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Abstract. V. G. Maz’ya and J. Nagel found for certain classes of weighted Sobolev
norms (defined using the Fourier transform) equivalent Slobodeckij-type difference
representations. We extend these considerations to a wider class of anisotropic norms
which arise in the theory of Markov processes. In particular we show that these
Sobolev norms are equivalent to Dirichlet norms.
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1. Introduction

In [18] V. G. Maz’ya and J. Nagel considered anisotropic function spaces H*(R")
which are defined as completion of the test functions C°(R") with respect to
the norm

Julfy = [ @OPa(© s+ [ JateP g

R’ﬂ
where u(§) = >0 p;([¢;]) and p; : R — R are temperate weight functions in
the sense of Hormander.* The aim of Maz'ya and Nagel was to find a norm

equivalent to (1) but one which involves integrals of differences of functions and
avoids the Fourier transform, i.e.,

b = [ ([ ot i) = w@PNGdy )+ [ uoPae, @
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*For reasons that will become clear later, we use here and in the sequel p, N and g rather
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temperate weight function whenever p is.
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where N(y) is a weight function* depending on the 1;(|¢;]), 1 < j < n. In [19]
Nagel considered rotationally invariant temperate weights p = u(|¢|?) which —
under some additional conditions — lead to equivalent norms of the form

b = [ ([ e vn -l o( o) 2 o+ [ uopas, @

where g and p are related through

woy= [ ([ 9% )ar 0

The interesting observation is that (2) and (3) are norms in Hilbert spaces which
are invariant under contractions.

Definition 1.1. A Hilbert space (), (s,+)) of real functions satisfies the con-
traction property if for every u € $ the function w := OVu Al € § and
(w,w) < (u,u).

Since the norms (2) or (3) are invariant under translations, a result of
A. Beurling and J. Deny [6], see also [16], shows that the associated function
spaces are Dirichlet spaces and that the weight function p(§) for the norm
(1) can be chosen to be a continuous negative definite function ¥ (&) = wu(§);
this choice achieves not only equivalence but equality between (1) and (3).
Incidentally, the spaces (HY, ||s||g+) were considered by Jacob [16] within a
larger scale of anisotropic Sobolev spaces H¥*, s € R, where H¥* = H(+¥)" if
s > 0. This scale plays a major role in the construction of Markov processes
which are generated by pseudo differential operators.

The aim of our paper is to understand the connection between u resp. ¥
and ¢ in the rotationally invariant situation. It turns out that subordination
in the sense of Bochner is the key to understanding this relation. Our main
result Theorem 4.5 states that under some conditions on g (or p) it is possible
to determine a Bernstein function f such that (3) is equivalent to

O sy ds + [ P e Q

(Note that & — f(|£|?) is a continuous negative definite function.)

In Section 2 we collect some definitions and results on negative definite
functions, Bernstein functions and subordination. Section 3 contains some aux-
iliary results and mainly technical calculations which we will need for the main
result Theorem 4.5 in Section 4. For our considerations we need to know the
structure of continuous negative functions which are invariant under rotations.
Such characterizations are (partly) known, but they are somewhat hidden in
the papers by Schoenberg [23] and Kahane [17]. In order to be self-contained
we give a new proof for this in the appendix where we also tabulate examples
of (complete) Bernstein functions and their representation measures.
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2. Preliminaries

A temperate weight function is a positive function p : R® — R* such that for
positive constants C' and N

p&+n) < (L +CLENY uln),  &neR™ (6)

It is easy to see that sum or product of two temperate weight functions are
again temperate weight functions, cf. Hormander [9, §2] or [10, §10] for this and
further results on weight functions.

Real-valued negative definite functions ¢ : R" — R will be central to our
considerations. These are functions such that the matrix

(&) + (") — (e — €)™,

is positive semidefinite for any choice of N € N and ¢',£2,...,&¢N € R™. It is
important to note that a negative definite function is not “minus” some positive
definite function (in the sense of Bochner), but that ¢ : R — R is negative
definite if, and only if, for all N € N and &;,&,, ...,y € R”

¥(0) >0 and Z¢ —&)MM <0 forall A eC, Z)\—O (7)

7,k=1 7j=1

Equivalently, v is negative definite if, and only if,
P(0) >0 and €& e s positive definite for all t > 0. (8)

Moreover, ¢ : R" — R is continuous and negative definite (we use c.n.d.f. as a
shorthand) if, and only if, the following Lévy-Khinchine representation holds

HO=ct Y aubet | = cosyeyway) (9)

k=1 y#0

where ¢y = ¥(0) > 0, (gjx)jx € R™ " is a symmetric positive semidefinite matrix
and v is a Radon measure on R\ {0} such that fy#) (Jy* A1) v(dy) < oo. The
measure v is called Lévy measure. For proofs and a more detailed discussion we
refer to the monograph by C. Berg and G. Forst [4, §§7-8] or [16].

