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Atypical Bifurcation Without Compactness

P. Benevieri, M. Furi, M. Martelli, and M. P. Pera

Abstract. We prove a global bifurcation result for an abstract equation of the
type Lx + λh(λ, x) = 0, where L : E → F is a linear Fredholm operator of index
zero between Banach spaces and h : R × E → F is a C1 (not necessarily compact)
map. We assume that L is not invertible and, under suitable conditions, we prove
the existence of an unbounded connected set Σ of nontrivial solutions of the above
equation (i.e. solutions (λ, x) with λ 6= 0) such that the closure of Σ contains a trivial
solution (0, x̄). This result extends previous ones in which the compactness of h was
required. The proof is based on a degree theory for Fredholm maps of index zero
developed by the first two authors.
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1. Introduction

We consider the semilinear operator equation

Lx+ λh(λ, x) = 0 (1)

where L : E → F is a linear Fredholm operator of index zero between real
Banach spaces and h : Ω → F is a continuous map defined in a simply connected
open subset Ω of R × E. We assume that, for any λ ∈ R, the partial map
x 7→ Lx + λh(λ, x) is a nonlinear Fredholm map of index 0 on the (possibly
empty) section

Ωλ = {x ∈ E : (λ, x) ∈ Ω}.
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In addition we require the continuity of the map

(λ, x) 7→ ∂2h(λ, x),

where the symbol ∂2h(λ, x) denotes the partial Fréchet derivative of h with
respect to the second variable at the point (λ, x).

The set of trivial solutions of (1) is obtained when λ = 0. It coincides with
({0} × KerL) ∩ Ω, assumed to be not empty. One of the problems related to
equation (1) is to establish under what conditions the set of nontrivial solutions
is not empty and to determine topological properties of this set. One of them
is the existence of a bifurcation point ; that is, a point p in KerL∩Ω0 such that
(0, p) lies in the closure of the set of nontrivial solutions. The related bifurcation
theory is sometimes called cobifurcation [5] or atypical bifurcation [8].

Some authors [6, 7] have studied the case when h is compact and proved the
existence of a connected bifurcating branch of nontrivial solutions that is either
unbounded or its closure contains at least two bifurcation points. In this paper
we obtain an analogous result removing the compactness assumption on h. The
proof is based on a degree theory developed by Benevieri and Furi [1] for the
class of Fredholm maps of index zero.

2. Terminology and Preliminary Results

We start this section with a brief summary of the degree theory presented by
Benevieri and Furi in [1] (see also [2] and [3]). It is based on a notion of
orientation for nonlinear Fredholm maps of index zero between Banach spaces.

The starting point is a definition of orientation for linear Fredholm operators
of index zero between real vector spaces. Let E and F be real vector spaces.
We recall that a linear operator L : E → F is called algebraic Fredholm if KerL
and F/ ImL have finite dimension. The index of L is the integer

indL = dim KerL− dimF/ ImL.

Given an algebraic Fredholm operator of index zero L : E → F , a linear
operator A : E → F , having finite dimensional image, is a corrector of L if
L + A is an isomorphism. The set C(L) of correctors of L is nonempty, since
it contains any linear operator A : E → F such that KerA ⊕ KerL = E and
ImA⊕ ImL = F .

We introduce in C(L) the following equivalence relation. Let A,B ∈ C(L)
and consider the automorphism

T = (L+B)−1(L+ A) = I − (L+B)−1(B − A)
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of E. Observe that K = I − T has finite dimensional image. Given any
nontrivial finite dimensional subspace E0 of E containing ImK, the restriction
of T to E0 is clearly an automorphism of this subspace. Then, its determinant
is well defined and nonzero. One can check that this determinant does not
depend on the space E0 containing ImK. Thus this value can be defined as the
determinant of (L+B)−1(L+ A), in symbols det(L+B)−1(L+ A).

We say that A is equivalent to B or, more precisely, A is L -equivalent to B,
if det(L + B)−1(L + A) > 0. This is actually an equivalence relation on C(L)
with two equivalence classes.

Definition 1. An orientation of an algebraic Fredholm operator of index zero
L is the choice of one of the two equivalence classes of C(L). We say that L is
oriented when an orientation is chosen.

Given an oriented operator L, it will be useful to call positive correctors of
L the elements of its orientation.

