varphi(t+dt) - \varphi(t) - D(t, \varphi(t), dt) \right] = 0.
$$

A solution φ is called a *strong solution* if for any $t \in \tilde{I}$ one can find a $\delta > 0$ such that

$$
\varphi(t+dt) - \varphi(t) - D(t, \varphi(t), dt) = 0 \qquad (0 \le dt < \delta).
$$

Consider the *quasiflow* [3] generated by equation (1), i.e.,

$$
\gamma_t^{t+dt} u = u + D(t, u, dt).
$$

The equation (1) is called *locally explicit* [4] if its quasiflow is left-continuous w.r.t. dt and has the following *semigroup property*: for all $(t, u) \in U$ there exists $\delta > 0$ such that for all $t_1 \in [t, t + \delta)$ one can find $\delta_1 > 0$ such that

$$
\gamma_{t_1}^{t_2} \gamma_t^{t_1} u = \gamma_t^{t_2} u \qquad (t_1 \le t_2 < t_1 + \delta_1).
$$

Given $(t, u) \in U$, we fix a corresponding δ and denote it by $\Delta = \Delta(t, u)$.

The following assertion on the existence of a strong solution to the locally explicit equation (1), subject to the initial condition

$$
u(t_0) = u_0,\t\t(2)
$$

was announced in [5]; for the reader's ease we give a short proof.

Proposition 1. For $(t_0, u_0) \in U$, the function $\varphi(t) = \gamma_{t_0}^t u_0$ is a strong solution of the problem $(1)/(2)$ on the interval $[t_0, t_0 + \Delta(t_0, u_0)].$

Proof. The initial condition (2) is an obvious consequence of the equality $D(t_0, u_0, 0) = 0$. Moreover, for $t \in [t_0, t_0 + \Delta(t_0, u_0))$ we have

$$
\varphi(t + dt) - \varphi(t) - D(t, \varphi(t), dt) = \gamma_{t_0}^{t + dt} u_0 - \gamma_{t_0}^t u_0 - D(t, \varphi(t), dt)
$$

=
$$
\gamma_{t_0}^{t + dt} u_0 - \gamma_t^{t + dt} \gamma_{t_0}^t u_0.
$$

By the definition of a locally explicit equation, the last term is zero for sufficiently small $dt > 0$, and so φ is a strong solution of equation (1).

2. Closed systems with locally explicit equations

Denoting $\Delta u = u(t + dt) - u(t)$, consider the system

$$
\dot{x} = f(t, u, x) \tag{3}
$$

$$
\sigma = p(x) \tag{4}
$$

$$
\Delta u = E(t, u, \sigma_t^{t+dt}, dt) + o(dt) \tag{5}
$$

subject to the initial conditions (2) for u , and the additional initial condition

$$
x(t_0) = x_0 \tag{6}
$$

for x. Given any function σ whose domain of definition contains the interval $[t, t + dt]$, we denote by σ_t^{t+dt} its restriction to this interval. Throughout the following, we make the following assumptions:

- (H1) The function $f: \mathcal{D}_1 \times \mathcal{D}_2 \times \mathcal{D}_3 \to \mathbb{R}^n$ is continuous, where $\mathcal{D}_1 \subseteq \mathbb{R}$ is some neighborhood of $t_0, \mathcal{D}_3 \subseteq \mathbb{R}^n$ is some neighborhood of x_0 , and $\mathcal{D}_2 \subseteq \mathbb{R}^m$.
- (H2) The function $p : \mathcal{D}_3 \to \mathbb{R}$ is continuous.
- (H3) The \mathbb{R}^m -valued function $(t, u, \sigma, dt) \mapsto E(t, u, \sigma_t^{t+dt}, dt)$ is defined for $t \in \mathcal{D}_1, u \in \mathcal{D}_2, \sigma \in C[t_0, T]$ (for some $T > t_0$), and $dt \in [0, +\infty)$, and the function $(\sigma, dt) \mapsto E(t, u, \sigma_t^{t+dt}, dt)$ is continuous.
- (H4) For any continuous function $\sigma : [t_0, T] \to \mathbb{R}$, the formula (5) defines a locally explicit equation with the function $D(t, u, dt) = E(t, u, \sigma_t^{t+dt}, dt)$.

Under these assumptions, we may now prove our main local existence result.

Theorem 1. If the hypostheses $(H1) - (H4)$ are satisfied, the problem $(3) - (6)$ has a solution on some interval $[t_0, t_0 + h](h > 0)$.

Proof. For any continuous function $x : [t_0, T] \to \mathbb{R}^n$ we consider the function u given by $u(t) = u_0 + E(t_0, u_0, \sigma_{t_0}^t, t - t_0)$, where σ is defined through x as in (4). Then the function u is a solution of equation (5) on some interval $[t_0, t_0 + \Delta)$, where Δ depends on (t_0, u_0) and on the choice of x, and so utakes its values in \mathcal{D}_2 . Consequently, one may rewrite equation (3) in the form

$$
\dot{x} = \tilde{f}(t, x_{t_0}^t),\tag{7}
$$

where

$$
\widetilde{f}(t, x_{t_0}^t) = f(t, u_0 + E[t_0, u_0, (p(x(\tau)) : t_0 \le \tau \le t), t - t_0], x(t)).
$$

From our hypotheses (H1) – (H4) we conclude that \tilde{f} is continuous w.r.t. both t and x .