Using the very definition of negative definite functions it is possible to show
that & — /() is subadditive and, cf. [16, Lemma 3.6.25], that the following
Peetre-type inequality holds

L+ 9(E+m) < (1+ Vi )(1+w) £,meR™ (10)
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This means, in particular, that every real-valued continuous negative definite
function 1 is a temperate weight function.

A C*-function f : (0,00) — R is said to be completely monotone resp. a
Bernstein function, if

k dkf(l")

(—1) o k1 M

dk+T
holds for all £ € Ny. A well-known theorem of S. Bernstein states that all
completely monotone functions are of the form

f(z) :/0 e " a(ds),T x>0,

with a uniquely determined finite measure o on [0, 00). Completely monotone
and Bernstein functions are in many points similar to positive and negative
definite functions. In fact, completely monotone resp. Bernstein functions are
the positive resp. negative definite functions in the additive semigroup (0, 00).
In particular, f : (0,00) — R is a Bernstein function if, and only if,

>0 resp. 20, (~1) <0 (11)

f(O+) =0 and z— e 7@ is completely monotone for all ¢ > 0.

Moreover, the Lévy-Khinchine representation

f(x) =a+bx+ / (1—e"*)7(ds) (12)
0+

gives a one-to-one correspondence between the Bernstein functions f and triplets
(a,b,7) where a,b > 0 and 7 is a Radon measure on (0, c0) such that fooj(s A
1) 7(ds) < oco. We need to consider the class of complete Bernstein functions
(also known as operator-monotone functions) which are Bernstein functions
whose representing measure is of the form 7(ds) = m(s)ds with a completely
monotone density m(s). Equivalently, f is a complete Bernstein function if,
and only if,

o0

f(x):a—i—bm—i—/ T (), (13)

oy LT

where p is a Radon measure on (0,00) such that fooj(l +t)7! p(dt) < oo. Note
that (13) means that the function x +— f(z)/x is a Stieltjes transform, cf. [4,
§17]. Examples of (complete) Bernstein functions are listed in Appendix 1.

If ¢ is a c.n.d.f. and f is a Bernstein function, then f o) is again continuous
and negative definite, cf. [16, Lemma 3.9.9]. We call f o ¢ the continuous
negative definite function subordinate to 1 with respect to f.

From (9) it is obvious that & — |¢[* is a c.n.d.f. The following result
characterizes all continuous negative functions which are subordinate to |¢|%.

TWe use the convention that fab = f[a b and f;+ = f(a 5
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Lemma 2.1. A continuous negative definite function ¢ : R™ — R is subordinate
to the function & — [€)? if, and only if,

(€)= (0) + BIEP + / = oy mily) dy (14)

where b > 0 and m is the Laplace transform
m(r) = / e "v(ds), r>0,
0

of a measure v on (0,00) such that f01+ sy (ds)+ [ s u(ds) < oo. The
Bernstein function f such that 1 (&) = f(|€|*) holds is given by

o0

f(x) =v(0) + bx + /0+ (1 — e ) (4ms)? d(v)(ds) , (15)
where ®(v)(ds) = v(®~1(ds)) is the image measure of v under ®(s) = (4s)7!,
s> 0.

A proof of Lemma 2.1 can be found in Appendix 2.

Not every rotationally invariant negative definite function ¢ : R™ — R is
of the form ¥(&) = f(|€]?) where f is a Bernstein function. However, if we can
define 1) on every space R™, m € N, and if it is rotationally invariant, then (&)
is necessarily of the form f(|¢]?), and f must be a Bernstein function. This is
the essence of the following theorem which is known, but appears in somewhat
hidden form in the papers by Kahane [17] and Schoenberg [23]. For the readers’
convenience we give a new proof in Appendix 2.

Theorem 2.2. Let ¥ : RN — R be a function such that for every n € N
the function (&1, ...,&,) — V(& ..., &, 0,...) is negative definite and invariant
under rotations. Then there exists a unique Bernstein function f such that
P(E) = F(I€]?) for all € € RY with finitely many non-zero entries.

3. Auxiliary Results

We will need the following auxiliary theorems and technical results for the proof
of the norm-equivalences in Section 4.

