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Regularity of the Adjoint State
for the Instationary Navier-Stokes Equations

Arnd Rosch and Daniel Wachsmuth

Abstract. In this article, we are considering imbeddings of abstract functions in
spaces of functions being continuous in time. A family of functions depending on
certain parameters is discussed in detail. In particular, this example shows that such
functions do not belong to the space C([0,T], H). In the second part, we investigate
an optimal control problem for the instationary Navier-Stokes equation. We will
answer the question, in what sense the initial value problem for the adjoint equation
can be solved.
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1. Introduction

In this paper, we will study the regularity of abstract functions. The discussed
properties are heavily connected to the optimal control of instationary Navier-
Stokes equations. Here, the gradient of a given objective functional is evaluated
by means of an adjoint state. The adjoint state is itself the solution of an
evolution equation. The discussion of abstract functions in the first part of the
paper will reflect important properties of the adjoint state.

The aim of the present article is twofolded. At first, we want to shed light
on imbeddings of abstract functions in spaces of continuous functions. We
refer to the mostly classical results due to Lions [4]. Given a Gelfand triple
V < H — V' the space

wW(0,T) = {y € L*(0,T;V) : %y € L*(0,T; V’)}
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is continuously imbedded in C([0,7], H). In a recent research paper of Amann
[2], the question of compact imbeddings is considered. However, to the knowl-
edge of the authors there are no further results in the literature generalizing
the result of Lions substantially except the following one in the book of Dau-
tray and Lions [4, XVIIL.3.5, p. 521]. They wrote, that it suffices to require
4y € L'(0,T; V') to get the continuity result y € C([0,T7], H).

Since the adjoint state of the Navier-Stokes equation does not belong to
W(0,T) in general, the above mentioned result in [4] is used in different papers
concerning the optimal control of the instationary Navier-Stokes equation, see
e.g. 8,10, 11, 14].

In the present paper, we will show that the more general imbedding result
in [4] cannot be true. For this, we will discuss in detail a family of functions
depending on certain parameters. Nevertheless, we want to point out that the
incorrectness of the imbedding result in [4] does not influence the main results
in the mentioned papers [8, 10, 11, 14]. The counterexamples show also that
the result of Amann [2] is really sharp.

The second part of the article deals with the adjoint state of an optimal
control problem for the instationary Navier-Stokes equations. Assuming certain
regularity of the data, it belongs to the space

W(2,4/3;V,V') := {y € L*(0,T;V) : %y e L*3(0,T; V')} .
As already mentioned, one cannot expect that this space is continuously imbed-
ded in C([0,T], H). Naturally, there arises the following question: is there an
imbedding of W (2,4/3;V, V') in C([0,T], X), where X is a space of weaker
topology than H?

The article is organized as follows: In Section 2, we construct families of
functions and study regularity properties. In the second part, Section 3, we
give a brief overview of the theory of optimal control for instationary Navier-
Stokes equations. Finally, we present a regularity result of the adjoint state.
A last example shows that this regularity cannot be improved by imbedding
arguments.

2. Counterexamples

Here, we will deal with imbeddings of abstract functions in spaces of continuous
functions. At first, we state the most classical result in this field. Let V <
H — V' be a Gelfand triple.

Theorem 2.1. The space

Wp ¢V, V') == {y € IP(0,T;V) - %y € LU0, T; V’)}
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is continuously imbedded in C([0,T], H) if% + % <1

For the proof in the case p = ¢ = 2 we refer to [4, Theorem XVIII.1.2.1]. Tt
can be easily adapted to the case % + % =1, cf. [5, Theorem IV.1.17].

In the sequel, we will construct several functions that are in W (p, ¢; V, V'),
where p,q do not meet the assumptions of the previous theorem. We prove
that in the case % + % > 1 there is no imbedding W (p, ¢; V, V') — C([0,T], H).
We are also looking for a positive result of the following kind: for given p,q
the space W(p, ¢; V, V') is continuously imbedded in C([0,7], X ), where X is a
space with weaker topology than H.

Consider the following example: Let Q = [0,1] and T > 0. Set V := Hj (),
H = L?*(Q), and V' induced by the H-scalar product such that V «— H < V'
forms a Gelfand-triple. Define a function f, ; over Q2 x [0, 7] by

Jax(z,t) = Zn_%e(_"at) sin n* 7, (1)

n=1
where k is a natural number.

