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Quadratic Spline Collocation
for Volterra Integral Equations
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Abstract. In the traditional step-by-step collocation method with quadratic splines
for Volterra integral equations an initial condition is replaced by a not-a-knot boun-
dary condition at the other end of the interval. Such a nonlocal method gives the
uniform boundedness of collocation projections for all parameters c ∈ (0, 1) characte-
rizing the position of collocation points between spline knots. For c = 1 the projection
norms have linear growth and, therefore, for any choice of c some general convergence
theorems may be applied to establish the convergence with two-sided error estimates.
The numerical tests supporting the theoretical results are also presented.
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1. Introduction

Probably the most widely used in practice and theoretically studied class of
methods for initial value problems of ordinary differential equations is that
of Runge-Kutta methods. The generalization of Runge-Kutta methods for
Volterra integral equations is given already by Pouzet [19] and Bel’tjukov [3].
An important development could be find in [4], see also [5]. Runge-Kutta meth-
ods are fully discretized and give a finite number of approximate values (in grid
points) to the exact solution. Spline collocation for integral equations requires
the evaluation of integrals but gives a function as approximate solution which
is principal advantage in comparison with Runge-Kutta methods. In addition,
spline method allows to speak about retainment of smoothness proper to exact
solution. Let us mention that, with suitable evaluation of integrals by inter-
polatory quadratures, in some special cases like, e.g., the equations generated
by ordinary differential equations, the spline collocation is equivalent to Runge-
Kutta methods. For details, see [5].

The step-by-step collocation methods with piecewise polynomials have been
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studied in detail for different kind of equations under various assumptions and,
as a rule, the convergence results are positive, see, e.g., [6]. The stability analysis
in this case (see [16] and references therein) gives an additional explication why
it is so. But piecewise polynomials, being only continuous in best configurations
of collocation parameters, do not preserve the smoothness of the exact solution.
Our research is justified by the need to have a C1 smoothness preserving stable
method for solving Volterra integral equations. Here the quadratic splines as
approximate solutions are a natural choice.

The polynomial spline collocation with step-by-step implementation is one
of the most practical methods for solving Volterra integral equations of the
second kind. This method is known to be unstable for cubic and higher order
smooth splines (see [7, 9, 16, 17]). In the case of quadratic splines of class
C1 the stability region consists only of one point [16]. In this paper we replace
the first derivative condition, which is required by the standard quadratic spline
collocation, by a not-a-knot boundary condition at the other end of the interval.
This method cannot be any more implemented step-by-step and, in the case of
linear integral equation, needs the solution of a linear system which can be
successfully done by Gaussian elimination. On the other hand, we get the
stability in the whole interval of collocation parameter. For comparison, the
nonlocal method with cubic splines (see [18]) gives the stability in the same
interval of collocation parameter as in the case of the traditional collocation
with linear splines [16]. We also point out that our nonlocal method does not
need the use of derivative of the exact solution (or an approximant of it) at
starting point. Solving, for example, a weakly singular equation where the
solution is typically only continuous and the derivative is unbounded in the
neighborhood of a starting point, we cannot use the traditional step-by-step
collocation.

We will see that the stability of the method implies the convergence in uni-
form norm. This is due to general convergence theorems for operator equations.
The main assumption in the classical convergence theorem for the second kind
operator equations is the compactness of the operator, and this allows to apply
these results to a quite wide class of equations, including, for example, those
with weakly singular kernel.

Choosing the collocation parameter c ∈ (0, 1) we prove the uniform in the
number of knots boundedness of projection operators. This allows us to apply
the classical convergence theorem. In the case c = 1 the sequence of projection
operators is unbounded. Nevertheless, we succeeded in proving the regular
convergence of operators in approximate equations. This implies two-sided error
estimates which guarantee the convergence for smooth solutions. To this end,
we explore another technique and a different representation of quadratic splines.

An m-stage Runge-Kutta method has the rate of convergence (at grid
points) O(hm), and this may be somewhat increased with special choice of
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parameters. Collocation with quadratic splines (step-by-step or nonlocal) cor-
responds to m = 1 but this has the rate O(h3) on the whole interval of integra-
tion, due to the approximation properties of quadratic splines. Remark that all
the methods under discussion here have the same complexity O(h−2).

2. Description of the method

Consider the Volterra integral equation

y(t) =

∫ t

0

K(t, s, y(s))ds+ f(t), t ∈ [0, T ] (2.1)

with given functions f : [0, T ] → R, K : S × R → R and the set S = {(t, s) :
0 ≤ s ≤ t ≤ T}.

A mesh ∆N : 0 = t0 < t1 < . . . < tN = T representing spline knots will
be used and as the process N → ∞ is allowed, the knots ti depend on N .
Denote hi = ti − ti−1. Then, for given collocation parameter c ∈ (0, 1], define
collocation points τi = ti−1 + chi, i = 1, . . . , N . In order to determine the
approximate solution u of the equation (2.1) as a quadratic spline of class C1

(denote this space by S2(∆N)), we impose the following collocation conditions:

u(τi) =

∫ τi

0

K(τi, s, u(s))ds+ f(τi), i = 1, . . . , N . (2.2)

Since dimS2(∆N) = N + 2 it is necessary to give two additional conditions
which we choose

u(0) = y(0),

u′′(tN−1 − 0) = u′′(tN−1 + 0).
(2.3)

Let the operator PN : C[0, T ] → C[0, T ] be such that for any v ∈ C[0, T ] we
have PNv ∈ S2(∆N) and

(PNv)(0) = v(0),

(PNv)(τi) = v(τi), i = 1, . . . , N,

(PNv)
′′(tN−1 − 0) = (PNv)

′′(tN−1 + 0).

