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The Fundamental Matrix of the System of
Linear Micropolar Elasticity
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Abstract. We construct the fundamental matrix of the system of partial differential
operators governing the motion of linear micropolar elastic media in terms of deriva-
tives of distributions which are convolutions of the fundamental solutions to the wave
operator, the Klein-Gordon operator and the micropolar operator.
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1. Introduction and notations

The theory of an elastic continuum with oriented particles, the so-called mi-
cropolar medium or Cosserat medium, was created by two French scholars, the
brothers E. and F. Cosserat in 1909 (cf. [1]).

The foundations of this theory lay in a discrepancy between the classical
theory of elasticity and certain experiments, which becomes particularly obvi-
ous in dynamical problems, namely in the case of ultrasonic waves, vibrations of
granular bodies and bodies with large molecules, such as polymers. In micropo-
lar bodies the influence of the microstructure must be taken into consideration
and with each material particle is associated a perfectly rigid triad which in the
course of deformation can undergo not only a displacement but also a rotation.
As particles in an asymmetric elastic medium dispose of an orientation, the
deformation of the body is described by the displacement vector u(t,x) and an
independent rotation vector ϕ(t,x). The purpose of this paper is the construc-
tion of the fundamental matrix of the system of partial differential equations
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describing the motion of linear, homogeneous, isotropic and centrally symmetric
micropolar elastic bodies, which system has been derived by W. Nowacki and
is presented in [5] (cf. also[2]).

We use the following terminology and notations: By I3 we denote the 3× 3
identity matrix and the letters u, ϕ are used for vector fields on R3, the Heaviside
function is denoted by Y . S2 denotes the unit sphere in R3 and dω the surface
measure on S2, whereas B2 is the unit disc in R2. S ′ is the space of tempered
distributions. We use the following differentiation symbols:

∂t =
∂

∂t
, ∂i =

∂

∂xi

, ∇ = (∂1, ∂2, ∂3)
T, ∂ = (∂t,∇T), ∆3 = ∂2

1 + ∂2
2 + ∂2

3

and the following abbreviations for some frequently used scalar differential op-
erators:

W (∂) = ρ∂2
t − (µ + α + a)∆3

K(∂) = J∂2
t − (γ + ε + b)∆3 + 4α

W̃ (∂) = ρ∂2
t − (µ + α)∆3

K̃(∂) = J∂2
t − (γ + ε)∆3 + 4α

T (∂) = W̃ (∂)K̃(∂) + 4α2∆3

= (ρ∂2
t − (µ + α)∆3)(J∂2

t − (γ + ε)∆3) + 4αρ∂2
t − 4αµ∆3

Tpr(∂) = (ρ∂2
t − (µ + α)∆3)(J∂2

t − (γ + ε)∆3) .

For an operator P (∂) which is hyperbolic in direction N = (1, 0, 0, 0), we denote
by EP its unique fundamental solution with support in the half-space t ≥ 0,
cf. [4], Theorem 12.5.1.

2. The system of differential equations for a
micropolar elastic body

The influence of external loads X and Φ on a body results in a displacement
u(t,x) and a rotation ϕ(t,x). The relations fulfilled by these functions at a
space point x ∈ R3 at the time t for a linear, homogeneous, isotropic and
centrally symmetric micropolar elastic body have the form (cf. [5, p. 22, Sec-
tion 1.7., Equ. (6)f.]

ρü = (µ + α)∆3u + (λ + µ− α)∇∇Tu + 2α curl ϕ + X (1)

Jϕ̈ = (γ + ε)∆3ϕ + (β + γ − ε)∇∇Tϕ− 4αϕ + 2α curlu + Φ, (2)

where u is the displacement vector, ϕ the rotation vector and µ, λ, α, β, ε, γ, ρ, J
are real constants satisfying the conditions µ > 0, 3λ+2µ > 0, γ > 0, 3β+2γ >
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0, α > 0, ε > 0. The six equations in (1) and (2) can be written in matrix
form as

P (∂)

(
u
ϕ

)
=

(
X
Φ

)
, (3)

where P (∂), the matrix of partial differential operators of asymmetric elasticity,
has the form

P (∂) =

(
W̃ (∂)I3 − a∇∇T A(∇)

A(∇) K̃(∂)I3 − b∇∇T

)
,

where

A(∇) = 2α

 0 ∂3 −∂2

−∂3 0 ∂1

∂2 −∂1 0


and a = λ + µ− α, b = β + γ − ε.