Lemma 2.2. The function fo ) given by (1) has the following properties:
(1) far € C([0,T); H) for a>0

(ii) fo € LP(0,T5V) for p < 25

2

(iii) %fa,k € L10,T; V") for g < —%—

a
a+%—k'

Proof. Set v,(z) := sinnfrz. At first, observe that the functions v, are or-

thogonal with respect to the H- as well as to the V-scalar product. It holds
1 1
|’Un|H = E and |’Un|V = %
Now, we want to derive the V'-norm of v,. Let ¢ € V be a test function. After
partial integration, we find using the Cauchy-Schwarz inequality

’I’Lk’ﬂ'.

1
(Un, O)vry = / sin(n*rz) ¢(z) dx
0
_ L/ cos(nfrz) ¢ (x) dz

T onkw J,
1
< .
< = lolv
This allows us to conclude ]
‘Unhﬂ S

V2nkn
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Setting ¢(z) := v,(x), we obtain

1
[Up |y = —=—n"F.

V2
Claim (i): Let fJx be the function defined by the finite series

N
1l po .
N (7,t) = E n 2e0 " gin nFrg.

n=1

For t = 0, we obtain

N
N _ -3 Gk
ak(2,0) = E n”z sinn®rz.

n=1

Consequently, we find for the L?-norm

N T N
1 ) 1
||fgk(,0)||%{= E E/ sin? nfrzdz = E oo
n=1 0 n=1

This series grows unboundedly for N — oo. Therefore, f,x(0) cannot belong
to H, which implies that f, 4 is not in C([0,T]; H).

Claim (ii): Again, we consider the finite series f7,. We want to estimate
the L?(0,T;V)-norm of fi/k. Using Hoélders inequality, we derive first

N 1
T p P
| fallzoqvy = (/ (Zn%("at) \Un\v) dt)
0 n=1
N T 1 p %
< ([ (e ) )
n=1 0

The integral on the right-hand side can be computed by

T 1 a p T ™ P 1 a
/ (n_ie(_" t |Un|v) dt =/ (—) nPE=3) (=P gy
0 0 \/i

Hence, we arrive at the estimate

N

m _1l_a

£ ey < d nf72s,
n=1

Vagh
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This series will be finite for N — oo, if

1
k- —2 <1
2 p
or equivalently
o
<
P %+

holds.
Claim (iii): Similarly, the L2(0,7T;V')-estimate can be proven. We shall

begin with
d N T N 1 (7 Ott) 7 !
H& a.k Lo = /0 (Zna 2ol ‘Un‘V'> dt
n=1
N T 1 % q %
S Z </ (na_ie(_n 1) |Un|V’) dt) .
n=1 0

We find for the time integral

This implies
N

]. 1_ o

J+/ ak <
At oy~ V2yaT i
The series on the right hand side is uniformly bounded for
1
a—-—k—2 <,
q
which is equivalent to
o
< — T
<% +:—k
|

and completes the proof.
Remark 2.3. For a = p(k + 3) + & with some fixed ¢ > 0, we find that (i) and

(ii) are automatically fulfilled. Moreover, we obtain from (iii)
k+%+e
(R s T EN e &
P—1k+5+e+5
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If k is sufficiently large, the value of ¢ is arbitrary close to

This shows, that the proposition of Theorem 2.1 is sharp
Further, we can conclude that there is no imbedding of W (2,1;V, V")

C([0,T), H) as stated in [4, p. 521].

In the following, we will denote by H?*(f2) for —1 < s < 0 the Sobolev-

Slobodeckij spaces of fractional order. We have H~! = V' and H® = H with

the notation already introduced.

Corollary 2.4. Let us consider the function

oo
— —me o
= E n~te"Y ginnfrg.
n=1

fa,k,l (SC, t)

This function satisfies

(1) fars & C([0,T];
(11) fakl ELP(O T; V) forp< P l+1’

(lll) afaJc,[ € Lq(O, T, V’) fO’I" q < m,
(iv) fapy € C([0,T]; H) for s > L4,

(V) fara & C(0,T]; H™®) for s < 2=
Proof. The points (i) — (iii) can be shown similarly to Lemma 2.2. To prove
(iv) and (v) we use interpolation theory. Given v € H, we have

)fora>0andl§%,

andl<—

W] g-s < 1 |v|% Ju)5

with #; = s. For a function v € V, we obtain
g < e v |l

with 92 = —115. Hence, for Un(l') =gsin ’I’Lk7l$ we find
C1
—7 ° sk =:C3MN Sk. (3)