Lemma 3.1. Let ¢(§) = fyaéo(l—cos y&) v(d§) be a continuous negative definite
function. Then

RGRIGESE / /R o ) ) ()

holds for all uw € S(R™).
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Proof. Denote by 7_, the translation operator 7_,u(z) := u(zr + y). Since
le?t — 1> = 2(1 — cost), t € R, we find using Plancherel’s Theorem

1
! / / (4 ) — ule)? de v(dy)
2 J Jrrx®n\{0})
1
5 [T vty
R\ {0}

1
— 5/}1@\{0} H (T_yu)™ uHL2 v(dy)

~5 L (L e =t ae)tan)
=5 L (o [ e et Jag
- [ (R [ a-cosyyvian) i

= [ [a©)v(¢)de. n

Rn

If ¥(€) = f(J¢[*), we see from Lemma 2.1 that v(dy) = m(|y|?) dy with a
completely monotone density m(r) and

[aor fietrae =5 [[ jute ) @ Py dyde. (16

Up to notational changes, the following result is proved in Maz’ya and
Nagel [18].

Lemma 3.2. Let g; : [0,00] — [0,00], 1 < j < n, be monotone increasing
functions such that

1 .
/ 9:(5) ds+/ 9i(8) 4 < o0, (17)
0o S .82
Then p;(|t]) : It\ [ gi(s)/sdsdr is well-defined and

é (//RlXRn Ju(@ + tje;) — u(z)* g; <t12) d‘xtjt )
~ (/Rn |a(§)|2iﬂj(|§jl2)d§>2

are equivalent seminorms on S(R™).
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Nagel discussed in [19, 20] the rotationally invariant analogue of Lemma 3.2.

Lemma 3.3. Let g: [0 oo] — [0, 00] be a monotone increasing concave function

and define u(t fo [Zg(s)/s*dsdr € [0,00]. Then

(//R lu(z +y) — u(x)|29(|y%> %Y
N( WJWQVMKPMQ)

are equivalent (semi-)norms on S(R™).

Let us now consider the rotationally invariant case. Comparing (16) with
(19) we would like to relate
. Iy 1 9 . 2
m) with g(7)m and () with ().

Lemma 3.4. Let g(t) = foo-i ~i7 p(ds) be a complete Bernstein function. Then

n/2

the functions r — g(r=1) and r — r="2g(r=1) are completely monotone. In

particular, we have the representations

o(3)- [ N ( / f s f’<d>> da (20)

1 00 1 oo x/s
—nj2, [+ :/ —xr( / n/2—1 _I/S/ n/2-1 Yd d >d 21
r g e — s e Y e’ ay plas €.

<T) 0 F(i) 0+ 0 ( ) ( )

Proof. Since the formulae (20) and (21) prove that r — r~"/2g(r=1), n. > 0, is
completely monotone, it is enough to establish these two representations.

From the definition of g we have

g(%) N /:o s—ll— plds) = /Of 7"31L 1 plds).

Since we can write

1 oo oo
_ / e—t(rs-‘,-l) dt = / e—x/s e e d_.l’
rs+1 0 0 S

we can apply Tonelli’s Theorem to find

Yo [ [ e ) - [Fe( [ )

which proves (20). To prove (21), we use the elementary identity

2 = 1n / V2 e g, n > 0,
I'(%) Jo
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and the convolution theorem for the (one-sided) Laplace transform,
L(uxw) = Lu-Lw,
where Lu(z) = [ e ™ u(y) dy and

wxw(z) = /0 "z = r)w(r) dr.

Setting u(r f0+ ~1/% /s p(ds) and w(r) := F(g)flr”/zfl we find

r_”/29<%> = /000 e P uxw(r)dr.

wrwl) = [t ( [ p(ds))dt
0 F(g) 0+ S
= 1 /oo 6_95/3 ( /a: tn/2€t/s @) p(dS)
F(g) 0+ 0 t S
(3) Jos ;

and (21) follows. |

Finally,

Lemma 3.5. Let g : [0,00) — [0,00) be a monotone increasing function with

9(0)=0. If D N ;
G::/0 g(s)f—i—/1 @§<oo,

then the function p(t) defined in Lemma 3.3 is finitely valued and

M(t):/otg<8)§+t/t %%

Conversely, if u(1) < oo, then G < .
Proof. By definition, pu(t fo [ g(s)/s* ds dr so that

o[ (S [ (o 20
w= [ ([To0%)arz [ [T E)ar= [

and



Function Spaces as Dirichlet Spaces 11

Hence, p(1) < oo implies G < 0.
Now suppose that G < co. Integration by parts yields

pu(t) Z/Ot (/:og(s) g)dr
IRCE Y
S [T [y (- [T,

Since g(rt)/t < g(t)/t if 0 < r < 1, and since by assumption ¢t — g(t)/t is
integrable at +o00, the dominated convergence theorem applies and

lim (7’/ 9(5) §> = lim g(rt) dt =0,

r—0 S S r—0 Jq t

where we used that ¢g(0) = 0. |

Lemma 3.6. Let g(r) = ooi +5 p(ds) be a complete Bernstein function and
let p(t) be as in Lemma 3.3. Then pu(l) < oo — and, by Lemma 3.5, G =
fol g(s)/sds + floog(s)/s2 ds < oo — if, and only if, the measure p representing

g satisfies

/0+ log(1+ s71) p(ds) + /100 log(1 + s) p(js) < 00.