According to Definition 1, an oriented operator L is actually a pair (L, ω),
where ω is one of the two equivalence classes of C(L). However, to simplify the
notation, we shall not use different symbols to distinguish between oriented and
nonoriented operators.

Definition 2. An oriented isomorphism L is said to have the natural orientation
if the trivial operator 0 is a positive corrector of L. In addition we define
signL = 1 if L is naturally oriented and signL = −1 otherwise.

Notice that, if we choose a positive corrector A of an oriented isomorphism
L, then signL is just the sign of

det(L+ A)−1L = det(I − (L+ A)−1A),

which is well defined, as seen above, since the operator (L + A)−1A has finite
dimensional image.

We embed now the notion of orientation in the framework of Banach spaces.
From now on E and F are real Banach spaces and L(E,F ) denotes the Banach
space of bounded linear operators from E into F . In what follows all linear
operators will assumed to be bounded. For the sake of simplicity, the set of
bounded correctors of a Fredholm operator of index zero L : E → F is still
denoted by C(L), as in the algebraic case. It is clear that an orientation of L
can be regarded as an equivalence class of bounded correctors of L.

Let us recall that the set Φ(E,F ) of Fredholm operators from E into F is
open in L(E,F ). In fact, for any n ∈ Z, the set Φn(E,F ) of Fredholm operators
of index n is open in L(E,F ).

As one can notice, Definition 1 does not require any topological setting,
being referred to algebraic Fredholm operators. However, in the less general
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context of Banach spaces, an orientation of a Fredholm operator of index zero
induces an orientation of any sufficiently close linear operator. Indeed, given
L ∈ Φ0(E,F ) and a corrector A of L, L′+A is still an isomorphism for every L′

in a suitable neighborhood U of L. If, in addition, L is oriented and A is a
positive corrector of L, then any L′ ∈ U can be oriented choosing A as a positive
corrector of L′. This elementary consideration brings us to the following notion
of orientation for a continuous map with values in Φ0(E,F ).

Definition 3. Let X be a topological space and ψ : X → Φ0(E,F ) be contin-
uous. An orientation of ψ is a continuous choice of an orientation α(x) of ψ(x)
for each x ∈ X, where “continuous” means that for any x ∈ X there exists
Ax ∈ α(x) which is a positive corrector of ψ(x′) for any x′ in a neighborhood
of x. A map is orientable when it admits an orientation and oriented when an
orientation is chosen.

In [2] it is shown that if X is simply connected and locally path connected,
then any continuous map from X into Φ0(E,F ) is orientable.

From Definition 3 we obtain the following notion of orientation for (non-
linear) Fredholm maps of index zero between Banach spaces. We recall that,
given an open subset V of E, a map f : V → F is called Fredholm if it is C1

and its Fréchet derivative, Df(x), is a Fredholm operator for all x ∈ V . The
index of f at x is the index of Df(x) and f is said to be of index n if it is of
index n at any point of its domain.

Definition 4. An orientation of a Fredholm map of index zero f : V → F is
an orientation of the continuous map Df : x 7→ Df(x), and f is orientable, or
oriented, if so is Df according to Definition 3.

Let us now sketch the construction of the degree and recall its main prop-
erties.

Definition 5. Let f : V → F be an oriented (Fredholm) map (of index zero)
and y ∈ F . Given an open subset U of V , we say that the triple (f, U, y) is
admissible for the degree if f−1(y) ∩ U is compact.

The degree of an admissible triple (f, U, y) is preliminarily defined when y
is a regular value for f in U . In this case we put

deg(f, U, y) =
∑

x∈f−1(y)∩U

signDf(x).

To define the degree of an admissible triple (f, U, y) in the case when y is a
critical value, we consider an open subset U ′ of U , containing f−1(y) ∩ U and
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such that f is proper on the closure U
′
of U ′ (U ′ exists since Fredholm maps

are locally proper - see [9]). Then, the degree of (f, U, y) is defined as

deg(f, U, y) = deg(f, U ′, z),

where z is any regular value for the restriction of f to U ′, sufficiently close to
y. This definition is well posed as proven in [1].