 (2.4)

Let us introduce, for a moment, the vector of knots

σ : s1 = s2 = s3 = t0 < s4 = t1 < . . . < sN+1 = tN−2

< sN+2 = tN = sN+3 = sN+4
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and corresponding B-splines B1,2,σ, . . . , BN+1,2,σ, which are linearly independent
functions. These B-splines form a basis in the spline space

S2 (∆̃N) = S2(∆N) ∩ {f : f ′′(tN−1 − 0) = f ′′(tN−1 + 0)},

where ∆̃N means the grid t0 < t1 < . . . < tN−2 < tN . The Schoenberg-
Whitney conditions [21, p.171] applied in the quadratic case ensure that the
interpolation problem (2.4) to determine PNv =

∑
1≤i≤N+1 ciBi,2,σ has a unique

solution. Thus, the operator PN is correctly defined. It is clear that PN is a
linear projection onto the space S2(∆̃N).

We consider also the integral operator defined by

(Ku)(t) =

∫ t

0

K(t, s, u(s))ds, t ∈ [0, T ]. (2.5)

Lemma 2.1. The spline collocation problem (2.2), (2.3) is equivalent to the
equation

u = PNKu+ PNf, u ∈ S2(∆̃N). (2.6)

Proof. The proof is a standard calculation based on the property of PN that
PNv = 0 if and only if v(0) = 0, v(τi) = 0, i = 1, . . . , N . Indeed, then (2.6)
is equivalent to the equalities (u −Ku − f)(0) = 0 and (u −Ku − f)(τi) = 0,
i = 1, . . . , N . The first one of them is equivalent to u(0) = f(0) or u(0) = y(0)
because y(0) = f(0). Using the definition of the operator K, the equalities in
τi are just (2.2).

3. Uniform boundedness of projections

We would apply general convergence theorems for operator equations. In the
classical case, one of the assumptions is the convergence of the sequence of
approximating operators PN to the identity or injection operator. Thus, the
uniform boundedness of the sequence PN is the key problem in the study of the
collocation method (2.2), (2.3).

Fix a number c ∈ (0, 1). Given any function f ∈ C[0, T ], let us consider
S = PNf ∈ S2(∆N) determined by the conditions

S(0) = f(0),

S(τi) = f(τi), i = 1, . . . , N

S ′′(tN−1 − 0) = S ′′(tN−1 + 0).

 (3.1)

Denote Si,c = S(τi) and mi = S ′(ti). Using t = ti−1 + τhi, we have the repre-
sentation of S for t ∈ [ti−1, ti]

S(t) = Si,c +
hi

2
(τ − c)

((
2− (c+ τ)

)
mi−1 + (c+ τ)mi

)
. (3.2)
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The continuity of S in the knots, i.e. S(ti − 0) = S(ti + 0), gives

(1− c)2himi−1 +
(
(1− c2)hi + c(2− c)hi+1

)
m+c

2hi+1mi+1

= 2
(
f(τi+1)− f(τi)

)
, i = 1, . . . , N − 1.

(3.3)

The initial condition S(0) = f(0) adds the equation

c(2− c)h1m0 + c2h1m1 = 2
(
f(τ1)− f(0)

)
, (3.4)

and the not-a-knot requirement at tN−1 could be written in the form

hNmN−2 − (hN−1 + hN)mN−1 + hN−1mN = 0. (3.5)

The equation (3.5) yields

mN =
(
1 +

hN

hN−1

)
mN−1 −

hN

hN−1

mN−2. (3.6)

Then, eliminating mN in (3.3) using (3.6), we write (3.4) and (3.3) as follows:

β0m0 + γ0m1 = g0

αimi−1 + βimi + γimi+1 = gi, i = 1, . . . , N − 2

αN−1mN−2 + βN−1mN−1 = gN−1 ,

 (3.7)

where we denote

β0 =
2− c

2(1− c)
, γ0 =

c

2(1− c)
, g0 =

1

c(1− c)

f(τ1)− f(0)

h1

and

λi =
hi

hi + hi+1

µi = 1− λi =
hi+1

hi + hi+1

 i = 1, . . . , N − 1

αi =
1− c

2c
λi

βi =
1 + c

2c
λi +

2− c

2(1− c)
µi

γi =
c

2(1− c)
µi


i = 1, . . . , N − 2

αN−1 =
1− c

2c
λN−1 −

c

2(1− c)

hN

hN−1

µN−1

βN−1 =
1 + c

2c
λN−1 +

2− c

2(1− c)
µN−1 +

c

2(1− c)

hN

hN−1

,
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and finally

gi =
1

c(1− c)

f(τi+1)− f(τi)

hi + hi+1

, i = 1, . . . , N − 1.

It is straightforward to check that, in the system (3.7), the difference of domi-
nation in rows is 1 and even greater than 1 in the last equation. Hence,

max
0≤i≤N−1

|mi| ≤ max
0≤i≤N−1

|gi| (3.8)

and, in addition,

|mN | ≤
(
1 + 2

hN

hN−1

)
max

0≤i≤N−1
|gi|. (3.9)

Our aim now is to estimate the norms of projections PN in the space C[0, T ].
In this section, in the sequel, we assume that the sequence of meshes ∆N is
quasi-uniform, i.e. there is a constant r such that hmax/hmin ≤ r where hmax =
max1≤i≤N hi and hmin = min1≤i≤N hi. Then, for any function f ∈ C[0, T ], we
have

|gi| ≤
1

c(1− c)hmin

‖f‖C[0,T ], i = 1, . . . , N − 1

|g0| ≤
2

c(1− c)hmin

‖f‖C[0,T ].

The representation (3.2), the quasi-uniformity of the meshes and the obtained
estimates (3.8), (3.9) allow to get

‖PNf‖C[0,T ] = max
1≤i≤N

max
t∈[ti−1,ti]

|S(t)|

≤ ‖f‖C[0,T ] + hmax max
0≤i≤N

|mi|

≤ const ‖f‖C[0,T ] ,

where the constant is independent of N and h, but it depends on c and r. We
have proved the following

Proposition 3.1. For c ∈ (0, 1), in the case of quasi-uniform meshes, the
projections PN defined by (2.4) are uniformly bounded in the space C[0, T ].