Proof. Because of Tonelli’s Theorem we find
1 1 [e’s)
Lo 5= ([ 25
0 S 0 or S+
[e’s) 1 dS
- [ S5 )
0t o S+

o0 s=1
= / log(s + 1)
0+

p(dr)
= /0 log(1 + 7 Y)p(dr) + /00 log(1+771) p(dr).

s=0
+ 1

Since log(1 4 r~') < r~* and since, by assumption, [~ r~! p(dr) < oo we find
that

1 1
/ g(s) ds < oo if, and only if, / log(1+771) p(dr) < .
0 § 0+
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Analogously, we have
/°° g(s) ds /°° /°° p(dr)\ ds
1 s s 1 or ST1/) s

_ /1 log(1+ ) oldr) +/°° log(1+ r) oldr)

r r

Now we use that log(1 +r) < r, i.e. f0+ log(1+7)/7 p(dr) f0+ 1 p(dr) which
is finite by assumption. Thus,

/ 9ls) ds < oo if, and only if, / log(1 + ) p(dr) < oco. |
R 1 r

Lemma 3.7. Let g(s) = 0+ o1 pdr) be a complete Bernstein function such
that G = fo s)/sds+ [~ g(s)/s*ds < oo. Then the function

wr= [ (o9 %)ar e (22

is also a complete Bernstein function with representation

u(t) = / Oo () (23)

where the measure v is given by

vy = [ ([ ot 0 ) (21)

for all Borel sets A C (0,00). Alternatively,

)= [Ta-en (5 [ 1‘—j”mm>) ax.

Proof. Using the fact that all integrands are nonnegative, a straightforward
calculation gives

S
:/t(/“’g(ry)@)@
0 1 Yy Yy r
1 o0
:t/ g(tzy) @)dm
0 1 try oy

(
AR R
t
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and we get (23) if we define v by (24). Since

we find

Finally,

pu(t) =

t

s+t

[ (Lo
[Tamen( [

_ / (1—e) s dn,
0

[ [ dy\ dx
se ™ p(zy - ds ] —) —
_/0+ A ) y2) x
[ [ 2 Az dy\ dx
= ) olda) | 22 ) 22 —
_/0+ Ty eXp< a:y) 4 Z)] y2) x (= ovs)

_ /OO 21 e MET p(dz)} df) dr (5 = i,
0

+

_ /00 e AT df] 2r d?") p(dz)
L J1

1 _—Xzr

Jo U

dr) p(dz)

1 [®1—e?

V)
A2 Jos

z

and the proof is finished.

p(dz),

4. Equivalent Seminorms

Let ¢ : R™ — R be a c.n.d.f. of the form

where

() = / = oSy i)y

13
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with a measure v on (0, 00) such that f01+ sT2y(ds) + [ s u(ds) < oo

According to Lemma 2.1 we have () = f(|¢]?) where f is given by (15).
Moreover we know, cf. (16), that

R as =3 [ utas) = @Pm(yP) dy o

holds. On the other hand, for a completely monotone function g we know from
Lemma 3.3 that

[ aoPuer as~ [[ ute ) - uwlo() T

in the sense of equivalent (semi-)norms where p(t) is as in Lemma 3.3, i.e.,

o= [( [ a0 %)

Both m(r) and 7 ~— r~/ 29(%) are completely monotone functions. Our first
aim is to compare these two functions. From Lemma 3.4 we know that

7“"”5](%) = /000 e "h(z) dx
x

n/2 /oo e—m/s ( /1 tn/2etm/s ﬁ) P(d8> )
(%) Jos 0 t) s

Lemma 4.1. If u(1) < oo, then fol "2 h(z)de + [z h(z) de < oo

where

h(z) =

Proof. Assume that u(1) < co. Then

1 1 n/2 0o 1
/ :L,—n/Q h(m) dr = / (L’_n/2 T _ (/ e—z/s |:/ tn/2€tx/s ﬁ:| p<d8))dl’
0 0 F(g) 0+ 0 t S
1 00
_ 1 / (/ {/ —a(1-1)/s yn/2— 1dt} (d5)>dx
r'(%) Jo o+ LJo s

1 z=1
—S o—e(1-1)/s m/2=1 gy (dS)
1—1 S

z=0

(1 — e~ (1=0/s)gn/2-1 dt)p(ds).
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Since 1 — e <AA1 < 2)/(1+ ) for all X > 0, we find