It is not hard to see that the initial problem $(7)/(6)$ is equivalent, as usual, to the integral equation

$$
x(t) = x_0 + \int_{t_0}^t \tilde{f}(s, x_{t_0}^s) ds.
$$
 (8)

The right-hand side of (8) defines an integral operator

$$
(Jx)(t) = x_0 + \int_{t_0}^t \widetilde{f}(s, x_{t_0}^s) ds
$$

which obviously maps $C[t_0, T]$ into itself. We claim that this operator is continuous. In fact, let $x_n \in C[t_0,T]$ be a sequence with $x_n \to \overline{x}$. The continuous map $(t, x) \mapsto f(t, x_{t_0}^t)$ is uniformly continuous on the compact set $[t_0, T] \times (\{x_1, x_2, x_3, \ldots\} \cup \{\overline{x}\})$. Consequently, the functions $f(t, (x_n)_{t_0}^t)$ converge uniformly on $[t_0, T]$ to the function $f(t, \overline{x}_{t_0}^t)$. This shows that $Jx_n \to J\overline{x}$, as $n \to \infty$, and so J is continuous as claimed.

By \overline{x}_0 we denote a function which coincides with x_0 on $[t_0, T]$. Again by the continuity of the map $(t, x) \mapsto f(t, x_{t_0}^t)$ we can find a $\delta > 0$ such that

$$
\|\widetilde{f}(t, x_{t_0}^t) - \widetilde{f}(t_0, (\overline{x}_0)_{t_0}^t)\| < 1 \qquad (|t - t_0| < \delta, \|x - x_0\| < \delta).
$$

Consider the closed ball $B(\overline{x}_0, \delta) = \{x \in C[t_0, T] : ||x - x_0|| \leq \delta\}$, where $T-t_0 < \delta$. For $x \in B(\overline{x}_0)$ we get then

$$
||Jx - \overline{x}_0|| \le \int_{t_0}^T ||\widetilde{f}(s, (\overline{x}_0)^s_{t_0})|| ds \le (1 + ||\widetilde{f}(t_0, (\overline{x}_0)^{t_0}_{t_0})||)(T - t_0).
$$

So if we choose $T \leq \delta(1 + \|\widetilde{f}(t_0, (\overline{x}_0)_{t_0}^{t_0})\|)^{-1} + t_0$, then certainly $Jx \in B(\overline{x}_0, \delta)$, and so the ball $B(\overline{x}_0, \delta)$ is invariant under J.

We show that the family $\{Jx : x \in B(\overline{x}_0, \delta)\}\$ is equicontinuous on $[t_0, T]$. In fact, for $x \in B(\overline{x}_0, \delta)$ and $t_0 \le t_1 \le t_2 \le T$ we have

$$
||(Jx)(t_1)-(Jx)(t_2)|| \leq \int_{t_0}^T ||\widetilde{f}(s,(\overline{x}_0)_{t_0}^s)|| ds \leq (1+||\widetilde{f}(t_0,(\overline{x}_0)_{t_0}^t)||)(t_2-t_1),
$$

and so this family is equicontinuous. The classical Arzelà-Ascoli theorem implies that the set $J(B(\overline{x}_0, \delta))$ is relatively compact. Consequently, from Schauder's fixed point theorem we may conclude that the completely continuous operator J has a fixed point x, which is then a solution of equation (7) and satisfies (6). Choosing Δ by means of this solution x, and putting $h > \min{\Delta, T - t_0}$, we arrive at a pair of functions $(u(t), x(t))$ which solves the problem $(2) - (6)$ on the interval $[t_0, t_0 + h]$. П

3. Example: Hysteresis-type systems with stop

The mathematical modelling of some automatic regulation systems containing hysteresis elements of stop type lead to the problem $(3) - (5)$. More precisely, the so-called stop-converter (see [6]) associated to an arbitrary continuous function $\sigma(t)$ may be described by equation (1) with function $D(t, u, dt) =$ $E(t, u, \sigma_t^{t+dt}, dt)$, where (see [4])

$$
E(t, u, \sigma_t^{t+dt}, dt)) = \begin{cases} \sigma(t + dt) - \sigma(t) & \text{if } u \in (0, 1) \\ \sigma(t + dt) - \max_{t \le s \le t + dt} \sigma(s) & \text{if } u = 1 \\ \sigma(t + dt) - \min_{t \le s \le t + dt} \sigma(s) & \text{if } u = 0. \end{cases}
$$
(9)

Clearly, the function $(t, u, \sigma, dt) \mapsto E(t, u, \sigma_t^{t+dt}, dt)$ is continuous w.r.t. (σ, dt) .

Proposition 2. For any continuous input function σ , the stop equation is locally explicit.