Note that similar quadratic spline projections are studied in [11]. Let us
mention that quadratic spline projections on an arbitrary sequence of meshes
could be not uniformly bounded in the space C[0, T ] (see [23]).

Next, we will study the behavior of ‖PN‖ in the space C[0, T ] for c = 1. We
restrict ourselves to the case of uniform mesh, i.e. we suppose that hi = h =
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T/N, i = 1, . . . , N . Assume that the mesh ∆N is complemented with knots
ti = ih for i = −2, − 1 and i = N + 1, N + 2. We will use the B-splines

Bi(t) =
1

h2


(t− ti−1)

2, t ∈ [ti−1, ti]

2h2 − (ti+1 − t)2 − (t− ti)
2, t ∈ [ti, ti+1]

(ti+2 − t)2, t ∈ [ti+1, ti+2].

They are normalized with the condition

N∑
i=−1

Bi(t) = 2, t ∈ [0, T ].

Given any function f ∈ C[0, T ], let us consider u = PNf =
∑

−1≤j≤N cjBj,
which is equivalent to the conditions

u(ti) = f(ti), i = 0, . . . , N

u′′(tN−1 − 0) = u′′(tN−1 + 0).
(3.10)

We write (3.10) in the form of a linear system to determine the coefficients cj
as follows: 

1 1 0 0 0 · · · 0
0 1 1 0 0 · · · 0
0 0 1 1 0 · · · 0

. . . . . . . . .

0 · · · 0 0 1 1
0 · · · −1 3 −3 1





c−1

c0
c1
...

cN−1

cN


=



f0

f1

f2
...

fN

0


(3.11)

with fi = f(ti), i = 0, . . . , N . The system (3.11) has the unique solution
because the determinant of its matrix is different from zero. Actually, the
solution of (3.11) is

cN =
1

8
(fN−2 − 4fN−1 + 7fN)

cN−1 =
1

8
(−fN−2 + 4fN−1 + fN)

cN−2 =
1

8
(fN−2 + 4fN−1 − fN)

cN−3 =
1

8
(7fN−2 − 4fN−1 + fN)

cN−4 = fN−3 − cN−3

ci = fi+1 − fi+2 + . . .+ (−1)N−ifN−3 + (−1)N−i+1cN−3

i = N − 5, . . . ,−1.



(3.12)
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This allows to get

‖PNf‖C[0,T ] ≤ 2 max
−1≤i≤N

|ci| ≤ 2N‖f‖C[0,T ].

Consider the function f ∈ C[0, T ] such that f(ti) = (−1)i, i = 0, . . . , N , being
linear between the knots ti. Then, for example, for i = 2 with N →∞ we have

‖PNf‖C ≥ |(PNf)(ti)| = |ci−1Bi−1(ti) + ciBi(ti) + ci+1Bi+1(ti)| ≈ N‖f‖C .

Thus, ‖PN‖ ≥ const ·N . It is established that the sequence ‖PN‖ has order N
as N →∞.

In [15] the norm of the quadratic spline interpolation operators is explicitly
calculated for the case of interpolation conditions which are actually the same
as in the classical step-by-step collocation. This formula implies the order N
of these projections. Let us mention that the results in [20] do not yield this
asymptotics of the projection norms.

4. General convergence theorems

In this section we present some general convergence theorems for operator equa-
tions which will be applied to the equation (2.1) in the linear case.

Let E and F be Banach spaces, L(E,F ) and K(E,F ) spaces of linear
continuous and linear compact operators. Suppose we have an equation

u = Ku+ f , (4.1)

where K ∈ K(E,E) and f ∈ E. Let be given a sequence of approximating
operators PN ∈ L(E,E), N = 1, 2, . . . . Consider also equations

uN = PNKuN + PNf. (4.2)

The following theorem for second kind equations may be called classical because
it is one of the most important tools in the theory of approximate methods for
integral equations (see [1, 8]).

Theorem 4.1. Suppose u = Ku only if u = 0 and PNu → u for all u ∈ E as
N →∞. Then:

1) Equation (4.1) has the unique solution u∗.

2) There exists a number N0 such that for N ≥ N0, equation (4.2) has the
unique solution u∗N .

3) u∗N → u∗ as N →∞.
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4) There are constants C1, C2, C3 > 0 such that

C1‖PNu
∗ − u∗‖ ≤ ‖u∗N − u∗‖ ≤ C2‖PNu

∗ − u∗‖ (4.3)

‖u∗N − PNu
∗‖ ≤ C3‖K(PNu

∗ − u∗)‖ . (4.4)

Note that this theorem can be deduced from more general ones [13, 22].
The reader can find the following notions and results, for instance, in [22].

The sequence of operators AN ∈ L(E,F ) is said to be stably convergent
to the operator A ∈ L(E,F ) if AN converges to A pointwise (i.e. ANx → Ax
for all x ∈ E) and there is N0 such that for N ≥ N0, A

−1
N ∈ L(F,E) and

‖A−1
N ‖ ≤ const. The sequence AN is said to be regularly convergent to A if AN

converges to A pointwise and if xN is bounded and ANxN compact, then xN is
compact itself. The sequence AN is said to be compactly convergent to A if AN

converges to A pointwise and if xN is bounded, then ANxN is compact.

Theorem 4.2. Having PNf → f and compact convergence of PNK to K in-
stead of PNu→ u for all u ∈ E, the assertions of Theorem 4.1 hold.

Consider the equations

Au = f (4.5)

ANuN = fN (4.6)

with A,AN ∈ L(E,F ) and f, fN ∈ F .

Theorem 4.3. The following two conditions are equivalent:

1) ImA = F , AN converges to A stably.

2) KerA = {0}, AN are Fredholm operators of index 0 for N ≥ N0 with some
N0, and AN converges to A regularly.