1 2 00 u
/ ™2 h(z) dr < / = =27 dt ) p(ds)
0 I'(%) Jos o 1—t 1+

/1(/f3+1_t (dS))t”/Z—ldt
/g

—

N}

)1
—~
b ol

0

1—t
1 1_

- / t”/QldtJr/ 9L =) e g,
(g) 0 1—t 1 1—t

1
1
/ 9(3) yujo- 1dt+/ 9 =) s 1dt)
0 12 L—t

where we use that s — g(s)/s is decreasing. Thus,

1 1/2 Lol —t
/ 2 h(z)dx < En(/ /21 dt+/ Mt”/g_l dt)
0 0 12 1t
1/2 1
<cn</ t”/z_ldt—l—/ Mds)<c>o
0 o S

To show the finiteness of the second integral in the statement, we use the ele-
mentary estimate e < 1/(1+ ), A > 0, to get

/ e h(z) da
1
_/oo —n/2-1 n (/ z/s|i tn/2 tz/s @:| M)dl’
1 3 0+ t s

}1
—~
b ol

,1

Rk
o (LT oo o)
e UL g ea
([ ey
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Again we use that s — g¢(s)/s is decreasing to find

/1 T2 () da
<c;{/lm[/oég(_)tn/2 1dtﬁﬁv [m{[lg(g)dt}df}

o ([ ) ([ eea) ([ 22)%)

By assumption, the first term is finite, and for the second term we find

(L el f ([ 4% <

as p(3) < p(1) < oo. u

Corollary 4.2. The Bernstein function f associated with s — g(s~')s™"/2 is
given by

f(r) :igéz) /OOO 1_AZM(/: {/Olexp< 14SA )t”/2 ldt] (Csls))d)\.

Proof. Applying Lemma 2.1 to the measure n(dz) = h(z) dz, x > 0, we find

f(r) = / (1L ) () D) (dr)

where ®(z) = 1/42. Hence

n/2 o) 00 1
) = < / (1- e—T/‘“”)x—”/%”/?(/ e—ﬂﬂ/S[/ /2t ta/s dt] ”(ds)>dx
F(E) 0 0+ 0 S
n/2 0o 00 1
— ;—(n)/ </ |:/ (1 _ e—r/4z) —z(1-t)/s tn/2 1dt:| (d8)>dl'
5) Jo o+ LJo
. /2 /oo /oo /1(1 B 77})\) (_ 1 _t>tn/271 di p(dS) @
“ar@) o ey Lh b T TP N s )

where we used the substitution A = 1/4x. [

18

It is by no means obvious to find out the cases where f and pu are equal.
However, we can always prove that f ~ u holds.

Proposition 4.3. Assume that f is as in the above corollary, i as in Lemma 3.3
and that the assumptions of Lemma 4.1 are satisfied. Then there are two con-
stants ko, k1 > 0 such that

rof(r) < u(r) <rmif(r), r>0.
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Proof. We begin with the elementary remark that 1 —e™* ~ x/(1 + x) for all

x > 0. Therefore, we find
a2 el —e e ! 1 p(ds)
= — 21 qy d\.
fr) 4r(g)/0 e (/0+ /0 ex 43)\> ] s >
o) [e'e) 1
0 </0+ {/o L+7rA
[e'e) o) 1 d
POt )
0 0+ 0 1 + T; .ZU
1
(/

/000 / |:/0:03:‘x7‘5(] p<d$)} eXp<—14—I) /2 ldt)i
{/01+/1m}(/019<”)eXP( e 1dt) “

== Il + IQ.

2

rA
ex

z

S

o
A/ -/
|
N
IR
yu—
~
3
~
[\~
L
QL
~
_
/\
Q.
)
SN—
~~
Q
>

We will estimate I; and I, separately.

00 1
(1_ ) 2-1 rdy
I, = S S CAa P 4
.~/ (/ syen (- 1) Ny
0 d 1
[T ® [
r Yy 0

car "
r Y
On the other hand, we find

1
oo (1-0)r /2—1 Tdy
I, = - |t" dt
5 / (/0 g@)@Xp( 1 ) /2
0 1
> r/ (/ g(y)€‘1/4t"/2‘1dt)d—g
r 0 )

>C2T/ g(y)?,

00 d
IQNT/ g(y) 2.

y2

so that

Let us now estimate I;. We have

I = /1(/Tg(y)exp( %)t“”‘%%)dt
f ([ (- e ao s
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Setting
1
J\) == / Ae~(=02/21gpand A=
0 4y
we see

I = 47(\) / o) % ,

and it remains to show that 0 < ¢ < J(A\) < C < oo for all A >
done in Lemma 4.4 below. From this we conclude that

T dy
h~/mm—.
0

Y

L. This will be

From Lemma 3.5 we know that

p(r) Z/Org(y)@w/roog(y)%,

Y

and collecting all of the above calculations gives

p(r) ~ Iy + Iy ~ f(r). |
Lemma 4.4. The function
1
J(A) =\ / e U=/~ gt X >0,
0
satisfies 0 < min{1 — e'/4, J(3)} < J(N) <1 for all A > 1.