The properties of this degree are analogous to the classical properties of the
Leray-Schauder degree (see [1] for details). Here we mention the following ones:

i) (Normalization) Let the identity I of E be naturally oriented. For any
open subset U of E and any y ∈ U , one has

deg(I, U, y) = 1.

ii) (Additivity) If (f, U, y) is an admissible triple and U1, U2 are two disjoint
open subsets of U such that f−1(y) ∩ U ⊆ U1 ∪ U2, then

deg(f, U, y) = deg(f, U1, y) + deg(f, U2, y).

iii) (Existence) Let (f, U, y) be admissible. If

deg(f, U, y) 6= 0,

then the equation f(x) = y has a solution in U .

iv) (Excision) If (f, U, y) is an admissible triple and U1 is an open subset of
U containing f−1(y) ∩ U , then

deg(f, U1, y) = deg(f, U, y).

Another important property satisfied by this notion of degree, and which
is crucial for the results obtained in this work, is an extended version of the
Homotopy Invariance Property.

Let W be an open subset of R×E and H : W → F be continuous. We say
that H is a continuous family of Fredholm maps of index zero if the following
conditions are satisfied:

a) for any λ ∈ R the partial map Hλ = H(λ, ·) is Fredholm of index zero on
the section Wλ;

b) the partial derivative ∂2H : W → Φ0(E,F ) is continuous.

In [3] it was proved that a continuous family of Fredholm maps is locally
proper, extending a well-known result of Smale for the C1 case (see [9]). This
fact will be crucial in the sequel.

We say that H is orientable, or oriented, if so is the map ∂2H : W →
Φ0(E,F ) according to Definition 3. Let us now state the following version of
the Homotopy Invariance Property of the degree (see [3, Theorem 3.4]).
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Theorem 1 (General Homotopy Invariance). Let W be open in [0, 1]×E
and H : W → F an oriented family of Fredholm maps of index zero. Let
y : [0, 1] → F be a (continuous) path. If the set{

(λ, x) ∈ W : H(λ, x) = y(λ), λ ∈ [0, 1]
}

is compact, then deg(Hλ,Wλ, y(λ)) does not depend on λ.

We conclude the brief summary of this degree theory with another property
needed in the next section.

Let f : U → F be an oriented map and let F0 be an oriented finite dimen-
sional subspace of F . Assume that F0 is transverse to f ; that is, ImDf(x)+F0 =
F for every x ∈ f−1(F0). In this case f−1(F0) is a differentiable manifold of the
same dimension as F0. In [1] it is shown how the orientations of f and F0 give
an orientation on f−1(F0), that we shall refer to as induced orientation.

Theorem 2 (Reduction). Let (f, U, 0) be an admissible triple and let F0 be
an oriented finite dimensional subspace of F , transverse to f . Then

deg(f, U, 0) = deg(f0, f
−1(F0) ∩ U, 0),

where f0 : f−1(F0) → F0 is the restriction of f to the manifold f−1(F0) endowed
with the induced orientation, and the right hand side is the Brouwer degree of
the triple (f0, f

−1(F0) ∩ U, 0).

We end this section with the following result (see Lemma 1.4 of [6]) which
plays a crucial role in the proof of the main theorem of this paper.

Lemma 1. Let K be a compact subset of a locally compact metric space X.
Assume that any compact subset of X containing K has nonempty boundary.
Then X\K contains a not relatively compact component whose closure in X
intersects K.

3. Results

We come back to the study of equation (1). Denote by π : F → F/ ImL
the canonical projection, and by R : F → ImL a bounded linear retraction,
namely an operator from F onto ImL such that Ry = y for every y ∈ ImL.
Equation (1) is equivalent to the system{

Lx+ λRh(λ, x) = 0

λπh(λ, x) = 0
(2)

Notice that all points in Ω of the form (0, x), with x ∈ KerL, are solutions of
(2). They are called trivial solutions. We say that p ∈ KerL is a bifurcation
point for (1) if (0, p) is in the closure of the set of nontrivial solutions.
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In order to investigate the set of nontrivial solutions it is convenient to
consider the system {

Lx+ λRh(λ, x) = 0

πh(λ, x) = 0
(3)

which is equivalent to (2) for λ 6= 0.

Theorem 3 (necessary condition). Assume that p is a bifurcation point for
the equation (1). Then h(0, p) ∈ ImL or, equivalently, πh(0, p) = 0.

Proof. Since p is a bifurcation point, there exists a sequence {(λn, xn)} of
solutions of (3) converging to (0, p). The result follows from the continuity of
πh.

The following result provides a sufficient condition for the existence of a
bifurcation point. The statement involves the degree of a map between KerL
and F/ ImL. Therefore these spaces should be considered oriented. However,
the result is independent of the chosen orientations. As before, given W ⊆ Ω ⊆
R× E, W0 and Ω0 denote the sections of W and Ω at λ = 0.