If one of them is satisfied, then equation (4.5) has the unique solution u∗. There
exists a number N0 such that for N ≥ N0, the equations (4.6) are uniquely
solvable. If fN converges to f , then uN converges to u with the estimate

C1‖ANu
∗ − fN‖ ≤ ‖u∗N − u∗‖ ≤ C2‖ANu

∗ − fN‖.

Remark 4.4. Without presenting the details let us mention that, for the ge-
neral equation (4.1) with a nonlinear operator K, it holds a counterpart of
Theorem 4.1 ensuring the two-sided error estimate (4.3) provided the projec-
tions PN converge pointwise to the identity operator (see [14], Section 50.2).
This theorem needs the complete continuity, i.e. continuity and compactness,
of the nonlinear operator K which is guaranteed for the operator (2.5) in the
space C[0, T ] by the continuity of the kernel K(t, s, u) (see [12], Chapter 1, Sec-
tion 3). We prove the convergence of PN in the next section (see Lemma 5.1).
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5. Application of the classical convergence theorem

In this section we show that, for c ∈ (0, 1), Theorem 4.1 is applicable to the
equation (2.1). Suppose that the sequence of meshes ∆N is quasi-uniform.

Lemma 5.1. For c ∈ (0, 1), the projection operators PN defined by (2.4) con-
verge pointwise to the identity, i.e. PNf → f in C[0, T ] for all f ∈ C[0, T ] as
N →∞.

Proof. Choose any c ∈ (0, 1). For given f ∈ C1[0, T ], let S and z be quadratic
splines satisfying (3.1) for the chosen c and for c = 1/2 respectively. Taking
into account S = PNf , ‖PN‖ ≤ const and ‖z − f‖C → 0 (see [10]), we get

‖S − f‖C ≤ ‖S − z‖C + ‖z − f‖C

= ‖PN(f − z)‖C + ‖z − f‖C

≤ const‖f − z‖C + ‖z − f‖C → 0.

This means that ‖PNf − f‖ → 0 for all f ∈ C1[0, T ]. Using the Banach-
Steinhaus theorem, we get the convergence of the sequence of operators PN to
the identity operator everywhere in the space C[0, T ], since C1[0, T ] is dense in
C[0, T ]. The proof is completed.

Taking E = C[0, T ], the integral operator

(Ku)(t) =

∫ t

0

K(t, s)u(s)ds, u ∈ C[0, T ], (5.1)

and using Lemma 5.1, Theorem 4.1 directly yields

Theorem 5.2. Suppose the kernel K is such that K is compact, u = Ku holds
only for u = 0, and c ∈ (0, 1). Then the method (2.2), (2.3) is convergent in
C[0, T ] and the estimates (4.3) and (4.4) hold.

6. Compact convergence

We have already shown that our method is stable for c ∈ (0, 1). In the case c = 1
the sequence of operators PN is unbounded. So we cannot apply the classical
convergence theorem. Taking into consideration Theorem 4.2, it is justified to
ask whether there is the compact convergence of PNK to K. First we state

Proposition 6.1. Suppose the operator K is given by (5.1), where K(t, s) is
continuous in {(t, s)| 0 ≤ s ≤ t ≤ T} and continuously differentiable with
respect to t. Then the sequence PNK converges strongly to K in C[0, T ].
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Proof. For given u ∈ C[0, T ], denote f = Ku. Then f ∈ C1[0, T ]. Let S be
the quadratic spline interpolant determined by (3.1) in the case c = 1/2. It is
known that ‖S − f‖C[0,T ] ≤ const · h ω(f ′) (see [10]), where ω(·) is the modulus
of continuity. We obtain

‖PNf − f‖C ≤ ‖PN‖‖(f − S)‖+ ‖S − f‖.

The last norm converges to 0, and

‖PN‖‖f − S‖ ≤ (const ·N)(const · h ω(f ′)) ≤ const ω(f ′) → 0.

Hence, ‖PNKu−Ku‖ → 0 for all u ∈ C[0, T ], which completes the proof.

Let us focus our attention on the operator (Ku)(t) =
∫ t

0
u(s)ds. Consider

in the rest of this section (and in the following section, too) the uniform mesh,
i.e. suppose that hi = h = T/N, i = 1, . . . , N .

Choose the sequence of functions uN ∈ C[0, T ] such that, for i = 1, . . . , N
and sufficiently small δ = δ(N) > 0,

uN(t) =

{
1 for all t ∈ [ti−1 + δ, ti − δ], i even

−1 for all t ∈ [ti−1 + δ, ti − δ], i odd,

uN being linear for t ∈ [ti−δ, ti +δ], i = 1, . . . , N−1, and constant in [t0, t0 +δ]
and [tN−δ, tN ]. Obviously, ‖uN‖ = 1. Defining fi = f(ti) = (KuN)(ti), we have
f0 = 0, fi = −h+ δ/2 for i = 1, 3, . . . , fi = −δ/2 for i = 2, 4, . . . , fN = 0 for N
even and fN = −h for N odd. Taking, for example, δ = O(h2), and using the
equalities (3.12), we calculate for large N and relatively small i the coefficients
ci = T/2+O(h), i = −1, 1, . . . , and ci = −T/2+O(h), i = 0, 2, . . . . The values
of B-splines Bi(ti +h/2) = 3/2 and Bi−1(ti +h/2) = Bi+1(ti +h/2) = 1/4 allow
to get for i odd

2
(
PNKuN

)(
ti +

h

2

)
=

i+1∑
j=i−1

cjBj

(
ti +

h

2

)
=
T

2
+O(h)

(
PNKuN

)(
ti−1 +

h

2

)
=

i∑
j=i−2

cjBj

(
ti−1 +

h

2

)
= −T

2
+O(h).