Proof. For n > 2 we have
1
J(\) < /\/ eI gt =1—-e <1,
0
and for n =1 we set s =t/ to find

A 00
J(\) = \/Xe_)‘/ e s /2 1 ds < \/Xe_)‘/ e~ s ds = Ve T (2).
0

0
Clearly, \/Xe_AF(%) =Vrle ™ < 1.
To get the lower bounds for n = 1,2 observe that 0 < ¢t < 1 implies that
t"/2=1 > 1, and so

1
J(A) = /\/ eI gt =1—er>1—e V4
0

For n > 3 we have with a := 2 —1>0
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A tya—1
J(\) = %/O e_t<1 - X> dt >0,

implying that A — J()) is monotone increasing. Hence, J(1) < J(A) for all
A % which finally proves the lemma. [

and so

We can now formulate our main result.

Theorem 4.5. Let g(t) = fooi S%t p(ds) be a complete Bernstein function and
define u(t) by

If u(1) < oo, then

o 471271(/;) /0001_;2%{ /: ( /Olexp ( 14A t>tn/2 1dt> (ds)]dA

1s a Bernstein function and the subordinate negative definite function

b(E) = F(IEP) = / L conue misP) dy

satisfies the following norm-equivalence

3 [ ) o)ty = [ A

~ [ @R e = [ jute+ o) —u@Pa( ) e

Here we may take u from C2(R") or §(R™) or H¥1(R™).

Remark 4.6. If ¢); : R" — R and 3 : R™ — R are two c.n.d.fs, then (&,7) —
1(§) + 12(n) is a continuous negative function on R™ x R™. If f;, f, are two
(complete) Bernstein functions, then (£,7) — fi1(¥1(§)) + f2(¢2(n)) is again a
continuous negative definite function on R™ x R™. This observation is sufficient
to generalise Theorem 4.5 to many anisotropic cases. In particular, the case
treated by Maz'ya and Nagel [18] — see Lemma 3.2 — is included.

Remark 4.7. Since for every c.n.d.f. ¢ : R* — R the estimates
L< 1498 <2supy(n) (14|67,  £eR™,

[nl<1

hold, we have the following continuous embeddings: L*(R") — H¥1(R") —
H'(R"). However, it is not clear how the spaces H*"! relate to the anisotropic
Triebel-Lizorkin scales, cf. Triebel [25] for their definition and properties. Re-
cently, some progress has been achieved by W. Farkas and H.-G. Leopold [7]
who study scales of anisotropic Besov and Triebel-Lizorkin spaces related to
negative definite functions of the form f(|£|?) for certain classes of complete
Bernstein functions.
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Appendix 1:
A Table of (Complete) Bernstein Functions

Rather than giving examples of (complete) Bernstein functions in the text we
decided to compile a table of Bernstein functions and their various representing
measures as appendix. Where appropriate, we refer to the literature for proofs
and references, otherwise we trust that the reader will be able to perform some
standard calculations by himself.

Notation. The standard form of a Bernstein function is

o

f(z) =a+bx+ / (1 —e7%)7(ds)

0+

where a,b > 0 and 7 is a measure on (0,00) with [~(s A1) 7(ds) < co. The
standard form of a complete Bernstein function is

o0

flz) =a+bx + / p(dt)

o4 L+

where a,b > 0 and p is a measure on (0,00) with [7(1+¢)~" p(dt) < co. Note
that for a complete Bernstein function f(z) the function f(z)/z,

M:g+b+/ p(dt) :/ p(dt)
( 0

O7oo)t+x ’Oo]t—i_x

Stieltjes transform

is a Stieltjes function (cf. Berg-Forst [4]) resp. Stieltjes transform of the measure
p(dt) := adp(dt) + p(dt) + bt 05 (dt) on [0, o).

The interplay between complete Bernstein and Stieltjes functions is, e.g.,
discussed in [22]. Here we only need that a Bernstein function f is a complete
Bernstein function if, and only if,

7(ds) =m(s)ds where m(s)= /O:O et p(dt).