Proof. Being a composition of continuous functions, the map $dt \mapsto D(t, u, dt)$ is left-continuous on $(0, T - t)$. We distinguish the three cases for u occurring in (9). First, for $u \in (0,1)$ we have $\gamma_t^{t+dt} u = u + \sigma(t + dt) - \sigma(t)$. In this case we put

$$
\Delta = \begin{cases}\nT - t & \text{if } u + \sigma(\tau) - \sigma(t) \in (0, 1) \\
\min \{\tau \in [t, T) : u + \sigma(\tau) - \sigma(t) \in \{0, 1\}\} - t & \text{otherwise.} \n\end{cases}
$$

Clearly, $\Delta > 0$. Now, for $t \le t_1 \le t_2 < t + \Delta$ we have $u + \sigma(t_1) - \sigma(t) \in (0, 1)$, hence

$$
\gamma_{t_1}^{t_2} \gamma_t^{t_1} u = \gamma_{t_1}^{t_2} [u + \sigma(t_1) - \sigma(t)] \tag{10}
$$

$$
= u + \sigma(t_1) - \sigma(t) + \sigma(t_2) - \sigma(t_1)
$$
\n(11)

$$
=\gamma_t^{t_2}u.\tag{12}
$$

This is the desired semigroup property, where the term $t + \Delta - t_1$ plays here the role of the δ_1 occurring in the definition of a locally explicit equation.

In case $u = 1$ we get $\gamma_t^{t+dt} u = 1 + \sigma(t + dt) - \max_{t \le s \le t+dt} \sigma(s)$. In this case we put

$$
\Delta = \begin{cases}\nT - t & \text{if } \sigma(\tau) - \max_{t \le s \le \tau} \sigma(s) > -1 & \text{for } \tau \in [t, T) \\
\min \{ \tau \in [t, T) : \sigma(\tau) - \max_{t \le s \le \tau} \sigma(s) = -1 \} - t & \text{otherwise.} \n\end{cases}
$$

Suppose that $t \leq t_1 < t + \Delta$. Then either

either
$$
1 + \sigma(t_1) - \max_{t \le s \le t_1} \sigma(s) = 1
$$

or $1 + \sigma(t_1) - \max_{t \le s \le t_1} \sigma(s) \in (0, 1)$.

In the first case we obtain $\sigma(t_1) = \max_{t \leq s \leq t_1} \sigma(s)$, hence $\max_{t_1 \leq s \leq t_2} \sigma(s)$ $\max_{t\leq s\leq t_2} \sigma(s)$. This shows that, for $t_2\in [t_1, t_1 + \delta_1)$ (with $\delta_1 = t + \Delta - t_1$), we get

$$
\gamma_{t_1}^{t_2} \gamma_t^{t_1} u = \gamma_{t_1}^{t_2} 1 = 1 + \sigma(t_2) - \max_{t_1 \le s \le t_2} \sigma(s) = \gamma_t^{t_2} u.
$$

On the other hand, in the second case we obtain $\sigma(t_1) < \max_{t \leq s \leq t_1} \sigma(s)$. By continuity we find $\delta_1 > 0$ such that $\sigma(\tau) < \max_{t \leq s \leq t_1} \sigma(s)$ for $\tau \in [t_1, t_1 + \delta_1)$, and thus

$$
\gamma_{t_1}^{t_2} \gamma_t^{t_1} u = \gamma_{t_1}^{t_2} [1 + \sigma(t_1) - \max_{t \le s \le t_1} \sigma(s)]
$$

= 1 + \sigma(t_1) - \max_{t \le s \le t_1} \sigma(s) + \sigma(t_2) - \sigma(t_1)
= \gamma_t^{t_2} u.

In both cases the desired semigroup property for the quasiflow follows again. Finally, the remaining case $u = 0$ is proved similarly. Summarizing, we have shown that the local solvability result for the Cauchy problem proved in the preceding section applies to the system $(3) - (5)$, where the function E is given by (9), and so we are done.

References

- [1] Panasyuk, A. I.: Quasi-differential equations in metric spaces (in Russian). Differ. Uravn. 21 (1985)8, 1344 – 1353; Engl. transl.: Differ. Equations 21 (1985)8, 914 – 921.
- [2] Kloeden, P. E., Sadovsky, B. N. and I. E. Vasilyeva: Quasiflows and equations with nonlinear differentials. Nonlinear Analysis 51 (2002), $1143 - 1158$.
- [3] Sadovsky, B. N.: On quasiflows (in Russian). In: Proc. Conf. VGU. Voronezh 1995, p. 80.
- [4] Pryadko, I. N. and B. N. Sadovsky: On the modelling of some hysteresis elements by means of locally explicit equations (in Russian). In: Modern Problems of Functional Analysis and Differential Equations (Proc. Intern. Conf. VGU) Voronezh: Voronezh State University 2003, pp. 196 – 197.
- [5] Pryadko, I. N. and B. N. Sadovsky: On the locally explicit modelling of some non-smooth systems (in Russian). Avtom. Telemekh. (to appear).
- [6] Krasnosel'sky, M. A. and A. V. Pokrovsky: Systems with Hysteresis (in Russian). Moscow: Nauka 1983; Engl. transl.: Berlin: Springer-Verlag 1989.

Received 06.04.2004; revised version 22.04.2004