Hence,

|
(
PNKuN

)(
ti +

h

2

)
−

(
PNKuN

)(
ti−1 +

h

2

)
| = T +O(h),

which means that the functions PNKuN , as N →∞ or h→ 0, are not equicon-
tinuous and, therefore, the sequence PNKuN is not compact. We have proved

Proposition 6.2. For (Ku)(t) =
∫ t

0
u(s)ds, the sequence PNK does not con-

verge compactly to K in the case c = 1 as N →∞.
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7. Regular convergence

Our purpose in this section is to prove the regular convergence of operators
I −PNK to I −K in the case c = 1 by using a new representation of quadratic
splines. Recall that the mesh is assumed to be uniform.

Given a function f ∈ C[0, T ], let S = PNf ∈ S2(∆N) be such that

S(ti) = f(ti), i = 0, . . . , N

S ′′(tN−1 − 0) = S ′′(tN−1 + 0).

Denote Si = S(ti) and Si−1/2 = S(ti−1 + h/2). Using t = ti−1 + τh, we get the
representation of S for t ∈ [ti−1, ti]

S(t) = (1− τ)(1− 2τ)Si−1 + 4τ(1− τ)Si−1/2 + τ(2τ − 1)Si. (7.1)

The continuity of S ′ in the knots ti, i.e. S ′(ti − 0) = S ′(ti + 0), leads to the
equations

Si−1 + 6Si + Si+1 = 4(Si−1/2 + Si+1/2), i = 1, . . . , N − 1.

The not-a-knot boundary condition gives

SN − SN−2 = 2(SN−1/2 − SN−3/2).

Considering the values Si = fi = f(ti), i = 0, . . . , N , as known data we have
the system 

1 1 0 0 · · · 0
0 1 1 0 · · · 0

. . . . . .

0 · · · 0 1 1
0 · · · 0 −1 1





S1/2

S3/2
...

SN−3/2

SN−1/2


=



d1

d2
...

dN−1

dN


, (7.2)

where di = (fi−1 + 6fi + fi+1)/4, i = 1, . . . , N − 1, and dN = (fN − fN−2)/2.
However, the matrix of (7.2) is regular because its determinant is equal to 2.
By direct calculation we obtain

SN−1/2 =
1

8

(
− fN−2 + 6fN−1 + 3fN

)
SN−3/2 =

1

8

(
3fN−2 + 6fN−1 − fN

)
SN−5/2 =

1

8

(
2fN−3 + 9fN−2 − 4fN−1 + fN

)
Sk−1/2 =

1

4

(
fk−1 + 5fk

)
− fk+1 + fk+2 − . . .

+
(−1)N−k

8

(
7fN−2 − 4fN−1 + fN

)
, k = N − 3, . . . , 1.



(7.3)
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Now, having Si, i = 0, . . . , N , and Si−1/2, i = 1, . . . , N , the spline S is deter-
mined by (7.1).

In the assumptions of Proposition 6.1 we have the strong convergence of
I − PNK to I −K.

Theorem 7.1. Suppose that the functions K and ∂K/∂t are continuous in
{(t, s)| 0 ≤ s ≤ t ≤ T}. Then, for c = 1 and for K defined by (5.1), the
convergence of I − PNK to I −K is regular.

Proof. Choose a sequence gN ∈ C[0, T ] such that ‖gN‖ ≤ 1. Assume that
the sequence (I − PNK)gN is compact. We have to show the compactness of
gN . Denote here S = PNKgN and use the values Si and Si−1/2 of S as before.
However, we have to keep in mind that they depend on N .

The continuity of K and ∂K/∂t ensures also the uniform continuity and
boundedness, thus, there are numbers M and M1 such that |K(t, s)| ≤ M and
|(∂K/∂t)(t, s)| ≤M1 on {(t, s)| 0 ≤ s ≤ t ≤ T}.

For t ∈ [tk−1, tk], k = 1, . . . , N , we have

gN(t)− (PNKgN)(t) = gN(t)− S(t)

= gN(t)−
(
(1− 2τ)(1− τ)Sk−1

+ 4τ(1− τ)Sk−1/2 + τ(2τ − 1)Sk

)
.

The difference

Sk−1 − (KgN)(t) =

∫ tk−1

0

K(tk−1, s)gN(s)ds−
∫ t

0

K(t, s)gN(s)ds

=

∫ tk−1

0

(
K(tk−1, s)−K(t, s)

)
gN(s) ds−

∫ t

tk−1

K(t, s)gN(s)ds

goes to zero uniformly on [0, T ] as h→ 0 because of the uniform continuity and
boundedness of K. Similarly, Sk − (KgN)(t) → 0 uniformly on [0, T ] as h→ 0.
Using (2τ − 1)2 + 4τ(1− τ) = 1, we obtain

gN(t)− S(t) = gN(t)− (KgN)(t)− 4τ(1− τ)
(
Sk−1/2 − (KgN)(t)

)
+ (G1

NgN)(t),

where G1
NgN → 0 in C[0, T ]. Here, the sequence KgN is compact. To establish

the compactness of gN , we will study the term Sk−1/2 − (KgN)(t).

Taking fi = (KgN)(ti) and let us write Sk−1/2 from (7.3) in the form

Sk−1/2 = fk +
1

2

N∑
i=k

(−1)i−k+1(fi−1 − fi) +O(h).
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Using again Sk − (KgN)(t) → 0 as h→ 0 uniformly on [0, T ], we get

Sk−1/2 − (KgN)(t) =
1

2

N∑
i=k

(−1)i−k(fi − fi−1) + (G2
NgN)(t)

with G2
NgN → 0 in C[0, T ]. Denote

Ik(gN) =

∫ tk

tk−1

K(tk, s)gN(s)ds.

Then

fk − fk−1 =

∫ tk

tk−1

K(tk, s)gN(s)ds+

∫ tk−1

0

(
K(tk, s)−K(tk−1, s)

)
gN(s)ds

= Ik(gN) + h

∫ tk−1

0

∂K
∂t

(ξk, s)gN(s)ds

where ξk ∈ [tk−1, tk]. Again, we have

(fk − fk−1)− (fk+1 − fk) = Ik(gN)− Ik+1(gN)

− h

∫ tk−1

0

(∂K
∂t

(ξk+1, s)−
∂K
∂t

(ξk, s)
)
gN(s) ds

− h

∫ tk

tk−1

∂K
∂t

(ξk+1, s)gN(s) ds.