[Un |55 < 1 ‘Unwﬂ|vn|His = /2 n

Let us denote by f;, ; the finite series

aklxt E n~te="" sinnfr.
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Now, we are ready to prove (iv). We want to show that f, x; is in the space
C([0,T], H=*). To this aim, let ¢ € [0,T] be given. Let the pre-requisite s > £
be fulfilled. We derive using (3)

oo fore) o
| fama@lz-s = || Zn_le(—nat)’l)n”H_s < Z R | r-e < C3Zn—l—sk.
n=1 n=1 1

By assumption, we have —] — sk < —1 for the exponent. Therefore, we ob-
tain uniform convergence of f,,;(t). This uniform convergence and the fact
n~te="*Ny, € C([0,T]; H*) for each n and fixed s ensures the continuity of
the abstract function.

To prove (v) we start from (2) and get

”f(i\,,k,l”H_s > 02_5_1||f£k,l||;;r1||f¢]y\,]k,l|

—8
VvV

since obviously C]YV k, 7 0 holds. For sufficiently large N and [ < %, we estimate
the H-Norm of fOJXk,l by

N

|| N ”2 — 1 -2l 5 1 N —Zld — 1 1 (N1—2l_1) > 1 N1—21
Japalla =52 " 25 [ o de =577 =4 '
1

n=1

Note, that the estimate is also correct for negative values of [.

Similarly, we have to derive a bound of the V-norm. For sufficiently large
N, we obtain

2 2 N
12l = 53 < T (1 S ACaR i dx)
n=1 0

72 1

=— 14+ ——— ((N+1)H22 _4q
2(+1+2k—2l(( +1) )

< T ke

—1+2k-2] '

Since by assumption [ < %, it holds 1 4+ 2k — 21 > 0 for £ > 0. Altogether, we

found
st+lq o1y _ 8 - 1 g
|H—S > N2 (1-20)—5(1+2k—21) _ cN2 sk l’

1 o

1
. . o 1y . .
which tends to infinity if s < 2—. Hence, fqx,; cannot be a function continuous
in time with values in such H~* spaces. |

These examples show that under certain conditions it may happen that ab-
stract functions are continuous with value in some space H~* but discontinuous
with values in spaces of integrable functions.
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3. Application to an optimal control problem

In this section, we will consider optimal control of the instationary Navier-
Stokes equations. As a model problem serves the minimization of the quadratic
objective functional

o
How) = [ 9.1 = o) P o

o

+7Q/ ly(z,t) — yo(x,t)[> dz dt (4)

Q

QR 2 2 2

+—/ |curly(z, )] da:dt+—/ |u(z,t)|*dzdt
2 Jq 2Jq

subject to the instationary Navier-Stokes equations

Yy —vAYy+(y-V)y+Vp = u+f in Q

divy = 0 in
_ (5)

y = 0 on I’

y(0) = yo in Q.

The control v has to be in a set of admissible controls U,g,
U € Uy, (6)
where Uy, is given by
Uws = {u € L*(Q)” : ugi(z,t) < ui(z,t) < upy(z,t) ae.on Q, i =1,2}.

Let us denote the optimization problem minimize the functional J(y,u) under
the constraints (5) and (6) by (P).

Here, Q is an open bounded subset of R? with C2-boundary I' such that
Q2 is locally on one side of ', and @ is defined by @ = (0,7) x Q. Further,
functions yr € L%(Q)?, yo € L*(Q)?, and yo € H C L*(Q)? are given. The
source term f is required to belong to L?(0,T;V’). The parameters v and v
are positive real numbers. The constraints u,, u, are required to be in L?(Q)?
with u,;(z,t) < up,(z,t) a.e.on Q, i =1,2.

3.1. Notations and preliminary results. First, we introduce some notations
and provide some results that we need later on.

To begin with, we define the solenoidal spaces
H:={v e L*(Q)?: divy =0}
V:={v e H}(Q)?: dive = 0}.
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These spaces are Hilbert spaces with their norms denoted by |- |g, |- |v, and
scalar products (-, -)u, (+,-)v, respectively. The dual of V' with respect to the
scalar product of H we denote by V' with the duality pairing (-, ‘)v+v.