3. The fundamental matrix of the system of
linear micropolar elasticity

The construction of a fundamental matrix EP of the system (3) can be reduced
to the construction of a fundamental solution ED of the scalar operator D(∂) =
det P (∂) by the formula EP = P ad(∂)ED. Therein P ad(∂) denotes the adjoint
matrix of P (∂), namely

P ad(∂) =

(
P ad

1 (∂) P ad
2 (∂)

P ad
2 (∂) P ad

3 (∂)

)
, (4)

where

P ad
1 (∂) = K(∂)T (∂)

(
K̃(∂)W (∂)I3 + (aK̃(∂) + 4α2)∇∇T

)
P ad

2 (∂) = −W (∂)K(∂)T (∂)A(∇)

P ad
3 (∂) = W (∂)T (∂)

(
W̃ (∂)K(∂)I3 + (bW̃ (∂) + 4α2)∇∇T

)
.

The matrix P (t,x) has the eigenvectors
(
x
0

)
and

(
0
x

)
with the respective eigen-

values W (t,x) and K(t,x) and this leads to the following factorization of the
determinant D(∂) = det P (∂):

D(∂) = W (∂)K(∂)T 2(∂),

i. e. P (∂) is the product of the wave operator W (∂), the Klein-Gordon-operator
K(∂) and the square of the operator T (∂). In the following, T (∂) will be referred
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to as the micropolar operator. In Section 4 it will be shown that the operator
T (∂) is hyperbolic with respect to N = (1, 0, 0, 0). As a product of opera-
tors which are hyperbolic in t–direction, the operator D(∂) = W (∂)K(∂)T 2(∂)
is also hyperbolic in t–direction and therefore possesses a unique fundamental
solution ED with support in the half–space t ≥ 0, which shows that the funda-
mental matrix EP of the operator P (∂) is unique and the supports of its entries
are contained in the half–space t ≥ 0. The fundamental solution of D(∂) is
given by ED = EW ∗ EK ∗ ET 2 . Upon applying the matrix operator P ad(∂)
given in (4) to ED some factors cancel resulting in the following formula for the
fundamental matrix EP of P (∂):

EP =

(
K̃(∂)ET I3 + M(∂)EW ∗ ET −A(∇)ET

−A(∇)ET W̃ (∂)ET I3 + N(∂)EK ∗ ET

)
with

M(∂) := (aK̃(∂) + 4α2)∇∇T

N(∂) := (bW̃ (∂) + 4α2)∇∇T .

4. The fundamental solution of the micropolar operator

For the construction of the fundamental solution of the micropolar operator we
use the following theorem ([7, Proposition 2, p. 447].

Theorem 1. Let N ∈ Rn \ {0} and

Pλ(∂) = P0(∂) + λ1P1(∂) + λ2P2(∂) + λ3P3(∂),

where λ = (λ1, λ2, λ3) ∈ S2, be a family of uniformly quasihyperbolic operators
with respect to N , i. e.

∃σ0 ∈ R : ∀σ > σ0 : ∀ξ ∈ Rn : ∀λ ∈ S2 : Pλ(σN + iξ) 6= 0. (5)

If Eλ denotes the uniquely determined fundamental solution to Pλ(∂)2 with the
properties

(i) supp Eλ ⊆ {x ∈ Rn; 〈x, N〉 ≥ 0} (6)

(ii) e−σ〈x,N〉 Eλ ∈ S ′ for some σ as in (5), (7)

then the operator P (∂) := P0(∂)2−P1(∂)2−P2(∂)2−P3(∂)2 is also quasihyper-
bolic with respect to N and its fundamental solution E with the properties (6)
and (7) is given by

E =
1

4π

∫
S2

Eλ d ω(λ).
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Remark. We will apply Theorem 1 in the case P (∂) = P0(∂)2−P1(∂)2−P2(∂)2,
i. e. P3(∂) = 0. This yields the formula (cf. [7, Remark in p. 448])

E =
1

2π

∫
B2

Eλ
dλ√

1− |λ|2
.

The micropolar operator T (∂) can be written in the form T (∂) = ρJT̃ ,
where

T̃ (∂) = ∂4
t − 2c∆3∂

2
t + 2d∂2

t + (c2 − e2)∆2
3 − 2(cd− ef)∆3

with

c :=
1

2

(
µ + α

ρ
+

γ + ε

J

)
, d :=

2α

J
, e :=

1

2

∣∣∣∣µ + α

ρ
− γ + ε

J

∣∣∣∣
f :=

1

e

(
cd− 2αµ

ρJ

)
=

α

eJ

(
α− µ

ρ
+

γ + ε

J

)
.