In this expression, the uniform continuity of ∂K/∂t allows to estimate the first
integral by εNh with εN → 0 as h→ 0 and the second one by M1h

2. Summing
up all the differences (fk − fk−1) − (fk+1 − fk) (if there are an odd number of
terms fk − fk−1 it suffices to observe that, in fact, fk − fk−1 = Ik(gN) +O(h)),
we get

N∑
i=k

(−1)i−kIi(gN) + rN

with rN → 0 as h→ 0. We arrived at

gN(t)− (PNKgN)(t) = gN(t)− (KgN)(t)

− 2τ(1− τ)
N∑

i=k

(−1)i−kIi(gN) + (G3
NgN)(t) ,

(7.4)

where G3
NgN → 0 in C[0, T ].



Quadratic Spline Collocation for VIE 847

Denoting αN(t) = 2τ(1 − τ), define the operators QN : C[0, T ] → C[0, T ]
and the functions ϕN ∈ C[0, T ] by

(QNgN)(t) = αN(t)
N∑

i=k

(−1)i−kIi(gN)

ϕN = gN −QNgN .

(7.5)

Clearly, (7.4) yields the compactness of ϕN . For t ∈ [tN−1, tN ], from ϕN(t) =
gN(t) − αN(t)IN(gN) we get IN(ϕN) = IN(gN) − IN(αN)IN(gN). Denoting
λk = Ik(αN), k = 1, . . . , N , we see that |λk| ≤ Mh/2. Thus, for sufficiently
small h, taking µk = 1/(1− λk), we have IN(gN) = µNIN(ϕN). Now, induction
leads to

N∑
i=k

(−1)i−kIi(gN) =
N∑

i=k

(−1)i−k
( i∏

j=k

µj

)
Ii(ϕN).

Let RN : C[0, T ] → C[0, T ] be defined by

(RNϕN)(t) = αN(t)
N∑

i=k

(−1)i−k
( i∏

j=k

µj

)
Ii(ϕN). (7.6)

Write (7.5) in the form

gN = ϕN +RNϕN . (7.7)

Hence,
QNgN = QNϕN +QNRNϕN .

Replacing QNgN in (7.5) by the last formula, we obtain

gN = ϕN +QNϕN +QNRNϕN . (7.8)

Now, we establish three lemmas to complete the proof of Theorem 7.1.

Lemma 7.2. The convergence ϕN → ψ in the space C[0, T ] implies QNϕN → 0
in C[0, T ].

Proof. Based on (7.4) we have

QNϕN = PNKϕN −KϕN +G3
NϕN .

By Proposition 6.1, PNKϕN − KϕN → 0. Since ϕN is bounded, we get also
G3

NϕN → 0 which completes the proof.

Lemma 7.3. The operators RN are uniformly bounded.
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Proof. For a function ϕ ∈ C[0, T ], consider

(RNϕ)(t) = αN(t)
N∑

i=k

(−1)i−k
( i∏

j=k

µj

)
Ii(ϕ).

Taking into account the estimates |αN(t)| ≤ 1/2, |Ik(ϕ)| ≤ Mh‖ϕ‖ and (for
small h) µk = 1/(1− λk) ≤ 1/(1−Mh/2) = µ (denote so), we have

‖RNϕ‖ ≤
1

2
Mh‖ϕ‖

( N−k+1∑
i=1

µi

)
=
h

2
M
µ(µN−k+1 − 1)

µ− 1
‖ϕ‖ ≤ const‖ϕ‖,

which completes the proof of this lemma.

Lemma 7.4. It holds QNRN = RNQN .

Proof. From (7.5) and (7.7) we get (I+RN)(I−QN) = I. To prove the lemma,
it is sufficient to check that (I −QN)(I +RN) = I.

Choose an arbitrary ϕN ∈ C[0, T ] and determine gN = (I + RN)ϕN . We
will prove that (I −QN)gN = ϕN . Using (7.6), we calculate

Ii(gN) = Ii(ϕN) + λi

N∑
j=i

(−1)j−i
( j∏

l=i

µl

)
Ij(ϕN), i = k, . . . , N.

Since ϕN = gN − RNϕN and, on the other hand, ϕN = gN − QNgN , we show
that RNϕN = QNgN or, taking into account the definitions of RN and QN ,

N∑
i=k

(−1)i−kIi(gN) =
N∑

i=k

(−1)i−k
( i∏

j=k

µj

)
Ii(ϕN). (7.9)

However,

N∑
i=k

(−1)i−kIi(gN) =
N∑

i=k

(−1)i−kIi(ϕN)

+
N∑

i=k

(−1)i−kλi

N∑
j=i

(−1)j−i
( j∏

l=i

µl

)
Ij(ϕN) ,

and it is straightforward to check that the coefficients of Ii(ϕN) coincide with
those in the right hand side of (7.9). This proves the lemma.

Finally, taking into account Lemma 7.4, we may write (7.8) in the form

gN = ϕN +QNϕN +RNQNϕN .

Remembering that ϕN was compact and, using the Lemmas 7.2 and 7.3, we
establish the compactness of gN . The proof of Theorem 7.1 is complete.
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Now, we are ready to close this section with the following

Theorem 7.5. Let K and ∂K/∂t be continuous in {(t, s)| 0 ≤ s ≤ t ≤ T}.
Then, for c = 1 and for the uniform mesh, there is a number N0 such that
for N ≥ N0, the problem (2.2), (2.3) has the unique solution, and the estimate
(4.3) holds. If PNf converges to f , then the solutions of (2.2), (2.3) converge
to the solution of (2.1) in C[0, T ].