We shall work in the standard space of abstract functions from [0, 7] to a
real Banach space X, L?(0,7T; X ), endowed with its natural norm

T »
1Yllze0x) = [1Yllzoorix) = (/ ()% dt) , 1<p< o
0

Iylleex) = vrai max[y(#) x-

In the sequel, we will identify the spaces L?(0,T; LP(2)?) and LP(Q)? for 1 <
p < 0o, and denote their norm by ||u||, := ||ul|zs(g)2. The usual L*(Q)-scalar
product we denote by (-,-)g to avoid ambiguity.

In all what follows, || - || stands for norms of abstract functions, while | - |
denotes norms of "stationary” spaces like H and V.

To deal with the time derivative in (5), we introduce the common spaces of
functions y whose time derivatives y,; exist as abstract functions:

wW0,T;V) :={y € LQ(O,T; V): gy, € L0, T;V")}
W(0,T) := W?(0,T;V),

where 1 < o < 0o. Endowed with the norm

lyllwe = [yllweorv) = YllL2evy + l|Yellze vy,

these spaces are Banach spaces. Every function of W (0,T) is, up to changes on
sets of zero measure, equivalent to a function of C'([0, 7], H), and the imbedding
W(0,T) — C([0,T], H) is continuous, cf. [1, 12]. As we saw above, there is no
imbedding W*(0,7T;V) in C([0,T], H) for o < 2. However, the space W (0,T)
enjoys the following imbedding property:

Lemma 3.1. The space W (0,T) is continuously imbedded in L*(Q)2.

Proof. For v € V, the interpolation inequality
11
vla < clvlf vl
holds, cf. [13]. Let v € W(0,T) be given. Then, we can readily estimate
T T
4
Iolls < [ leiide <c [ tofy ol de < cllolBmgnllolfg) < el
0 0

which proves the claim. |
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For convenience, we define the trilinear form b: V x V x V — R by

2
8’Uj
b(u,v,w) = ((u- V)v,w)s = /Q z u,a—aCZ w;dz

ij=1
together with
T
bQ(u,v,w):/ b(u(t),v(t), w(t)) dt.
0

An important property of b is given by the fact that for v € V' and sufficient
regular v, w it holds
b(u,v, w) = —b(u, w,v). (7)

There are several estimates of b respectively by available. We mention only
the following one which we will need in the sequel. For detailed discussions
consult [3, 13, 15].

Lemma 3.2. Let u,w € L*(Q)? and v € L*(0,T;V) be given. Then there is a
constant ¢ > 0 independently of u,v,w such that

g (u, v, w)| < cllulla||[vl|z2or vy llwlla
holds.

To specify the problem setting, we introduce a linear operator A that maps
continuously L?(0,7;V) to L*(0,T; V') by

| o, vy, ae= [ G000), 0

and a nonlinear operator B by

/O (BW)®), v(®),,, dt = /0 by (2), y(0), v(t)) dt.

As a conclusion of Lemma 3.1, eq. (7), and Lemma 3.2, we find that B is
continuous as an operator from W (0,T) to L?(0,T;V").

Testing system (5) by divergence-free functions, one obtains the solenoidal
form of the Navier-Stokes equations
vy +vAy+ B(y) = u+f
y(O) = Yo,
where the first equation has to be understood in the sense of L?(0,T;V"). It is

well-known that for all initial values yo € H and source terms u, f € L*(0,T;V")
there exists a unique weak solution y € W(0,T) of (5), cf. [3, 13].



Regularity of the Adjoint State for Navier-Stokes 113

We introduce the linearized equation by

Yy +vAy +B'(f)y = wu
?/() = Y-

(8)

Here, y is a given state y € W(0,T). This equation is solvable for all u €
L?(0,T; V") and y, € H. Its unique solution y is in W (0, T).

3.2. Optimality condition. Now, we return to the optimization problem (P).
We will call a control u € U,y locally optimal, if there exists a p > 0 such that

J(@,a) < J(y,u)

for all u € U,q with ||u — @|2 < p. Here, § and y denote the states associated
with @ and u, respectively.

A first-order necessary condition for local optimality is stated in the next
theorem.

Theorem 3.3. Let u be a locally optimal control with associated state y = y(u).
Then there exists a unique solution A € W*3(0,T; V) of the adjoint equation

—X + VAN + B'(9)*A = ag(y —
ANT) = ar(y(T) — yr).

Moreover, the variational inequality

yq) + agcurl curl
(9)

(Va4 A u—u)r2gpe >0 Vu € Uy (10)
15 satisfied.
Proofs can be found in [6, 7, 14]. The regularity of X is proven in [10,

Proposition 3.3] for homogeneous initial conditions A(T) = 0.