In the table below we consider only (complete) Bernstein functions where
a="b=0. We write J,(z), Y, (x) for the Bessel functions of the first and second
kind, I,(x), K,(x) for the modified Bessel functions of the first and second kind
and 0 < j,1 < Ju2 <...<jun <...for the positive zeros of the Bessel function
J,(x) (see, e.g., Andrews et al. [2]).
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2e) 1 1S (0] >0 (o)oyf Suges £q 10 ‘T >0 > () (7)f pur (,z)[ <80
‘suorjouny urjsuIog o[duwoo omy jo uoryisodwrod Aq paurejqo o ued SUOIDUNJ UIR)SUIOY 99o[duod pajest[duiod 910\

(]| 753/ w00 + 1)Sop g uoue (2N qyoo + 1)SorzN | *g1
2] M%M (1 Az um) uoue Am}Tm — Qm\, F1
2] V2 (14 1)801 woue (@M + D)Sorz | €
5 P n_om mio -
log d“1g] ‘0 <kt PEQ) 0L | spap o Y Y weyore z) | g1
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[12d9] fo<k (1)"0 Sp o oL = or
T e 7AR ()0l el I N k\%\, w— -+ TN |6
%m\/ T % e/1-° k\%\/ LTARIN
[[Ld9] T>0>0 Lo s o o8 Co T | L
08010 + (v + x)30[ (0 + x) —
ogd1g] o<v<d|p [(0-hvE-D]| F(y2—wo?)| @g801g—(g+x)S01(g+1)|"9
LBo[L — x 301X —
[ge "d1g] o<t 5+t V) & (wo-1) (L +x)Sor (b + ) | g
e d‘1g] ‘0<g LT S (g9 — w0?) Am|w mv 801 | ¥
lge d‘rg] ‘o<t 2 (pehr P s 801 | g
(12 -d ‘7] » ()T o s D (z+1)801 | ¢
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The following functions are Bernstein functions. Although they are also Stieltjes
transforms, it is not clear whether they are complete Bernstein functions, since
the representing measure p (shown in the table below) might become negative.

No. | f(z) p(dt) Comments
2K, (ay/7) Ju (BVDYy (ev/B) = Ju (avVD) Yy (BVD) dt
2T KBy T2 (BVOTY2(BVA) x |*>F>0
v>=0; [13]
.Z’IV xX unJu v,n/Q
28, | Hle/E), Z Yoy Lellenl®) 5, o (dt) | o> B> 0,
v>—1; [13]
K, (ay/T) B\ | Ju(avV)Y, (BVD—Ju (BVD)Ye (/D)
2 BGve <E> T (VOTY2 (V) m | *>F>0
v=0; [12]

Appendix 2:!
Proofs of Lemma 2.1 and Theorem 2.2

We begin with the proof of Lemma 2.1.

Proof of Lemma 2.1. Assume first that (£) = ¢(|¢]?) with some Bernstein

function g,
e}

9($)=a+ba:+/ (1— e

0+

) 7(ds).

Then

g(1€?) = a+ b e + / (1= e ) r(ds)
0+
2

Oo —i 1 ||
=a+ b |£|2 —+ /Ov+ </n(1 — € yg) —(47T8)n/2 exp ( — Z)d!j)'r(ds)

L © 1 lyl*

— 2 o 1Y€ - A
arviers [ - [ oo (< W) )iy

Switching to polar coordinates we see
lyl* /°° 1 lyl?
—_— — ds) |dy
/Rn L+ yPP\ Jor (dms)/? P < 4s > (ds)

271_71/2 2 00 1 r2
— - _ d n—ld
i@y (L g or (- )

‘Based on an unpublished manuscript of the second author, see also [21].
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2. 4—77,/2 ] o0 St2 t2 1
:—F(ﬂ) /o+ (/o+ o T(dS)) exp(—z>t dt

2
2'4in/2 & ! 2 e 2
< —n(/ ir(ds))(/ e /4dt+/ e /4dt)
F(g) or L+s 0+ 1
< 0.

Therefore, the function

2y . = _w T<d8) _ 1 - —sly|? .n/2
ml) = [ e (< 45) s = o [ e e @

is the Laplace transform of the measure s™/2®(7)(ds) on (0,00) where ® : s
(4s5)~1. Moreover, the above calculation shows that m(|y|?) dy has the integra-
bility properties of a Lévy measure. Since 7 is the representing measure of the
Bernstein function g, we find

/O i 52 /2 B (1) (ds) + /1 g2 2 (1) (ds)
:/01/4457(d5)+/007(d5> <.

+ 1/4

Conversely, assume that 1 is of the form (14) with Lévy measure m(|y|?) dy
where m(r) is the Laplace transform of a measure v on (0,00) such that
f01+ sT"2u(ds) + [~ 7?71 v(ds) < co. Using calculations similar to the ones
used above it is enough to check that the function given by (15) is indeed a
Bernstein function. This, however, follows from

/OOOLS"/’Z@(V)(ds): /OOO L (49)/2 y(ds)

L 1+s L 1+4s

< ( /0 ' (48) "2 u(ds) + /1 " (4s) /21 y(d5)> <oo. N

_l’_

The proof of Theorem 2.2 uses similar techniques to the ones used by Harza-
llah [8] to prove that the Bernstein functions are the only class of functions with
the property that f o is a c.n.d.f. for all continuous negative definite func-
tions 1.