Proof. Note that, in the assumptions about K, the operator K defined by
(5.1) is such that u = Ku only for u = 0. Making use of Theorem 4.3, take
E = F = C[0, T ], A = I −K, AN = I − PNK and refer to Theorem 7.1, the
assertion is proved.

Remark 7.6. The rate of convergence of the method (2.2), (2.3) for linear
equations, as stated in Theorems 5.2 and 7.5, is determined by the two-sided
estimate (4.3). It is well known that quadratic spline interpolation projections
PN have the property ‖PNu − u‖ = O(h3) for smooth functions u. The rate
O(h3) is confirmed by the numerical tests presented in Section 9.

8. The method in the space of
continuously differentiable functions

We will focus our attention to the study of the method (2.2), (2.3) in the
space C1[0, T ]. Similarly to the beginning of Section 3, fix c ∈ (0, 1) and
define the projections PN by (3.1). Without any additional assumption we
may establish the estimates (3.8) and (3.9). Suppose now f ∈ C1[0, T ]. Then,
for i = 1, . . . , N − 1, and for some ξi ∈ (τi, τi+1), we have

|gi| =
|f ′(ξi)|(τi+1 − τi)

c(1− c)(hi + hi+1)

= |f ′(ξi)|
(1

c

hi

hi + hi+1

+
1

1− c

hi+1

hi + hi+1

)
≤ max

{1

c
,

1

1− c

}
‖f ′‖C[0,T ]

and

|g0| ≤
1

1− c
‖f ′‖C[0,T ].

Taking into account (3.8), (3.9) and basing on the representation (3.2) we obtain
‖PN‖C[0,T ] ≤ const ‖f‖C1[0,T ] only in the assumption that h2

N/hN−1 = O(1).
The derivative of (3.2) allows to get again with the help of (3.8) and (3.9) the
estimate

‖(PNf)′‖C[0,T ] ≤ max
0≤i≤N

|mi| ≤ const ‖f‖C1[0,T ]
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provided hN/hN−1 = O(1). We have proved the following

Proposition 8.1. For c ∈ (0, 1) assume that hN/hN−1 = O(1), then the pro-
jections PN are uniformly bounded in the space C1[0, T ].

It holds also

Lemma 8.2. For c ∈ (0, 1) and hN/hN−1 = O(1), the projections PN converge
pointwise to the identity in the space C1[0, T ], i.e. PNf → f in C1[0, T ] for all
f ∈ C1[0, T ] as hmax → 0.

Proof. Similarly to the proof of Lemma 5.1, for given f ∈ C2[0, T ] construct
the splines PNf and z. Then ‖z − f‖C1 → 0 (see [10]) and

‖PNf − f‖C1 ≤ ‖PN‖C1→C1‖f − z‖C1 + ‖z − f‖C1 → 0.

As C2[0, T ] is dense in C1[0, T ] it remains to use the Banach-Steinhaus theorem
which completes the proof.

Lemma 8.2 and Theorem 4.1 yield

Theorem 8.3. Suppose the kernel K(t, s) is such that the operator K defined
by (5.1) is compact in C1[0, T ], u = Ku only for u = 0. Then the method (2.2),
(2.3) with c ∈ (0, 1) and hN/hN−1 = O(1) is convergent in C1[0, T ], and the
estimates (4.3), (4.4) hold.

Let us add that the compactness of K in C1[0, T ] takes place, for example,
in the assumptions of Proposition 6.1, but they could be weakened so that
weakly singular equations could be also included.

Next, we will study the method in C1[0, T ] for c = 1. In the sequel,
consider only the uniform mesh. As well as in Section 3, represent PNf by
B-splines. The coefficients of the representation could be estimated from the
system (3.12) as |ci| ≤ const ‖f‖C1[0,T ]. Having also ‖B′

i‖C[0,T ] = O(N), we get
that ‖(PNf)′‖C[0,T ] ≤ const ·N ‖f‖C1[0,T ] which cannot be improved as we will
see later. Thus, ‖PN‖C1→C1 = O(N).

Wishing to apply the Theorems 4.2 and 4.3, we have to prove that PNK
converges strongly to K in C1[0, T ]. Assume that the kernel K in (5.1) is
continuous and twice continuously differentiable with respect to t. Take u ∈
C1[0, T ], then f = Ku ∈ C2[0, T ]. Likewise in the proof of Proposition 6.1,
concerning the spline S, it is known (see [10]) that ‖S− f‖C1 ≤ const ·h ω(f ′′).
Hence,

‖PNf − f‖C1 ≤ ‖PN‖C1→C1‖f − S‖C1 + ‖S − f‖C1 → 0 ,

and we have the pointwise convergence PNK → K in the space C1[0, T ].
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Let us show that there is no compact convergence PNK → K in the
space C1[0, T ] even for the operator (Ku)(t) =

∫ t

0
u(s)ds. Take the functions

uN ∈ C1[0, T ] such that, for sufficiently small δ = δ(N) > 0,

uN(t) =


t for t ∈ [0, h

2
− δ]

(−1)i(t− ti) for t ∈ [ti − h
2

+ δ, ti + h
2
− δ]

i = 1, . . . , N − 1

(−1)N(t− tN) for t ∈ [tN − h
2

+ δ, tN ],

uN being (uniquely determined by the continuity of u′N) quadratic polynomial
for t ∈ [ti − h/2 − δ, ti − h/2 + δ], i = 1, . . . , N . Clearly ‖uN‖C ≤ h/2 and
‖u′N‖C = 1 which means that uN is bounded in C1[0, T ]. Taking δ = O(h2) and
defining fi = (KuN)(ti), we calculate fi = h2/4 + O(h3) for i odd and fi = 0 for
i even. Considering relatively small i and largeN , we get ci = −Th/8+O(h2) for
i = −1, 1, . . . , and ci = Th/8+O(h2) for i = 0, 2, . . . . As it holds B′

i(ti) = 2/h,
B′

i−1(ti) = −2/h and B′
j(ti) = 0 for j > i and j < i− 1, we have for i odd

(PNKuN)′(ti) = ci−1B
′
i−1(ti) + ciB

′
i(ti) = −T

2
+O(h)

(PNKuN)′(ti+1) = ciB
′
i(ti+1) + ci+1B

′
i+1(ti+1) =

T

2
+O(h),

consequently, (PNKuN)′ are not equicontinuous and the sequence PNKuN is
not compact in C1[0, T ]. We have proved

Proposition 8.4. For (Ku)(t) =
∫ t

0
u(s)ds, the sequence PNK does not con-

verge compactly to K in the space C1[0, T ] in the case c = 1 as N →∞.