Theorem 4 (sufficient condition). Let v : KerL ∩ Ω0 → F/ImL be defined
by v(p) = π(h(0, p)). Given W ⊆ Ω open, assume that deg(v,W0 ∩ KerL, 0)
is defined and different from 0. Then there exists a connected set of nontrivial
solutions of (1) whose closure in W is not compact and intersects {0}×KerL.

Proof. Let H : Ω → ImL× (F/ ImL) denote the map

(λ, x) 7→ (Lx+ λRh(λ, x), πh(λ, x)),

which is clearly a continuous family of Fredholm maps of index 0. Since Ω is
simply connected, the map

∂2H : Ω → Φ0(E, ImL× (F/ ImL))

defined by
∂2H(λ, x) = (Lx+ λR∂2h(λ, x), π∂2h(λ, x))

is orientable (see the previous section). Choose an orientation of ∂2H. By
definition, this gives an orientation of the family H and of any partial map Hλ.

The set
Y =

{
(λ, x) ∈ W : H(λ, x) = 0

}
is locally compact since, as observed before, H is locally proper. Moreover,
Y0 = v−1(0)∩W0 is compact, because we assumed that deg(v,W0 ∩KerL, 0) is
defined.

We apply Lemma 1 to the pair (Y, {0} × Y0). Assume, by contradiction,
that there exists a compact set C ⊆ Y containing {0} × Y0 and with empty
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boundary in Y . This implies the existence of an open subset W̃ of W such that
W̃ ∩ Y = C. Since C is compact, the General Homotopy Invariance property
implies that deg(Hλ, W̃λ, 0) does not depend on λ ∈ R. Moreover, W̃λ ∩ Cλ

is empty for some λ’s. Hence, we obtain deg(H0, W̃0, 0) = 0. The inclusions

v−1(0) ∩ W0 ⊆ W̃0 ⊆ W0 imply, using the Excision property of the degree,
deg(H0,W0, 0) = 0.

Now, observe that the subspace F0 = {0} × (F/ ImL) is transverse to H0

and H−1
0 (F0) = KerL ∩ Ω0. Thus, from the Reduction property of the degree,

we obtain
deg(H0,W0, 0) = deg(v,W0 ∩KerL, 0) 6= 0,

which is a contradiction.

Corollary 1. Let the assumptions of Theorem 4 be satisfied. Assume, moreover,
that the map (λ, x) 7→ Lx + λh(λ, x) is proper on bounded and closed subsets
of W . Then (1) admits a connected set Σ of nontrivial solutions such that its
closure in R×E intersects {0} ×KerL and is either unbounded or reaches the
boundary of W . In particular, if W = R× E, then Σ is unbounded.

Proof. Let Σ denote the closure in R×E of a connected branch Σ as in Theorem
4. Suppose Σ∩∂W = ∅. Thus, the closure of Σ in W coincides with Σ. Thus Σ
cannot be bounded, since the properness of (λ, x) 7→ Lx+λh(λ, x) on bounded
closed subsets of W implies that H has the same property.

The following Corollary can be regarded as an extension of a result proved
in [7].

Corollary 2. Let W and v be as in Theorem 4. Assume that the map (λ, x) 7→
Lx+λh(λ, x) is proper on bounded and closed subsets of W . Let p ∈ KerL∩W0

be such that v(p) = 0 and let v′(p) : KerL → F/ ImL be invertible. Then (1)
admits a connected set of nontrivial solutions such that its closure contains p
and satisfies at least one of the following three conditions:

i. is unbounded;

ii. contains a point q ∈ KerL ∩W0, q 6= p;

iii. intersects ∂W .

Proof. The assumptions v(p) = 0 and v′(p) invertible imply the existence

of an open neighborhood W̃0 of p in W0 such that v−1(0) ∩ W̃0 = {p} and

deg(v, W̃0, 0) = ±1. Now apply Corollary 1 replacing W with the set

W̃ = ({0} × W̃0) ∪ {(λ, x) ∈ W : λ 6= 0},

which is open, being obtained from W by removing the closed subset

{(0, x) ∈ W : x /∈ W̃0}.