Lemma. Denote by O the family of functions f :[0,00) — R such that f(|¢[*)
1s a c.n.d.f. on every R™, n € N. Then

(a) O is closed under locally uniform convergence,
and for all f,g € O

(b) [f=0
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(c) AM+(1=XNgeO forall 0<A<L1

(d)  flo) is continuous

(e) 71f=f(c+)—f(AeO foral ceR
) f—7f€0 forall ceR

(g) [ is increasing, subadditive and concave.

Proof. The properties (a) — (d) follow immediately from the corresponding
properties for the family of c.n.d.fs.

To see (e), we use criterion (7). Set ¥(€) := 7.f(|¢[*). Obviously, 1 is real
valued and ¥(0) > 0. Now fix vectors &1, ...,&y € R", numbers A\y,..., Ay € C
such that >, A; = 0 and assume that >, f([¢; — &2+ )N A, > 0. We define

M vectors n, € RM by n, := \%e@ (e is the fth unit vector in R). Then

110 — Nm|? = 2 if £ # m and = O if 6 = m. By our assumption we can choose
M so large that for u, = p,, == M <l,m < M, we find
N
DG = &GP+ AN i > — Z FU1& = &)X AkZW .
7,k=1 L#m 7,k=1
Thus,

N M N
0< > D fUI& = &l + AN Aepeitm + Y D F(1E = &M Akl e

0#£m j k=1 =1 j k=1

—ZZf (&210) — (€6 1) 2) s 120) Dok ).

Since RY*M 5 (£,m) — f(|(&,1)]?) is negative definite and since > gy At =0,
this contradicts (7).

For (f) we use again the criterion (7). Choose i, ...,&n € R™ and Ay, ...,
Ay € C with > ;A = 0. For ¢ € R we introduce the auxiliary function

N

dlc) == > [f& = &I+ ) = f(1& — &P XA

jk=1

and show that ¢ — ¢(c) is negative definite. Obviously, ¢ is real-valued, ¢(0) =
0 and for all ¢;,...,cp € Rand g, ..., puy € C with Y, e = 0 we see

M
Z ¢((C€ - Cm :uf,um - Z Z f |£J €k| + ( )2)>‘j5‘k,u£,am
{m=1 {m=1 j,k=1

—ZZf (& 0) = (& m)) 1) ot < 0.
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The latter follows from (7) and the fact that R"™ 3 (£ ¢) — f(|(£,¢)]?) is
negative definite. Thus, ¢(c) = ¢(0) > 0 and we conclude that

N

S (f = )& = &)\ = —6(c) <0

jh=1
which, in view of (7), means that f(|£]?) — 7.f(|£|?) is negative definite.

To see (g) we note that because of (e) 7.f € O for all ¢ € R, thus f(|¢]* +

c?) > f(c?) which proves that f is increasing. By (f), f — 7.f € O, hence

< €3 + f(¢*) — f(€]* + ¢?), proving subadditivity. Finally using that
T.(f —1af) € O we get

0 < 7e(f — 1af )(d®) = 2f (S + d?) — f( +2d°) — f(c?)

which can be rearranged to give 3(f(c* +2d%) + f(c?)) < f(c* +d?). Since f is
continuous, this mid-point property implies concavity. |

We are now ready for the proof of Theorem 2.2.

Proof of Theorem 2.2. The above Lemma shows that O is a closed convex
cone contained in the space L = L'((0,00),e " dr). The set

feo/f Tdrzl}C]L
is a convex base of O. For f € B we have

f(rye ™" = f(r) /00 e *ds < /00 f(s)e™?ds < 1. (25)

Let us show that B is a relative compact subset of .. We check the conditions
of Kolmogorov’s compactness criterion for LP. First,

sup ||l = 1. (26)
feB
Moreover, for all z,y > 0 contained in a bounded set we have

1ot 2) = flot o)l = / T o) — )l dr

:e”/\y/oo lfir+xVy—xAy)— f(r)|e"dr

Ny
< / Tt e —yl) - F)le dr (27)
0
="V (e'””’y| flrye " dr — 1)

lz—yl

_ —y|—-0
< ew/\y(elx yl 1) z=yl=0, 0,
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and for all R > 1 we have by the concavity of f and (25)

1 fL(R00)llL = / f(r)e "dr < f(l)/ re”"dr = e R(R+1). (28)
R R
Note that (26) and (28) ensure the uniform integrability of the set B, thus L-
and pointwise convergence coincide on B. This shows that B is closed, hence
compact.

We may now apply the Theorem of Krein-Mil’'man stating that B is the
closed convex hull of its extremal points. Literally as in Harzallah [8] we find
that the extremals of B are {1,x,1+77 (1—e7),0 < v < oo}; hence, every
f € 0O is of the form

e}

s =c(arors e Y )

for some ¢, «, 5 > 0, and a measure p such that o + 3 + p((0,00)) < 1. |
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