For e 6= 0 we can now represent T̃ (∂) as

T̃ (∂) = T̃0(∂)2 − T̃1(∂)2 − T̃2(∂)2

with

T̃0(∂) := ∂2
t − c∆3 + d, T̃1(∂) := e∆3 − f

T̃2(∂) := g :=
√

d2 − f 2 =
2α

Je

√
α

ρ

(
µ

ρ
− γ + ε

J

)
.

We now set

T̃λ(∂) := T̃0 + λ1T̃1 + λ2T̃2 = ∂2
t + (λ1e− c)∆3 + d− λ1f + λ2g

for λ2
1+λ2

2 ≤ 1, and we observe that the family T̃λ(∂) is uniquely quasihyperbolic
in direction N = (1, 0, 0, 0). By Theorem 1 and the above remark we conclude
that the operator T̃ (∂) and thus also T (∂) is quasihyperbolic in t–direction.
Since Tpr(N) 6= 0, operator T is also hyperbolic. Its unique fundamental solu-
tion with the properties (6) and (7) can be constructed from the fundamental
solution of the iterated Klein-Gordon operator Tλ(∂)2 given in [6, p. 166]:

ET̃ 2
λ

=
1

8π
J0

(√
(d− λ1f + λ2g)

(
t2 − |x|2

c− λ1e

))
Y
(√

c− λ1et− |x|
)

The result for ET is (cf. the computation in [7, p. 456 f.])

ET =
1

ρJ
ET̃ =

1

2πρJ

∫
λ2
1+λ2

2≤1

ET̃ 2
λ

dλ1dλ2√
1− λ2

1 − λ2
2

,
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and hence with λ2 =
√

1− λ2
1 cos ϕ and formula 6.684,1 in [3]

ET =
1

16π2ρJ

∫ 1

−1

∫ π

0

J0

(√(
d− λ1f + g

√
1− λ2

1 cos ϕ
)(

t2 − |x|2
c− λ1e

))
× Y

(√
c− λ1e t− |x|

)
dϕ dλ1

=
1

16πρJ

∫ 1

−1

J0

(√
1

2

(
A +

√
A2 −B2

))
× J0

(√
1

2

(
A−

√
A2 −B2

))
Y
(√

c− λ1et− |x|
)

dλ1,

where

A := (d− λ1f)

(
t2 − |x|2

c− λ1e

)
, B := g

√
1− λ2

1

(
t2 − |x|2

c− λ1e

)
.

This result can be further simplified and we conclude the following theorem.

Theorem 2. The micropolar operator

T (∂) = (ρ∂2
t − (µ + α)∆3)(J∂2

t − (γ + ε)∆3) + 4αρ∂2
t − 4αµ∆3

is hyperbolic for ρ, µ + α, J, γ + ε > 0. For µ+α
ρ

6= γ+ε
J

its unique fundamental
solution ET with support in t ≥ 0 is given by

ET =
1

16πρJ

∫ 1

−1

J0

(√
(1− λ)(d + f)

2

(
t2 − |x|2

c− λe

))
× J0

(√
(1 + λ)(d− f)

2

(
t2 − |x|2

c− λe

))
Y
(√

c− λet− |x|
)

dλ

=
1

16πρJ



0 if t ≤ |x|√
c+e∫ ct2−|x|2

et2

−1

J0

(√
Λ1

)
J0

(√
Λ2

)
dλ if |x|√

c+e
< t ≤ |x|√

c−e∫ 1

−1

J0

(√
Λ1

)
J0

(√
Λ2

)
dλ if t > |x|√

c−e
,

where

c :=
1

2

(
µ + α

ρ
+

γ + ε

J

)
, d :=

2α

J
, e :=

1

2

∣∣∣∣µ + α

ρ
− γ + ε

J

∣∣∣∣
f :=

1

e

(
cd− 2αµ

ρJ

)
=

α

eJ

(
α− µ

ρ
+

γ + ε

J

)
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and

Λ1,2 :=
(1± λ)(d∓ f)

2

(
t2 − |x|2

c− λe

)
=

(1± λ)α(ρe∓ ρc± µ)

ρJe

(
t2 − |x|2

c− λe

)
.

Proof. In the text above everything has been shown except that T (∂) is hy-
perbolic also if µ+α

ρ
= γ+ε

J
. But anyway the hyperbolicity of T (∂) follows from

Theorem 12.4.6. in [4], p. 115, since the term 4αρ∂2
t − 4αµ∆3 is weaker than

Tpr.
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