Atypical Bifurcation Without Compactness 145

Remark 1. Using a result of the first two authors (see [4]) it can be shown,
essentially with the same proof of Theorem 4, that the assertion is still valid
when

h(λ, x) = h1(λ, x) + h2(λ, x),

with h1 satisfying the conditions previously required and h2 locally compact.
Under this more general formulation the result extends the previous theorems
of [5, 7]. To better understand how the cited results are extended we should
mention that the simple connectivity of Ω is required only when h1 6= 0. In
fact, when h(x, λ) = h2(x, λ) the orientability of the Fredholm map used in the
proof of Theorem 4 reduces to the orientability of L. Since L is Fredholm, its
orientability does not require the simple connectivity of Ω. Therefore, the result
is a clear extension of the theorems proved in [5, 7].

We end this paper with an example that illustrates how Theorem 4 can be
applied. Before presenting our example we would like to show that the open
connected subset V of the Banach space C1 := C1([0, T ],Rn), n ≥ 3, defined by

V = {x : x(t) 6= 0,∀t ∈ [0, T ]}

is simply connected. In fact, let k : [α, β] → V be a closed curve. Define the
homotopy H : [α, β] × [0, 1] → V by the action H(τ, s)(t) = k(τ)((1 − s)t).
Then H(τ, 0) = k(τ) while H(τ, 1) is a closed curve of constant functions that
can be identified with the closed curve τ 7→ k(τ)(0) in Rn\{0}. Since Rn\{0}
is simply connected, the assertion follows.

Example 1. Consider the following boundary value problem depending on a
real parameter λ: {

ẋ(t) + λφ(t, x(t), ẋ(t)) = 0

x(0) = x(T ) .
(4)

We assume that φ : R × Rn × Rn → Rn is of class C1 and T -periodic with
respect to the first variable. Our boundary value problem can be rewritten in
the form {

Lx+ λh(x) = 0

Bx = 0
(5)

where L, h : C1 → F := C([0, T ],Rn), and B : C1 → Rn are defined by
(Lx)(t) = ẋ(t), h(x)(t) = φ(t, x(t), ẋ(t)), and Bx = x(T )− x(0).

Set E = KerB and define f : R×E → F by f(λ, x) = Lx+λh(x). Clearly
a solution of (4) is a pair (λ, x) such that f(λ, x) = 0. To apply Theorem 4 to
this problem it is enough to find an open, simply connected subset Ω of R×E
such that for any (λ, x) ∈ Ω the partial Fréchet derivative ∂2f(λ, x) : E → F ,
which is given by

∂2f(λ, x) = L+ λh′(x),
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is a Fredholm operator of index 0. Observe that

(∂2f(λ, x)q)(t) = q̇(t) + λ∂2φ(t, x(t), ẋ(t))q(t) + λ∂3φ(t, x(t), ẋ(t))q̇(t).

Therefore, the above operator can be rewritten in the following way:

(∂2f(λ, x)q)(t) = (I + λAx(t))q̇(t) + λBx(t)q(t),

where I is the n×n real identity matrix and, given x ∈ E, Ax and Bx are n×n
matrices of real functions defined in [0, T ]. Observe that ∂2f(0, x) : E → F is a
Fredholm operator of index 0 since it can be regarded as the composition of the
inclusion E ↪→ C1 that is Fredholm of index −n, with a differential operator
from C1 to F that is onto with a n-dimensional kernel. It is easily seen that
∂2f(λ, x) : E → F is Fredholm of index 0 in an open set Ω if for every (λ, x) ∈ Ω
one has

det(I + λAx(t)) 6= 0, ∀t ∈ [0, T ].

If, for example, for every x ∈ E and t ∈ [0, T ], the eigenvalues of Ax(t) are never
negative (a property that is certainly verified when Ax(t) is positive semidefi-
nite), we can choose

Ω = {(λ, x) ∈ R× E : 1 + λMx > 0},

where
Mx = max

t∈[0,T ]
‖Ax(t)‖.

In this case, the set Ω is contractible, and therefore simply connected, since
it can be deformed into the contractible subset {0} × E via the homotopy
H : Ω× [0, 1] → Ω defined by H((λ, x), s) = (sλ, x).

The application of Theorem 4 to our example requires now the existence of
an open set W ⊆ Ω such that the vector field v : KerL∩W0 → F/ImL ∼= KerL
defined by

v(p) =
1

T

∫ T

0

φ(t, p, 0) dt

has degree different from 0 on W0 ∩KerL.
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