Note that, actually, in the proof of this proposition we established the in-
equality ‖PN‖C1→C1 ≥ const ·N .

We state as an open problem, for c = 1, the regular convergence of I−PNK
to I −K in the space C1[0, T ]. Numerical results presented in the next section
suggest the positive solution of this problem.

9. Numerical tests

In numerical tests, in order to take advantage of the complexity O(N), we chose
the test equation

y(t) = λ

∫ t

0

y(s)ds+ f(t), t ∈ [0, T ]
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on the interval [0, 1], having the exact solution y(t) = (sin t+ cos t+ et)/2. We
implemented also the method for the equation (2.1) in the linear case with the
kernel K(t, s) = t − s and the function f(t) = sin t, having the exact solution
y(t) = (2 sin t + et − e−t)/4 on the interval [0, 1]. This equation is used in
[2, 5, 18]. Actually, we calculated the error ‖u− y‖C approximately as

max
1≤n≤N

max
0≤k≤10

∣∣∣(u− y)
(
tn−1 +

kh

10

)∣∣∣
and similarly the approximate value of ‖u′ − y′‖C . They are presented in fol-
lowing tables for particular values of N and c, ‖u − y‖C in the upper row
and ‖u′ − y′‖C in the lower row. The results confirm the rate ‖u′ − y′‖C

= O(h2) for smooth solutions predicted by the theory.

Numerical results for y(t) = λ
∫ t

0
y(s)ds+ f(t):

λ = −2, f(t) = 1
2
(3 sin t− cos t+ 3et)

N 4 16 64 256
c = 1 1.12 · 10−3 2.21 · 10−5 3.63 · 10−7 5.74 · 10−9

2.68 · 10−2 1.90 · 10−3 1.22 · 10−4 7.66 · 10−6

c = 0.7 2.66 · 10−3 4.79 · 10−5 7.66 · 10−7 1.20 · 10−8

4.60 · 10−2 3.51 · 10−3 2.29 · 10−4 1.45 · 10−5

c = 0.5 4.59 · 10−3 8.94 · 10−5 1.46 · 10−6 2.31 · 10−8

5.69 · 10−2 4.48 · 10−3 2.95 · 10−4 1.86 · 10−5

λ = −1, f(t) = sin t+ et

N 4 16 64 256
c = 0.1 7.71 · 10−3 1.62 · 10−4 2.70 · 10−6 4.29 · 10−8

7.11 · 10−2 5.81 · 10−3 3.85 · 10−4 2.44 · 10−5

c = 10−3 8.0866 · 10−3 1.6899 · 10−4 2.8187 · 10−6 4.4751 · 10−8

7.2391 · 10−2 5.8971 · 10−3 3.9151 · 10−4 2.4834 · 10−5

c = 10−6 8.0891 · 10−3 1.6902 · 10−4 2.8184 · 10−6 4.4618 · 10−8

7.2399 · 10−2 5.8972 · 10−3 3.9148 · 10−4 2.4900 · 10−5

λ = 1, f(t) = cos t

N 4 16 64 256
c = 1 1.32 · 10−3 2.90 · 10−5 4.90 · 10−7 7.80 · 10−9

2.29 · 10−2 1.85 · 10−3 1.25 · 10−4 7.98 · 10−6

c = 0.7 2.19 · 10−3 4.73 · 10−5 7.98 · 10−7 1.27 · 10−8

4.20 · 10−2 3.42 · 10−3 2.27 · 10−4 1.44 · 10−5

c = 0.5 4.03 · 10−3 8.63 · 10−5 1.45 · 10−6 2.30 · 10−8

5.38 · 10−2 4.41 · 10−3 2.93 · 10−4 1.86 · 10−5
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λ = 2, f(t) = 1
2
(− sin t+ 3 cos t− et)

N 4 16 64 256
c = 0.1 7.24 · 10−3 1.56 · 10−4 2.62 · 10−6 4.17 · 10−8

6.99 · 10−2 5.79 · 10−3 3.85 · 10−4 2.44 · 10−5

c = 10−3 7.8735 · 10−3 1.6810 · 10−4 2.8145 · 10−6 4.4722 · 10−8

7.1893 · 10−2 5.8948 · 10−3 3.9150 · 10−4 2.4834 · 10−5

c = 10−6 7.8789 · 10−3 1.6819 · 10−4 2.8158 · 10−6 4.4719 · 10−8

7.1906 · 10−2 5.8950 · 10−3 3.9150 · 10−4 2.4847 · 10−5

Numerical results for y(t) =
∫ t

0
(t− s)y(s)ds+ f(t):

N 8 32 128 512
c = 1 4.81 · 10−5 9.20 · 10−7 1.51 · 10−8 2.38 · 10−10

2.15 · 10−3 1.56 · 10−4 1.01 · 10−5 6.36 · 10−7

c = 0.5 1.95 · 10−4 3.71 · 10−6 6.07 · 10−8 9.59 · 10−10

5.02 · 10−3 3.75 · 10−4 2.45 · 10−5 1.55 · 10−6

c = 0.1 3.56 · 10−4 6.84 · 10−6 1.12 · 10−7 1.77 · 10−9

6.53 · 10−3 4.92 · 10−4 3.22 · 10−5 2.03 · 10−6
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