The adjoint state A is the solution of a linearized adjoint equation backward
in time. So it is natural, to look for its dependance of the given data. For
convenience, we denote by g the right-hand side of (9), and by Ar the initial
value ar(g(T) — yr)-

Theorem 3.4. Let \y € H, g € L*(0,T; V"), andy € L*(0,T;V)NL>®(0,T; H)
be given. Then there erists a unique weak solution \ of (9) satisfying X €
W4/3(0,T). The mapping (g, A\r) — X is continuous in the mentioned spaces.

Proof. At first, denote by w the weak solution of

—w; + VAw =g
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Its existence and regularity w € W(0,T) follows from the solvability of the
instationary Stokes-equation, cf. [13]. Moreover, we get the continuity estimate

lwllw < c{llgll2qr) + [Ar|m} - (11)
Further, let z be the weak solution of
—z+vAz + B'(§)*z = —B'(§)*w
z(T) = 0.

Since 3 and w are in W (0,T), we get B'(g)*w € L**0,T; V') n W*(0,T) as
follows. We write for v € W(0,7)

|[B'(gj)*w]v|= /0 b(y,v,w) + b(v, y,w) dt

< c{llglla lvllzzen llwlla + llolla 19l 2y llwlla} -

By Lemma 3.2, we conclude

|(B' (@) wlv| < ellgliwllwllw {l[vllz2y + Ivlla} -

Since ||v||4 < ¢||v]|w, we get B'(§)*w € W*(0,T). The space V is continuously
imbedded in L*(Q)2?, which allows us to conclude B'(g)*w € L*3(0,T;V").
Therefore, we arrive at

1B' (@) wllw+ + 1B (@) wllpassiry < cllgllwllwllw- (12)

Now, Proposition 2.2.1 in [9] respectively Proposition 2.4 in [10] imply the
existence of z together with the regularity z € W*/3(0,T) and the estimate

Izllwars < e {IB'@) wllparsry + 1B (@) wllw-} < ellgllwllwllw. — (13)

We construct a solution of the inhomogeneous adjoint equation (9) by A = z4w.
Using (11) and (13),

Mlwars < llzllwars + llwllw < e @+ 1Fllw) {Ilgllzzry + [Arla )
is found, and the claim is proven. |

Observe, that the conditions of the previous theorem requires the initial
value to be in H, whereas the regularity A € W*3(0,T) does not guarantee
At) > A in H fort » T.

If the data are more regular, then the things are much easier. If for instance
f € L*(Q)* and yy € V is given together with y; € V, then the state y and

the adjoint \ admit the same regularity: it holds that \ belongs to a space H>!
which is continuously imbedded in C([0,T], V), confer [9, 13].
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3.3. Example. In this last section, we will answering the question: can the
adjoint state be represented by a continuous abstract function? Clearly, if
A € L*3(0,T;V") together with A(T) € V' hold, then it is obvious that A
is a continuous function with values in V’. Nevertheless, we are looking for a
sharper imbedding result.

Let € > 0 and integer k£ > %+3€ be given. Set [ =1 —§+€ and a = %k.
Notice that by the definition of k& and [ we have | < L. Then the function

2
f = fak, introduced in Section 2 fulfills:
(i) f e Lr(0,T;V) forp < 2+ %

4k—3e
(i) §&f € LU0, T V") for ¢ < § + g5

)
(iii) f € C([0,T),H®) for s > 1 + ¢

(iv) f ¢ C([0,T),H*) for s < 3 — %

Here, we observe that f € W (2,4/3;V,V’) for all possible k and . Thus, f

has the same regularity as the adjoint state A. And we can say that the space

W (2,4/3;V, V') is not continuous imbedded in C([0,T], H*) for s < 5.
However, there is a positive result available.

Theorem 3.5. The space W (p,q;V,V') is compactly imbedded in the space
C([0,T], H™) for

b+
s > 151 1
Ty

Proof. For the proof and detailed discussions, we refer to Amann [2]. The
notation is adapted to that one used in the present article.

We combine these conclusions to

Corollary 3.6. The space W(2,4/3;V, V") is continuously imbedded in the
space C([0,T], H=®) for s > % If s < % holds, then W (2,4/3;V, V') can not be
imbedded in C([0,T], H™*).
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